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Abstract 26 
 27 
 28 
Despite ample behavioral evidence of atypical facial emotion processing in individuals 29 
with autism (IwA), the neural underpinnings of such behavioral heterogeneities remain 30 
unclear. Here, I have used brain-tissue mapped artificial neural network (ANN) models of 31 
primate vision to probe candidate neural and behavior markers of atypical facial emotion 32 
recognition in IwA at an image-by-image level. Interestingly, the ANNs' image-level 33 
behavioral patterns better matched the neurotypical subjects' behavior than those 34 
measured in IwA. This behavioral mismatch was most remarkable when the ANN 35 
behavior was decoded from units that correspond to the primate inferior temporal (IT) 36 
cortex. ANN-IT responses also explained a significant fraction of the image-level 37 
behavioral predictivity associated with neural activity in the human amygdala — strongly 38 
suggesting that the previously reported facial emotion intensity encodes in the human 39 
amygdala could be primarily driven by projections from the IT cortex. Furthermore, in 40 
silico experiments revealed how learning under noisy sensory representations could lead 41 
to atypical facial emotion processing that better matches the image-level behavior 42 
observed in IwA. In sum, these results identify primate IT activity as a candidate neural 43 
marker and demonstrate how ANN models of vision can be used to generate neural 44 
circuit-level hypotheses and guide future human and non-human primate studies in 45 
autism.  46 
 47 
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Introduction 60 
 61 
The ability to recognize others' mood, emotion, and intent from facial expressions lie at 62 
the core of human interpersonal communication and social engagement. This relatively 63 
automatic, visuocognitive feature that neurotypically developed human adults take for 64 
granted shows significant differences in children and adults with autism 1-4. A mechanistic 65 
understanding of the underlying neural correlates of such behavioral mismatches is key 66 
to designing efficient cognitive therapies and other approaches to help individuals with 67 
autism.  68 
 69 
There is a growing body of work on how facial identity is encoded in the primate brain, 70 
especially in the Fusiform Face Areas (FFA) in humans 5,6 and in the topographically 71 
specific "face patch" systems of the inferior temporal (IT) cortex of the rhesus macaques  72 
7-9. Also, previous research has linked human amygdala neural responses with 73 
recognizing facial emotions 10-12. For instance, subjects who lack a functional amygdala 74 
often exhibit selective impairments in recognizing fearful faces 13,14. Wang et al.15 also 75 
demonstrated that the human amygdala parametrically encodes the intensity of specific 76 
facial emotions (e.g., fear, happiness) and their categorical ambiguity. A critical question, 77 
however, is whether the atypical facial emotion recognition broadly reported in individuals 78 
with autism (IwA) arises purely from differences in sensory representations (i.e., purely 79 
perceptual alterations16,17) or is due to a primary (but not mutually exclusive) variation in 80 
the development and function of specialized affect processing regions (e.g., atypical 81 
amygdala development leading to specific differences in encoding emotion). There are 82 
two main roadblocks toward answering this question. First, heterogeneity and 83 
idiosyncrasies are commonplace across behavioral reports in autism, including facial 84 
affect processing (for a formal meta-analysis  of recognition of emotions in autism see: 85 
18,19). The inability to parsimoniously explain such heterogeneous findings prevent us from 86 
designing more efficient follow-up experiments to probe such questions further. Second, 87 
in the absence of neurally mechanistic models of behavior, it remains challenging to infer 88 
neural mechanisms from behavioral results and generate testable neural circuit level 89 
predictions that can be validated or falsified using neurophysiological approaches. 90 
Therefore, we need brain-mapped computational models that can predict at an image-91 
by-image level how primates represent facial emotions across different parts of their brain 92 
and how such representations are linked to their performance in facial emotion judgment 93 
tasks (like the one used in 4). 94 
 95 
The differences in facial emotion judgments between neurotypical adults and individuals 96 
with autism are often interpreted with inferential models (e.g., psychometric functions) 97 
that base their predictions on high-level categorical descriptors of the stimuli (e.g., overall 98 
facial expression levels of “happiness”, “fear” and other primary emotions20). Such 99 
modeling efforts are likely to ignore an important source of variance produced by the 100 
image-level sensory representations of each stimuli being tested. To interpret this source 101 
of variance, it is necessary to develop models that are image computable. Recent 102 
progress in computer vision and computational neuroscience has led to the development 103 
of artificial neural network (ANN) models that can both perform human-like object 104 
recognition 21,22 as well as contain internal components that match human and macaque 105 
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visual systems 23,24. Such image-computable ANNs can generate testable neural 106 
hypotheses 25,26 and help design experiments that leverage on the image-level variance 107 
to guide us beyond the standard parametric approaches. 108 
 109 
In this study, I have used a family of brain-tissue mapped ANN models of primate vision 110 
to generate testable hypotheses and identify candidate neural and behavior markers of 111 
atypical facial emotion recognition in IwA. Specifically, I have compared the predictions 112 
of ANN models with behavior measured in neurotypical adults and people with autism 4, 113 
and facial emotion decodes from neural activity measured in the human amygdala 15. 114 
Furthermore, I performed in silico perturbation experiments to simulate and test autism-115 
relevant hypotheses of underlying neural mechanisms. I observed that the ANNs could 116 
accurately predict the human facial emotion judgments at an image-by-image level. 117 
Interestingly, the models' image-level behavioral patterns better matched the neurotypical 118 
human subjects' behavior than those measured in individuals with autism. This behavioral 119 
mismatch was most remarkable when the model behavior was constructed from units that 120 
correspond to the primate IT cortex. Interestingly, I also observed this behavioral 121 
mismatch when comparing neural decodes from a distinct population of visually facilitated 122 
neurons in the human amygdala with Control and IwA behavior. However, ANN-IT 123 
activation patterns could fully account for the image-level behavioral predictivity of the 124 
human amygdala population responses that has been previously implicated in autism-125 
related facial emotion processing differences 12,15. Furthermore, in silico experiments 126 
revealed that learning the emotion discrimination task with noisier ANN-IT representations 127 
(i.e., with higher response variability per unit) result in weaker synaptic connections 128 
between the model-IT and the downstream decision unit that improve the model's match 129 
to the image-level behavioral patterns measured in the IwA. In sum, these results argue 130 
that noisier sensory representations in the primate inferior temporal cortex that drive a 131 
distinct population of neurons in the human amygdala is a key candidate mechanism of 132 
atypical facial emotion processing in individuals with autism — a testable neural 133 
hypothesis for future human and nonhuman primate studies.  134 
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Results 136 
 137 
As outlined above, I reasoned that the ability to predict the image-level differences in 138 
facial emotion judgments between individuals with autism (IwA) and neurotypical adults 139 
(Controls) allow us to 1) design more efficient experiments to study the atypical facial 140 
processing observed in IwA, 2) efficiently probe the underlying neural correlates. In this 141 
study, I first took a data-driven approach to discover such image-level differences in 142 
behavior across Controls and IwA in a facial emotion discrimination task 4. I then used 143 
brain-mapped computational models of primate vision to probe the underlying neural 144 
mechanisms that could drive such differences.   145 
 146 
The behavioral and neural measurements analyzed in this study were performed by 147 
Wang et al. 4,15. During the task, participants were shown images of individual faces with 148 
specific levels of morphed emotions (for 1 sec) and asked to discriminate between two 149 
emotions, fear and happiness (Figure 1A; see Methods for details). The authors observed 150 
a reduced specificity in facial emotion judgment among individuals with autism (IwA) 151 
compared to neurotypical Controls (Figure 1B). Notably, the study controlled for low-level 152 
image confounds, and eye movement patterns across the two groups did not explain the 153 
reported behavioral differences. Therefore, the behavioral results significantly narrowed 154 
the space of neural hypotheses to sensory and affect-processing circuits.   155 
 156 
Image-level differences can be leveraged to produce 157 
stronger behavioral markers of atypical facial emotion 158 
judgments in autism 159 
 160 
Wang and Adolphs 4 primarily investigated the differences in behavior of IwA and 161 
Controls, across parametric variations of facial emotion levels (e.g., levels of happiness 162 
and fear). Here, I first examined whether the image-by-image behavioral patterns 163 
(irrespective of their facial identity or emotion levels), across the IwA and Control groups 164 
could be reliably estimated. Therefore, I computed the individual subject-to-subject 165 
correlations in image-level behavior (Figure 1D) which show that both of the groups 166 
exhibit highly reliable image-level behavior. The internal reliability (see Methods) for 167 
Control and IwA groups are 0.73 and 0.70, respectively. A visual inspection of the 168 
comparison of behavioral patterns across the two groups (Figure 1C) show that there are 169 
pairs of images (two such examples are shown in Figure 1C) for which the Control group 170 
exhibited very similar behavior, but the IwA made very different behavioral responses. 171 
This further confirms that diagnostic image-level variations in behavior could be further 172 
utilized to gain more insight into the mechanisms that drive the atypical facial emotion 173 
responses in IwA. Next, I quantified how stimuli selection based on high image-level 174 
differences can be leveraged to design more efficient behavioral experiments. To do this, 175 
I selected images based on the difference in behavior between the two groups (𝛥𝐵𝑒ℎ𝑎𝑣: 176 
using data from four randomly selected individual subjects from each group) and tested 177 
the resulting correlation between the two groups’ behavior (using the held-out subject 178 
population). This was repeated several times to get a mean measure of the cross-179 
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validated raw correlation (y-axis in  Figure 1E). A noise-ceiling was measured for each 180 
image-set selection based on image-level internal reliability of the held-out test population 181 
(see Methods). The difference between the noise ceiling and the raw correlation is 182 
referred to as the diagnostic efficiency 𝜂 of the image-set, which is a measure of how 183 
efficient the image-set is in discriminating between the IwA and Control behavior. Figure 184 
1F shows how 𝜂 varies across more and more efficient selection of image-sets (based on 185 
higher differences in image-level behavior with Controls and IwA). These results suggest 186 
that one reasonable goal of the field should be to find more efficient ways to predict which 187 
images will produce the highest 𝜂 values. Focusing human behavioral testing on such 188 
images is likely going to yield stronger inferences and lead to a better understanding of 189 
the behavioral and neural markers driving the difference in behavior.  190 
 191 
 192 
 193 
 194 
 195 
 196 
 197 
 198 
 199 
 200 
 201 
 202 
 203 
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 204 
 205 
Figure 1. Behavioral task and image-level assessment of behavioral markers. A. Subjects, both 206 
neurotypical (Control; n=15) population and individuals with autism (IwA; n=18) viewed a face for 1 sec in 207 
their central ~12 deg, followed by a question asking them to identify the facial emotion (fearful or happy). 208 
After a blank screen of 500 ms, subjects were then asked to indicate their confidence in their decision (‘1’ 209 
for ‘very sure’, ‘2’ for ‘sure’ or ‘3’ for ‘unsure’). B. The psychometric curves show the proportion of trials 210 
judged as “happy” as a function of facial emotion morph levels (ranging from 0% happy (100% fearful; left) 211 
to 100% happy (0% fearful; right)). IwA (red curve), on average, showed lower specificity (slope of the 212 
psychometric curve) compared to the Controls (black curve). The shaded area and errorbars denotes SEM 213 
across participants. C. Image-level differences in behavior between Controls vs. IwA. Each red dot 214 
corresponds to an image. The size of the dot is scaled by the difference in behavior between the Controls 215 
and IwA. Errorbars denote SEM across subjects. Two example images are highlighted that show similar 216 
emotional ("happiness") judgments by the Controls but drive significantly different behaviors in IwA — 217 
demonstrating the importance of investigating individual image-level differences. D. The estimated image-218 
by-image happiness judgments were highly reliable as demonstrated by comparisons across individuals 219 
(estimated separately for each group). The mean reliability (average of the individual subject to subject 220 
correlations) was 0.73 and 0.70 for the Controls (black histogram) and IwA (red histogram), respectively. 221 
E. Correlation between image-by-image behavioral patterns measured in Controls vs. IwA, with two 222 
different selections of images (cross-validated image selections with held-out subjects). Noise ceilings were 223 
calculated based on measured behavioral (split-half) reliability across populations within each group (see 224 
Methods). The difference between the noise ceiling and the mean raw correlation is referred to as the 225 
diagnostic efficiency of the image-set (η) F. Diagnostic efficiency (𝜂) as a function of image selection 226 
criteria. Errorbars denote bootstrap confidence intervals. Facial images shown in this figure are morphed 227 
and processed version of the original face images. These images have full re-use permission. 228 
 229 
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ANN models of primate vision trained on varied objectives 230 
can perform facial emotion judgment tasks 231 

