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ABSTRACT

The identification of cancer subtypes is important for the understanding of tumor heterogeneity. In recent years, numerous
computational methods have been proposed for this problem based on the multi-omics data of patients. It is widely accepted
that different cancer subtypes are induced by different molecular regulatory networks. However, only a few incorporate the
differences between their molecular systems into the classification processes. In this study, we present a novel method to
classify cancer subtypes based on patient-specific molecular systems. Our method quantifies patient-specific gene networks,
which are estimated from their transcriptome data. By clustering their quantified networks, our method allows for cancer
subtyping, taking into consideration the differences in the molecular systems of patients. Comprehensive analyses of The
Cancer Genome Atlas (TCGA) datasets applied to our method confirmed that they were able to identify more clinically
meaningful cancer subtypes than the existing subtypes and found that the identified subtypes comprised different molecular
features. Our findings show that the proposed method, based on a simple classification using the patient-specific molecular
systems, can identify cancer subtypes even with single omics data, which cannot otherwise be captured by existing methods
using multi-omics data.

Introduction
Cancer is a highly heterogeneous disease and is known to differ among patients. This heterogeneity renders one cancer
type to be composed of multiple subtypes, which are characterized by different molecular features. Clinical identification of
these cancer subtypes is currently one of the major challenges in cancer research. Identifying the subtypes can provide an
understanding of the underlying molecular mechanisms and thereby design precise treatment strategies for efficient cancer
management. In recent years, advances in high-throughput sequencing technologies have generated large amounts of data on
various cancer types. For example, The Cancer Genome Atlas (TCGA) contains multi-omics data, including gene expression,
mutation, methylation, and copy number, of over 34 cancer types. These multi-omics data allow improvements in cancer
subtyping via computational methods1–3. However, most studies do not classify the cancer subtypes based on differences in the
molecular systems, but they are based only on the differences in the numerical patterns of the omics data.

Network representation of molecule-to-molecule relationships is a key to understanding a fundamental molecular system,
and it plays an important role in understanding each biological process and the molecular mechanisms of cancer4. Therefore,
knowledge of such networks could be a promising data source for cancer subtyping. Some well-known types of biological
networks are gene regulatory networks and protein–protein interaction networks5. Although the importance of molecular
systems has been shown in recent years, only a few studies have incorporated the knowledge of molecular networks into their
clustering processes6–8. However, these methods do not sufficiently express the molecular systems for two reasons. First, the
networks used do not contain a large number of genes that are supposed to be expressed in cells. In fact, only those genes that
are already known to be involved in certain cancer types have been included in the networks6–8. Second, the networks used are
constructed from public databases that do not include condition-dependent networks9, 10. Recent studies have revealed that
biological networks vary between normal and the disease states11, 12. Because genetic interactions are condition-specific, the
networks of particular types of cancers are different from those found in these databases.
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Figure 1. Overview of our method.

In this study, we propose a novel method to classify cancer subtypes by incorporating differences in the molecular systems
of the patients. Because a gene network involves gene–gene regulatory relationships and is a fundamental network among
the various molecular networks, it can be an adequate representation of molecular systems for our purpose. Therefore, our
proposed method is based on the estimated gene network from the gene expression data of patients. The main scheme of
the proposed method is illustrated in Fig. 1. Briefly, our method estimates a gene network from a gene expression dataset in
the tumors of patients using a Bayesian network. A numerical value is then calculated for every edge of the estimated gene
network with respect to each patient’s sample. This edge value, also known as the edge contribution value (ECv), is derived by
evaluating the contribution of the edge to an expression value with respect to a patient in terms of the estimated molecular
system13. Therefore, differences in ECvs reflect differences in the molecular systems of particular patients. This calculation
of ECvs generates a matrix of numerical values consisting of patient-specific networks. Finally, hierarchical clustering was
performed using the matrix to classify patients into subtypes. This simple clustering allows the identification of various
subtypes, incorporating complex patient-specific activities of their molecular systems, which cannot be captured by the existing
classification methods using the multi-omics data of patients. We used this method to analyze two cancer types from TCGA
datasets, namely stomach adenocarcinoma and lung cancer, including lung adenocarcinoma and lung squamous cell carcinoma.
Consequently, all two cancer types were classified into three major novel subtypes, which defined their differential prognoses
and distinct molecular properties. Our method identified system-based cancer subtypes using only transcriptome data, which is
more accessible compared to other omics data. Additionally, the proposed method allowed for the extraction of subnetworks to
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explain the features of the identified subtypes. Collectively, our findings indicate that the proposed method can successfully
incorporate cancer-specific gene networks and establish a novel cancer subtype classification that overcomes the limitations of
other sophisticated clustering methods, which are based on gene expression data alone.

Methods
In this chapter, we first introduce the gene network estimation method using a Bayesian network. We then explain the ECvs
that allow us to quantify the patient-specific characteristics of the gene networks. Finally, the method for subtype classification
of cancer patients based on their ECvs is described.

Bayesian network with B-spline nonparametric regression
To define the transcriptomic molecular networks, or gene networks, a Bayesian network with B-spline nonparametric regression
model is used14. A Bayesian network (BN) is a graphical model that represents the cause-and-effect relations among variables
as a directed acyclic graph. By representing the gene expressions as the random variables, we can estimate the system-level
regulatory relationships from the transcriptome data. Many successful studies have reported on the use of BN for gene network
analysis15–18. Assuming p genes, the joint density of the gene expressions in a BN is described as

f (xi1, . . . ,xip;θG) =
p

∏
j=1

f (xi j|paG
i j;θ j), (1)

where xi j represents the gene expression of the j-th gene at the i-th sample, θG is the parameter vector of the BN represented by
G, paG

i j = (pa( j)
i1 , . . . , pa( j)

i,q j
) denotes the gene expression vector of q j parents of the j-th gene, and θ j is the parameter vector

for the local density with respect to the j-th gene. The optimal structure of the network is obtained by the maximization of the
posterior probability given the observed data as

p(G|X) ∝ π(G)
∫ n

∏
i=1

f (xi1, . . . ,xip;θG)π(θG|λ )dθG, (2)

where X is the observed data matrix, π(G) is the prior probability of G, n is the number of samples in X , π(θG|λ ) denotes the
prior distribution of θG, and λ is the hyperparameter vector. The drawback of the BN is that obtaining the optimal structure for
a given dataset is NP-hard. Therefore, the neighbor node sampling and repeat (NNSR) algorithm was used19.

Classification of patients based on their molecular networks
Tanaka et al. (2020)13 proposed the edge contribution value (ECv) to extract subnetworks from Bayesian networks, related to
specific differences observed for in vitro experiments. Briefly, the B-spline nonparametric BN assumes that the gene expression
is modeled as

xi j = m( j)
1 (pa( j)

i1 )+ . . .+m( j)
q j (pa( j)

i,q j
)+ ε, (3)