To investigate how one can predict the image-level facial emotion judgments, I first tested 232 
how accurately current ANN models of primate vision can be trained to perform such 233 
tasks. One advantage of using these ANNs is that there are significant correspondences 234 
between their architectural components and the areas in the primate ventral visual cortex 235 
24,25,27 (as shown in the schematic Figure 2A). Also, there is a significant match in the 236 
predicted behavioral patterns of such models with primate behavior (including face-237 
related tasks) measured during multiple object recognition tasks21,22. Taken together, 238 
these models are great candidates for generating testable hypotheses regarding both 239 
neural and behavioral markers of specific visual tasks. I selected four different ANNs to 240 
test their behavioral predictions with respect to the facial emotional judgement task. 241 
These ANNs were pretrained to perform image classification (AlexNet28, CORnet-S29), 242 
face recognition (VGGFace30) and emotion recognition (Emotion-Net31). I observed that, 243 
a 10-fold cross validated partial least square regression model (see Methods for details) 244 
could be used to train each model to perform the task. The variation of the behavioral 245 
responses of the model with parametric changes in the level of happiness in the faces 246 
qualitatively matched the patterns observed in the human data (Figure 2B). 247 
 248 
ANN model predictions better match the behavioral patterns 249 
measured in neurotypical adults compared to individuals 250 
with autism 251 

Next, I quantified how well the ANNs can predict the human image-level behavioral 252 
responses (across both Controls and IwA). Interestingly, ANN models significantly 253 
better predicted the image-level behavior measured in Control compared to the 254 
behavior measured in IwA (Figure 2C; 20 models tested; paired t-test; p<00001; t(19) = 255 
10.99). To dissect which layer of the ANN best discriminated between the behavior of 256 
Controls and IwA, I compared individual models constructed from different layers of the 257 
same pretrained ANN architectures. This revealed two critical points. First, the 258 
correlation between model behavior and the Control group behavior increased as a 259 
function of model depth (black line; e.g. AlexNet shown in Figure 2D), which 260 
corresponds to the ventral visual hierarchy as reported in many studies23,24. Second, the 261 
difference in the model’s predictivity of behavior measured in Controls vs. IwA across 262 
layers is also highest at deeper layers, which corresponds to primate IT (comparison of 263 
the black and the red line for AlexNet shown in Figure 2D). This overall qualitative 264 
observation was consistent across all four tested models (Figure 2E). Given the high 265 
discriminability index (see Methods), established mappings between the layers and 266 
primate brain, as well as wide usage among researchers, I have used AlexNet for the 267 
subsequent analysis presented in this study. Therefore, these results suggest that 268 
population neural activity in primate IT could play a significant role in the atypical facial 269 
emotion processing in people with autism, and the image-level differences in sensory 270 
representations in IT might explain the difference in behavior observed across the 271 
images. However, such a role has been previously attributed to the human amygdala 272 
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responses 15. Therefore, I next tested whether the human amygdala responses can 273 
predict the image-level behavior and how well this predictivity could be explained by the 274 
ANN-IT representations. 275 

 276 
Figure 2. Testing ANN-models on facial emotion recognition tasks. A. ANN models of the primate 277 
ventral stream (typically comprising V1, V2, V4 and IT like layers) can be trained to predict human facial 278 
emotion judgments. This involves building a regression model, i.e., determining the weights 𝑤%%⃗   based on 279 
the model layer activations (as the predictor) to predict the image ground truth (“level of happiness”) on a 280 
set of training images, and then testing the predictions of this model on held-out images. B. An ANN model's 281 
predicted psychometric curves (e.g., AlexNet, shown here) show the proportion of trials judged as “happy” 282 
as a function of facial emotion morph levels ranging from 0% happy (100% fearful; left) to 100% happy (0% 283 
fearful; right). This curve demonstrates that activations of ANN layers (layer ‘fc7’ that corresponds to the 284 
“model- IT" layer) can be successfully trained to predict facial emotions. C. Comparison of ANN’s image-285 
level behavioral patterns with the behavior measured in Controls (x-axis) and IwA (y-axis). Four ANNs (with 286 
5 models each generated from different layers of the ANNs are shown here in different colors. ANN 287 
predictions better match the behavior measured in the Controls compared to IwA. The correlation values 288 
(x and y axes) were corrected by the noise estimates per human population so that the differences are not 289 
due to differences in noise-levels in measurements across the IwA and Control subject pools. The dot size 290 
refers to the degree of discrepancy between ANN predictivity of Controls vs. IwA. D. A comparison of the 291 
ANN predictivity (results from AlexNet shown here) of behavior measured in IwA vs. Controls as function 292 
of model layers (convolutional (cnv) layers 1,3,4, and 5 and the fully connected layer 7, ’fc7’ -- that 293 
approximately corresponds to the ventral stream cortical hierarchy). The difference between the ANN’s 294 
predictivity of behavior in IwA and Controls increases with depth and is referred to as Δ . E. Discriminability 295 
index (d’; ability to discriminate between image-level behavioral patterns measured in IwA vs. Controls; see 296 
Methods) as a function of model layers (all four tested models shown separately in individual panels). The 297 
difference in ANN predictivity between Controls and IwA was largest at the deeper (more IT-like) layers of 298 
the models instead of earlier (more V1, V2, and V4-like) layers. Errorbars denote bootstrap confidence 299 
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intervals. Facial images shown in this figure are morphed and processed version of the original face images. 300 
These images have full re-use permission.  301 

 302 
Two distinct neural population coding schemes in the human 303 
amygdala  304 

Wang et al.15 recorded bilaterally from implanted depth electrodes in the human 305 
amygdala (schematic shown in Figure 3A) from patients with pharmacologically 306 
intractable epilepsy. Subjects were presented each image for 1s (same as the task 307 
description above4) to discriminate between two emotions, fear and happiness. Similar 308 
to previous reports15, I observed two distinct population of neurons in the human 309 
amygdala. These two populations were marked by significant response suppression 310 
(visually suppressed (VS); 57 neurons; Figure 3B, right panel) and facilitation (visually 311 
facilitated (VF); 99 neurons; Figure 3B, left panel) respectively, after the onset of the facial 312 
image stimulus. I first tested how well the population-level activity (250-1500 ms post 313 
image onset) of three specific subsamples of the amygdala neurons (VS only, VF only 314 
and VS + VS neurons) predicted the behavioral patterns measured in human subjects. I 315 
observed that each of these populations of VF, VS, and mixed (equal number of VS and 316 
VF neurons) could significantly (p<0.0001; permutation test for significance of 317 
correlation) predict the image-level facial emotion judgments measured in Controls. 318 
Figure 3C shows how these three populations predict the image-level behavior 319 
measured in Controls as a function of the number of neurons sampled to build the neural 320 
population decoders. Given that all of these groups exhibit an increase in behavioral 321 
predictivity with the number of neurons, it is difficult to reject any of these decoding 322 
models (with the current neural dataset). Therefore, in the following analyses I have 323 
examined the VF and VS units separately. Next, I estimated how well the VS and VF 324 
population predicted the behavioral patterns measured in the Control and IwA 325 
respectively.  Interestingly, I observed that similar to the ANN-IT behavior, neural 326 
decodes out of the VF neurons in the human amygdala better match the Control group 327 
behavior compared to the ones measured in IwA (Figure 3C; Δ!" is significantly greater 328 
than 0; permutation test of correlation: p<0.05). However, the VS neurons did not show 329 
this trend (Figure 3D; Δ!#  is not significantly different from 0; permutation test of 330 
correlation; p>0.05). Figure 3E shows how VF (and not VS) neurons become more 331 
discriminatory of the IwA vs. Control behavior (i.e.,	Δ!" increases) as we choose image-332 
sets with higher diagnostic efficiencies (η). Consistent with prior work, these results 333 
provide evidence that neural responses in the human amygdala are implicated in atypical 334 
facial processing in people with autism. However, the results presented here also 335 
critically identify the VF neurons as a stronger candidate neural marker of the differences 336 
in facial emotion processing observed in IwA.  337 

 338 

 339 
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 340 
Figure 3. Facial emotion representation in the population neural activity of human amygdala. A. 341 
Schematic of bilateral amygdala (blue patch) recordings performed by Wang et al. B. Two distinct 342 
population of neurons observed in the human amygdala. The visually facilitated (VF; shown in purple) 343 
neurons (n=99) increased their responses after the onset of the face stimuli (top left panel: averaged 344 
normalized spike rate across time; 250 ms time bins). The bottom left panel shows the normalized firing 345 
rate across time for each VF neuron. The visually suppressed (VS; shown in yellow) neurons (n=57) 346 
decreased their responses after the onset of the face stimuli (top right panel: averaged normalized spike 347 
rate across time; 250 ms time bins). The bottom right panel shows the normalized firing rates across time 348 
for each VS neuron. Errorbars denote SEM across neurons. C. An estimate (correlation) of how three 349 
subsamples of neural populations, VS (yellow), VF (purple) and VS+VF (‘All’, black) predict the image-level 350 
behavior measured in Controls as a function of the number of neurons sampled to build the neural decoders. 351 
Errorbars denote bootstrapped CI. D. Comparison of how well the VS (yellow bars) and VF (purple bars) 352 
neurons predict the behavior measured in Controls vs. IwA. The red and black edges denote the predictivity 353 
of IwA and Controls respectively. Δ!" and Δ!# are the differences in the human amygdala (neural decode) 354 
predictivity of facial emotion judgments measured in Controls and IwA from the VF and VS neurons 355 
respectively. Errorbars denote bootstrap CI. E. Δ!"  and Δ!#  as function of image selection (which is 356 
proportional to the diagnostic efficiency η estimated per image-set). The cross validation was done at the 357 
level of subjects for each image selection. Errorbars denote bootstrap CI. 358 
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ANN-IT features can explain a significant fraction of the 361 
image-level behavioral predictivity of the human amygdala 362 
population 363 

Given the significant predictivity of facial emotion judgments observed in the ANN IT 364 
layers and the presence of strong anatomical connections between primate IT and 365 
amygdala32, I further asked how much of the image-level predictivity estimated from the 366 
amygdala activity is likely driven by input projections from the IT cortex. To test this, I first 367 
asked (with a linear regression analyses; see Methods) how well the image-by-image 368 
behavioral predictions from the ANN-IT models (AlexNet-fc7 tested here) can explain the 369 
image-by-image neural decoding patterns estimated from the amygdala neurons 370 
(separately for VS and VF neurons).  The residue of this analyses (see Methods) 371 
contained the variance in the amygdala decodes that was not explained by the predictions 372 
of the ANN-IT models. Therefore, the amount of variance in the measured behavioral 373 
patterns explained by this residue provides an estimate of how much of the behavior is 374 
purely driven by the amygdala responses independent of the image-driven sensory 375 
representations. Assuming a feedforward hierarchical circuit whereby the IT cortex drives 376 
the human amygdala and not the other way around, a lower percentage of explained 377 
variance (%EV) obtained after such an analysis should indicate that the source of the 378 
signal in amygdala is at least partially coming from the IT cortex. Interestingly, this 379 
analysis revealed that the behavioral predictivity (%EV) of the human amygdala is 380 
significantly reduced once I regressed out the variance that is driven by the ANN-IT 381 
responses. For instance, when considering all images (i.e., very low diagnostic efficiency 382 
of the imageset), I observed that VS and VF neurons could explain approximately 17.24% 383 
and17.39% (a lower bound of the %EV since neural noise has not been accounted for) 384 
of the behavioral variance (Figure 4A, B; left panel). However, once the ANN-IT driven 385 
variance was regressed out these values significantly dropped to 0.06% and 0.2% 386 
respectively (Figure 4A, B; right panel). Overall, VF neural residuals (after regressing out 387 
ANN-IT predictions) explained significantly less variance at all tested η levels. VS neural 388 
residuals explained significantly less variance only at lower η levels (Δ$%&'(  < 2.5%). 389 
Given that VS neurons showed a drop in %EV for higher η levels, it is not surprising that 390 
I did not observe any differences with the residual predictivity at those levels. Interestingly, 391 
there was no significant change in %EV across the image selections when VS activity 392 
was regressed out of VF activity (and vice versa; Figure 4A, B; middle panel), providing 393 
further evidence that they largely support a complimentary coding scheme for facial 394 
emotions within the amygdala. In sum, these results suggest that input projections from 395 
the IT cortex into the amygdala 32 might be the primary career of the facial emotion related 396 
signals. Furthermore, the results also suggest a likely difference in how VS and VF 397 
neurons are affected in IwA – with VF neurons being more diagnostic of the atypical 398 
behavior observed in IwA.   399 

 400 

 401 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 25, 2021. ; https://doi.org/10.1101/2021.03.24.436640doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.24.436640


 

bioR𝛘iv  Page 13 of 29 

 402 
 403 
Figure 4. Amount of behavioral variance (measured in Controls) explained by different neural 404 
markers. A. Left panel: Percentage of behavioral variance explained by the human amygdala (VF) neural 405 
activity as a function of the overall differences in image-level behavior between IwA and Controls. As 406 
demonstrated in Figure 1F the x-axis is proportional to the diagnostic efficiency (η ). Middle panel: 407 
Percentage of variance explained by the residual (VS-based predictions regressed out of the predictions 408 
from VF-based neural decodes). There was no significant change in %EV across the image selections 409 
when VS was regressed out, suggesting a complimentary coding scheme.  Right panel: Percentage of 410 
behavioral variance explained by the residual (ANN-IT predictions regressed out of the predictions from 411 
VF-based neural decodes). There was a significant difference (reduction in %EV) between the two cases 412 
for all levels of tested η.  B. Left panel: Percentage of behavioral variance explained by the human amygdala 413 
(VS) neural activity as a function of the overall differences in image-level behavior between IwA and 414 
Controls. Middle panel: Percentage of variance explained by the residual (VF-based predictions regressed 415 
out of the predictions from VS-based neural decodes). There was no significant change in %EV across the 416 
image selections when VF was regressed out, suggesting a complimentary coding scheme. Right panel: 417 
Percentage of variance explained by the residual (ANN-IT predictions regressed out of the predictions from 418 
VS-based neural decodes). There was a significant difference (reduction in %EV) between the two cases 419 
while Δ$%&'( was less than 2. All %EV values were estimated in a cross validated way, wherein the image 420 
selections and the final estimates were done based on different groups of subjects. Errorbars denote 421 
bootstrapped CI.  422 
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In silico perturbations with additional noise in ANN-IT layers 430 
improves the model's match with the behavior of individuals 431 
with autism 432 

To further probe how IT representations might be different in IwA compared to Controls 433 
(Figure 5A), I compared ANNs independently trained to predict the behavior of Controls 434 
and IwA. I directly compared the learned weights, that is the synaptic strengths between 435 
the model-IT layer and the behavioral output node in the two cases. I observed that are 436 
model trained on the behavior measured in IwA yielded weaker synaptic strengths for 437 
both excitatory (positively weighted) and inhibitory (negatively weighted) connections 438 
(Figure 5B), compared to models trained to reproduce the behavior measured in Controls. 439 
I further explored how this modest difference in the models could be simulated such that 440 
an ANN trained on ground truth labels of human facial emotions could be transformed 441 
into behaving more like what we observe in IwA. Based on previous studies 33,34, I 442 
hypothesized that increased noise (scaled according to overall responsiveness of the 443 
model units) in the sensory representations  during learning could potentially yield weaker 444 
synaptic strengths between the model-IT layer and the trained behavioral output node. Of 445 
note, although a noisy representation likely yields a reduced specificity in behavioral 446 
performance, an addition of specific amounts of noise does not necessarily guarantee a 447 
stronger or weaker correlation with the image-level behavioral patterns observed in IwA. 448 
Therefore, such in silico perturbations could produce three primary outcomes. First, 449 
adding noise might produce no effects in the model's behavioral match with the behavior 450 
of IwA (Figure 5C, top panel, 𝐻0). Second, the added noise might weaken the correlation 451 
achieved by a noiseless model (Figure 5C, middle panel, 𝐻1). Third, and consistent with 452 
an Autism Spectrum Disorder ASD)-relevant mechanism, addition of noise could improve 453 
the correlation with the image-level behavior measured in IwA (Figure 5C, bottom panel, 454 
𝐻2). I observed that at specific levels of added noise (Figure 5D; dashed black line) during 455 
the model training (transfer learning), the model's behavioral match with IwA significantly 456 
improved (assessed by permutation test of correlation) beyond the levels noted with a 457 
noise-free model (Figure 5D). In addition, this increase in the predictivity of IwA behavior 458 
with addition of noise is significantly higher than that observed when compared to the 459 
model's predictivity of the behavior measured in the Controls (as shown in Figure 5E). 460 
Within the dashed black lines (Figure 5E), noise added to each model unit were drawn 461 
from a normal distribution with zero mean and standard deviation equal to 2 to 5 times 462 
the width of the response distribution of that unit across all tested images. Taken together, 463 
this strongly suggests that additional noise in sensory representations is a very likely 464 
candidate mechanism implicated in atypical facial emotion processing in adult with 465 
autism.  466 

 467 
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!468 
Figure 5. In silico experiments on ANNs to probe neural mechanisms underlying atypical facial 469 
emotion judgments in individuals with autism. A. What changes can one induce in the model-IT layer 470 
to simulate the behavioral patterns measured in IwA? B. Comparison of synaptic strengths (weights) 471 
between ANN-IT and the behavioral node when models are independently trained with the behavior 472 
measured in IwA vs. Controls. ANN fits to behavior of IwA yielded weaker synaptic strengths for both 473 
excitatory (positively weighted) and inhibitory (negatively weighted) connections. Each blue dot refers to 474 
the weights in the connection between an individual model unit in the IT-layer and the decision (“level of 475 
happiness”) node. C. Hypotheses and corresponding predictions 𝐻): Addition of noise could lead to no 476 
differences in how it affects the model's match to behavior measured in IwA. 𝐻*: Addition of noise could 477 
reduce the models' match to behavior measured in IwA compared to the noise-free model.  𝐻+: Addition of 478 
noise could improve the models' match to the behavior measured in IwA compared to the noise-free model. 479 
𝐻+ supports the "high IT variability in autism" hypotheses. D. Correlation of ANN behavior with IwA as a 480 
function of levels of added noise. The results show that at specific noise regimes ANNs are significantly 481 
more predictive of the behavior measured in IwA compared to the noiseless model. Errorbars denote 482 
bootstrapped CI. E. Ratio of ANN behavioral predictivity of noisy vs. noise-free ANNs. At specific levels of 483 
noise, referred to as the Autism Spectrum Disorder (ASD)-relevant noise levels, the ANNs trained with 484 
noise show much higher predictivity for behavior measured in IwA while suffering a reduction in predictivity 485 
of the Controls. Errorbars denote bootstrapped CI. Facial images shown in this figure are morphed and 486 
processed version of the original face images. These images have full re-use permission.   487 
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Discussion 488 
 489 
The overall goal of this study was to identify candidate neural and behavioral markers of 490 
atypical facial emotion judgments observed in individuals with autism. Based on 491 
discovering reliable image-by-image differences between the behavior of Controls and 492 
IwA that could not be explained by categorical ambiguity in the stimuli, I reasoned that 493 
such image-level variance could be leveraged to probe the neural mechanisms of 494 
behavioral differences observed in IwA. Therefore, I used image-computable, brain-tissue 495 
mapped artificial neural network models of primate vision to further probe the issue. By 496 
using computational models (that have established brain tissue correlates) to explain 497 
experimental data, I hereby demonstrate how such an approach could be used to probe 498 
the neural mechanisms that underlie the differences in facial emotion processing 499 
observed in individuals with autism. Below, I discuss the findings with their relevance to 500 
future experiments and candidate mechanisms implicated in atypical facial emotion 501 
recognition in IwA.  502 
 503 
ANN based predictions can be used to efficiently screen 504 
images and provide neural hypotheses for more powerful 505 
experiments 506 

 507 
A family of ANN models can currently predict a significant amount of variance measured 508 
in various object recognition related behaviors and neural circuits 35. Given that the results 509 
presented here demonstrate the ability of such ANNs to discriminate between the 510 
behavior measured in Controls and IwA, we can further leverage the ANNs to screen 511 
facial image stimuli and select images where the predicted behavioral differences are 512 
maximum. Further, such models can be reverse engineered25,36 to synthesize images that 513 
could achieve maximum differences to optimize behavioral testing and diagnosis. Such 514 
deep image synthesis methods could also modify the facial images such that the 515 
differences in the observed behavior between the Controls and IwA are minimized. 516 
Although clearly at an early stage, such methods have a significant potential to improve 517 
future cognitive therapies. Unlike many machine learning approaches that are not closely 518 
tied to the computation and architecture of the primate brain, the ANNs used in this study 519 
have established homologies with the primate brain and behavior 35. As demonstrated in 520 
this study, these links allow us to relate the ANN predictions to distinct brain areas directly. 521 
Specifically, the ANN results presented here suggest that population activity patterns in 522 
areas like the human and macaque inferior temporal cortex are vital candidates for neural 523 
markers of atypical facial processing in autism. The modeling results provide further 524 
insights into the most affected aspects of the population responses, implicating noisier 525 
sensory representations (see below) as a source of the differences in sensory 526 
representation, learning and subsequent decision making. Besides the specific 527 
hypotheses generated in this study, it is essential to note that ANN models of primate 528 
vision are an active area of research, and we are witnessing the gradual emergence of 529 
better brain-matched models 29,37-39. Therefore, this study establishes a critical link 530 
between atypical face processing in autism and how to leverage ANNs to study this.     531 
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 532 
Modeling results imply the need for more fine grain neural 533 
measurements in the primate IT cortex and amygdala 534 

The ANN-based computational analyses in this study provide specific neural hypotheses 535 
that can be tested using macaque electrophysiology and human fMRI experiments. First, 536 
I observed that the ANN-IT layers could best discriminate between the behavior of 537 
Controls vs. IwA. Therefore, such signals are likely also measurable in the primate IT 538 
cortex and are key candidates for neural markers of atypical facial emotion processing 539 
in autism. Given that most ANN models are feedforward-only or have minimal dynamics, 540 
it will be critical to test how the different temporal components of IT population 541 
responses carry the facial emotion signal. Similar to predictions of ANN-IT layers, I 542 
observed that population activity in the human amygdala also better matches behavior 543 
measured in the Controls than IwA. There can be multiple reasons for the observed 544 
differences in behavioral predictivity. First, it is possible that due to the atypical 545 
development of the human amygdala in IwA, the behavior they exhibit does not match 546 
well with the neural decodes out of the neurotypical amygdala. Second, the lack of 547 
predictivity might be carried forward from responses in the IT cortex -- as predicted by 548 
the ANNs. The current study attempted to disambiguate between these two factors. I 549 
asked how well ANN-IT predictions can account for the amygdala activity's behavioral 550 
patterns. Indeed, the image-level predictivity of facial emotion judgments observed in 551 
the human amygdala's population activity (both VF and VS neurons) was significantly 552 
explained away by the ANN-IT features (Figure 4A, B; left panel). This result is consistent 553 
with the hypothesis that the higher-level visual cortices (like IT) primarily drive the facial 554 
affect signal observed in the human amygdala. Simultaneous neural recordings in IT and 555 
amygdala or finer grain causal perturbation experiments need to be conducted to test 556 
this hypothesis more directly. Notably, the behavioral mismatch (neural decodes 557 
vs. Control/IwA behavior) was specific to the decodes constructed from the VF neurons 558 
(and not VS neurons). Therefore, future experimental investigations should dissect the 559 
role of IT cortex and how it functionally influences the VF and VS neurons, which are 560 
likely part of a complimentary coding scheme. Furthermore, it will be essential to 561 
examine how the IT cortical activity is driven by feedback projections from the amygdala, 562 
given that evidence for the importance of such connections from ventrolateral PFC has 563 
been demonstrated for object recognition40. 564 
 565 
High variability in sensory representation can lead to weaker 566 
efferent synaptic strengths during learning and development 567 

In a psychophysical discrimination task, the typical consequence of having a noisy 568 
detector is a reduction in the sensitivity of performance, which manifests as a reduced 569 
estimated slope of the psychometric function. This is consistent with what Wang and 570 
Adolphs 4 had observed. Given that the idea of higher sensory variability in autism is also 571 
consistent with previous findings34, I considered this as a potential neural mechanism 572 
that could explain the image-level differences I have observed in the facial emotion 573 
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discrimination behavior in IwA. Therefore, I tested the “increased sensory noise 574 
hypothesis” to test whether such a perturbation could simulate the weaker efferent 575 
synaptic connections from IT-like layers as revealed by the ANN based analyses (Figure 576 
5B). Indeed, addition of noise during learning made the ANN behavior more matched 577 
with that observed in IwA. First, this could suggest that perhaps the behavior measured 578 
in IwA results from additional noise in the sensory representations that affects the 579 
subjects’ behavior during the task. However, this could also be the result of executing 580 
an inference engine (in the brain) that learned its representations under high sensory 581 
noise during development (as a child). An estimate of noise levels (sensory cortical signal 582 
variability) in children with autism and a quantitative probe into how that could potentially 583 
interact with learning new tasks is essential to test this hypothesis. As demonstrated in 584 
this study, the ANN models provide a very efficient framework to generate more 585 
diagnostic image-sets for these future studies given that we can simulate any level (and 586 
type) of noise under different learning regimes and make predictions on effect sizes. 587 
Such model-driven hypotheses are likely to play a vital role in guiding future experimental 588 
efforts and inferences. 589 
 590 
High variability in sensory representation can qualitatively 591 
explain other ASD-specific behavioral reports 592 
 593 
Addition of noise during the transfer learning procedure of the ANN models made the 594 
model’s behavioral output more consistent with the behavior measured in IwA (Figure 595 
5D). Such a mechanism can indeed qualitatively explain other previous behavioral 596 
observations made in individuals with autism. For example, Behrmann et al.41 observed  597 
that reaction times measured during object discrimination tasks, in adults with autism  598 
were significantly higher than the Control subjects. This difference was especially high 599 
during more fine-grained discrimination tasks. Such a behavioral phenomenon can be 600 
explained by an increase in sensory noise in IwA that leads to longer time requirements 601 
during integration of information 42 , and weaker performances on finer discrimination 602 
tasks. The ANN based approach demonstrated in this study, however, provides guidance 603 
beyond the qualitative predictions of overall effect types. Specific image-level predictions 604 
provided by ANNs will help researchers to design more diagnostic behavioral experiments 605 
and make measurements that can efficiently discriminate among competing models of 606 
brain mechanisms. 607 
 608 
Potential underlying mechanisms behind increased neural 609 
variability 610 

An imbalance in the ratio of the excitatory and inhibitory processes in cortical circuits has 611 
been proposed as an underlying mechanism for various atypical behaviors observed in 612 
autism43. I speculate that such an E/I imbalance could arise due to lower inhibition in the 613 
cortical networks. This could lead to larger neural variability and a subsequent noisier, 614 
less efficient sensory processing. Therefore, the results observed in the in-silico 615 
experiments are not biologically implausible. In fact, genetic mutations that impact the 616 
generation and function of interneurons have been previously linked with autism44,45. 617 
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Therefore, cell-type specific causal perturbation approaches are necessary to test 618 
whether a decreased inhibition in the visuocortical pathway (especially in the primate IT 619 
cortex) leads to noisier sensory representations and can reproduce the specific image-620 
level differences in facial emotion processing reported in this study. The image-level 621 
behavioral measurements and ANN predictions reported here will enable such stronger 622 
forms of hypothesis testing during the interpretation of such experimental results.  !623 
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Methods and Materials 624 
 625 
Human Behavior 626 
In this study, I have re-analyzed behavioral data that was previously collected and used 627 
in a study by Wang and Adolphs4. The raw behavioral dataset was kindly shared via 628 
personal communication.   629 
 630 
Participants 631 
In the original study (for further details see4), eighteen high-functioning participants with 632 
ASD (15 male) were recruited. All ASD participants met DSM-V/ICD-10 diagnostic criteria 633 
for autism spectrum disorder (ASD) and met the cutoff scores for ASD on the Autism 634 
Diagnostic Observation Schedule-2 (ADOS-2) revised scoring system for Module 4, and 635 
the Autism Diagnostic Interview-Revised (ADI-R) or Social Communication Questionnaire 636 
(SCQ) when an informant was available. The ASD group had a full-scale IQ (FSIQ) of 637 
105±13.3 (from the Wechsler Abbreviated Scale of Intelligence-2), a mean age of 638 
30.8±7.40 years, a mean Autism Spectrum Quotient (AQ) of 29.3±8.28, a mean SRS-2 639 
Adult Self Report (SRS-A-SR) of 84.6±21.5, and a mean Benton score of 46.1±3.89 640 
(Benton scores 41–54 were in the normal range). ADOS item scores were not available 641 
for two participants, so we were unable to utilize the revised scoring system. But these 642 
individuals ’original ADOS algorithm scores all met the cutoff scores for ASD. 643 
 644 
Fifteen neurologically and psychiatrically healthy participants with no family history of 645 
ASD (11 male) were recruited as Controls. Controls had a comparable FSIQ of 107±8.69 646 
(two-tailed t-test, P=0.74) and a comparable mean age of 35.1±11.4 years (P=0.20), but 647 
a lower AQ (17.7±4.29, P=4.62×10−5 and SRS-A-SR (51.0±30.3, P=0.0039) as expected. 648 
Participants gave written informed consent, and all original experiments were approved 649 
by the Caltech Institutional Review Board. All participants had normal or corrected-to-650 
normal visual acuity. No enrolled participants were excluded for any reasons. 651 
 652 
Facial emotion judgment task 653 
During the task, Wang and Adolphs4 asked participants to discriminate between two 654 
emotions, fear and happiness. The image-set includes faces of four individuals (2 female) 655 
each posing fear and happiness expressions from the STOIC database (Roy et al. 2007), 656 
which are expressing highly recognizable emotions. To generate the morphed expression 657 
continua for the experiments, the authors interpolated pixel value and location between 658 
fearful exemplar faces and happy exemplar faces using a piece-wise cubic-spline 659 
transformation over a Delaunay tessellation of manually selected control points. They 660 
created 5 levels of fear-happy morphs, ranging from 30% fear/70% happy to 70% 661 
fear/30% happy in steps of 10% (Figure 1B). Low-level image properties were equalized 662 
using the SHINE toolbox 46. In each trial, a face was presented for 1 second followed by 663 
a question prompt asking participants to make the best guess of the facial emotion (Figure 664 
1A). After stimulus offset, participants had 2 seconds to respond, otherwise the trial was 665 
aborted and discarded. Participants were instructed to respond as quickly as possible, 666 
but only after stimulus offset. No feedback message was displayed, and the order of faces 667 
was completely randomized for each participant. Images were presented approximately 668 
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in the central 12o of visual angle. A subset of the participants (11 participants with autism 669 
and 11 Controls) also performed confidence ratings after emotion judgment and a 500 670 
ms blank screen, participants were asked to indicate their confidence by pushing the 671 
button ‘1  ’for ‘very sure’, ‘2  ’for ‘sure  ’or ‘3  ’for ‘unsure’. This question also had 2 672 
seconds to respond. All images used in this study has free re-use permission as set 673 
here15. 674 
 675 
Estimating image-level behavioral reliability 676 
 677 
To estimate the image-level behavioral reliability (Figure 1D), I first estimated the 678 
probability of choosing "Happy" per image in each subject (15 Controls, 18 IwA) -- referred 679 

to as the 𝑃
⃗
𝐶 and the 𝑃

⃗
𝐼𝑤𝐴 vectors. Then, for each possible combination of selecting 2 680 

subjects from the subject pools, I estimated the subject-to-subject Kendall rank correlation 681 
coefficient. This was done separately for the Controls and IwA, leading to the red and 682 
black histograms in Figure1D respectively. These correlations scores are not corrected 683 
by the individual subjects' internal reliability (across trials). Therefore, they represent the 684 
lower bound of the inter subject correlations. 685 
 686 
Estimating noise ceilings for IwA vs. Control correlations 687 
 688 
I define the noise ceiling of a correlation as the highest possible value of correlation 689 
expected given the noise measured independently in the two variables that are being 690 

tested. To estimate this, first I individually estimate the split half reliability of the 𝑃
⃗
𝐶 and 691 

the 𝑃
⃗
𝐼𝑤𝐴 vectors. Each split is constructed with a random sampling of half of the subjects 692 

and taking the average across them and doing same for the other half of the subjects. 693 
For each iteration, such splits were made, and the correlation between the resulting 694 
vectors was computed. This correlation score was corrected by the Spearman-Brown 695 
correction procedure to account for the halving of subject numbers. I then computed the 696 
average across 100 such iterations, referred to as 𝜌

𝑃
⃗

𝐶1
,𝑃
⃗

𝐶2
 and 𝜌

𝑃
⃗

𝐼𝑤𝐴1
,𝑃
⃗

𝐼𝑤𝐴2
 for the Controls 697 

and IwA respectively. The noise ceiling was then estimated as, 698 
 699 
     "𝜌#⃗ () ,#

⃗
(*
∗ 𝜌

#
⃗
+,-) ,#

⃗
+,-*

  700 

 701 
Intuitively, if both groups provided noiseless data, then these reliabilities should be each 702 
at 1, and therefore the noise ceiling shall also be set at 1. Noisy data will lead to <1 values 703 
for the individual 𝜌

𝑃
⃗

𝐶1
,𝑃
⃗

𝐶2
 and 𝜌

𝑃
⃗

𝐼𝑤𝐴1
,𝑃
⃗

𝐼𝑤𝐴2
 reliabilities, and hence the noise ceiling shall 704 

also be <1.  Of note, each selection of image with result in a different 𝑃
⃗
vector and 705 

therefore will result in a slightly different noise ceiling estimate, as demonstrated in Figure 706 
1E (two green lines). 707 
 708 
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Estimating cross-validated diagnostic efficiency (𝜼) of image-sets 709 
Diagnostic Efficiency (𝜂; shown in Figure1E, and 1F) of an image-set is defined as the 710 
cross-validated estimate of the difference between the noise ceiling and the raw 711 

correlation between the 𝑃
⃗
𝐶 and the 𝑃

⃗
𝐼𝑤𝐴 vectors. The cross validation is achieved by the 712 

choosing the images based on a specific subset of subjects and then measuring the noise 713 
ceiling and the raw correlation on a different held-out set of subjects. For efficient 714 
collection of human subject data that could optimally discriminate between the behavior 715 
measured in Controls and IwA, one must aspire for the highest 𝜂 values for image-sets. 716 
     717 
Depth recording in human amygdala 718 
 719 
In this study I have re-analyzed the neural data that was previously collected and used in 720 
a study by Wang et al.15. The raw neural dataset was kindly shared via personal 721 
communication. Wang and colleagues recorded bilaterally from implanted depth 722 
electrodes in the amygdala from patients with pharmacologically intractable epilepsy. 723 
Target locations in the amygdala were verified using post-implantation structural MRIs. 724 
At each site, they recorded from eight 40 𝜇m microwires inserted into a clinical electrode. 725 
Bipolar wide-band recordings (0.1–9 kHz), using one of the eight microwires as reference, 726 
were sampled at 32 kHz and stored continuously for off-line analysis with a Neuralynx 727 
system (Digital Cheetah; Neuralynx, Inc.). The raw signal was filtered with a zero-phase 728 
lag 300-3000 Hz bandpass filter and spikes were sorted using a semiautomatic template 729 
matching algorithm. Units were carefully isolated and spike sorting quality were assessed 730 
quantitatively. Subjects were presented each image for 1s (similar to the task description 731 
above) to discriminate between two emotions, fear and happiness. 732 
 733 
Selection of neurons for analyses 734 
 735 
In the original study, only units with an average firing rate of at least 0.2 Hz (entire task) 736 
were considered. Only single units were considered. In addition to that, in this study I 737 
have further restricted the neural dataset to neurons that have a significant visual 738 
response (both increase and decrease). To estimate that I compared the neural firing 739 
rates (per image) averaged across two specific time bins, [-1000 0] and [250 1250], where 740 
0 is the onset of the image. If the paired Wilcoxon Signed Rank test between these two 741 
firing rate vectors were significant, the site was considered for further analyses. Thus, I 742 
considered 156 total neurons: 99 visually facilitated (VF) neurons and 57visually 743 
suppressed (VS) neurons. 744 
 745 
 746 
 747 
Decoding facial emotion judgment from neural population activity 748 
 749 
To decode facial emotion judgments from the neural responses per image, I used a linear 750 
model that linked the neural responses to the levels of happiness (ground truth from 751 
image generation). Building the model, essentially involves solving a regression problem 752 
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estimating the weights (𝑤''⃗ ) per neuron and a 𝑏𝑖𝑎𝑠 term. I used a partial least squares 753 
(MATLAB command: plsregress) regression procedure, using 15 retained components. I 754 
also used 10-fold cross validation. For each fold, the model was trained (i.e., 𝑤''⃗ 	and 𝑏𝑖𝑎𝑠 755 
were estimated) using the data from the other 9 folds (training data), and predictions were 756 
generated for the held-out fold (test images). This was repeated for each of the folds and 757 
the entire procedure was repeated 100 times. The predictions of the trained neural model 758 
on the held-out test images were used for future correlation analyses. Given the training 759 
scheme, every image was assigned as the test-image once per iteration.  760 
 761 
ANN models of primate vision 762 
 763 
The term "model" in this study always refer to a specific modification of a pre-trained ANN. 764 
For instance, I have used an Image-Net pretrained deep neural network, AlexNet to build 765 
multiple models. Each model was constructed by deleting all layers succeeding a given 766 
layer. For instance, the ‘cnv5' model was built by removing all layers of AlexNet that 767 
followed the output of its fifth convolutional layer. The feature activations from the fifth 768 
convolutional layer output were then trained with the linear regression procedure (similar 769 
to the neural decodes). 770 
  771 
Estimating model facial emotion judgment behavior 772 

 773 
To decode facial emotion judgments from the model responses per image, I used the 774 
same linear modeling approach as the neural data (see above), that linked the model 775 
feature activations to the level of happiness (ground truth from image generation). The 776 
model features, per layer, were extracted using the MATLAB command activations for 777 
AlexNet28, VGGFace30 and EmotionNet31 in MATLAB-R 2020b. For the CORnet-S29 778 
model, I used the code from:  https://github.com/dicarlolab/CORnet. 779 
 780 
Estimation of discriminatory index (d’) 781 

The discrimination index was computed to quantify the difference between the match of 782 
the ANNs’ (models per layer) behavioral predictions to the behavior measured in Controls 783 
and IwA (as shown in Figure 2E). It was calculated as: 784 

ρ)*+,-*. − ρ/01

+,12 ∗ (σ)*+,-*.
2 + σ/012 }4

 785 

where ρ)*+,-*.  and ρ/01  was the correlation between ANN predictions and behavior 786 
measured in Controls and IwA respectively. σ)*+,-*. and σ/01 was the standard deviation 787 
of the bootstrap estimates of the correlations with random subsampling features from 788 
the model layers. To make the comparisons fair across all layers, 1000 features were 789 
randomly subsampled (without repetition) 100 times to estimate the ANN predictions.  790 

 791 
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Estimation of residuals between ANN-IT and human amygdala’s 792 
behavioral predictions 793 

I first estimated the cross-validated test predictions (𝐴𝑁𝑁3-%4) of behavioral patterns from 794 
an ANN-IT layer (e.g., AlexNet ‘fc7’ model used in the study) using the partial least 795 
squares regression method. The ground truth values of image-level facial happiness were 796 
used as the dependent variable in this analysis. Next, I used the same algorithm but with 797 
the human amygdala neural features (instead of the ANN-IT features) as the predictors 798 
to estimate the neurally decoded behavioral patterns (𝐴𝑚𝑦𝑔𝑑𝑎𝑙𝑎3-%4 ). I then used a 799 
generalized linear regression model (MATLAB: glmfit) to estimate the residues while 800 
using 𝐴𝑁𝑁3-%4  as the predictor and 𝐴𝑚𝑦𝑔𝑑𝑎𝑙𝑎3-%4  as the dependent variable. The 801 
square of the Pearson correlation (%EV) between this residue vector (one value per 802 
image) and the image-level behavioral vector (Probability of choosing “Happy” per image) 803 
measured in the Controls is plotted in the y-axis of Figure 4 (left panels). These %EV 804 
values were corrected by the noise estimates in the behavioral data per image selection. 805 
In addition, all %EV values were estimated in a cross validated way, wherein the image 806 
selections and the final estimates were done based on different groups of subjects. 807 

 808 
In silico model perturbation and training 809 
 810 
Generation of activity scaled additive noise values: To estimate how much noise shall be 811 
added to each unit (feature) of the model layer, I used the following procedure. First, I 812 
estimated the standard deviation (𝜎, across all 28 images) of the activation distribution 813 
per unit in a noise-free model. The addition of noise was made proportional to this value. 814 
To vary noise levels, a scalar factor (𝑐; x-axis in Figure5D and 5E) was multiplied with 𝜎 815 
per unit. For each unit, the noise added was drawn from a normal distribution that had a 816 
standard deviation of 𝑐*𝜎. 817 
 818 
Training the model with and without noise: To simulate a learning scheme with noise, I 819 
modified the model feature activations in the following way. During training of the 820 
regression model (i.e., estimating 𝑤((⃗  and 𝑏𝑖𝑎𝑠 ), the noisy version of the model was 821 
generated by concatenating 1000 randomly drawn features (which were fixed for each 822 
iteration of the procedure), with ten repetitions of the same features but with the added 823 
noise on top of it. This procedure was repeated several times to estimate the variance in 824 
the model predictions per noise level. For the noise free model, the same 1000 randomly 825 
drawn features were repeated without addition of any noise.  826 
 827 
Statistics 828 
 829 
All correlation scores reported in this study are Kendall rank coefficients (unless otherwise 830 
mentioned). For significance tests of correlations (between two variables of interest), I 831 
have used a bootstrapped permutation test. To do this, I first constructed a null hypothesis 832 
by mixing the two variables and then randomly drew (as many times as the number of 833 
elements in the original variable) with replacements two elements from the mixed dataset 834 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 25, 2021. ; https://doi.org/10.1101/2021.03.24.436640doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.24.436640


 

bioR𝛘iv  Page 25 of 29 

to create two vectors. These two vectors can be constructed multiple times (typically 835 
>100) and correlated. The resulting correlation distribution was considered as the null 836 
hypothesis. Then the true raw correlation was compared to this distribution to determine 837 
a p-value of rejecting the null distribution.!  838 
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Data and Code Availability 839 
 840 
All the data and code used in this study will be freely available to download and use 841 
during the time of journal publication from https://github.com/kohitij-842 
kar/2021_faceEmotion_ASD. 843 
 844 
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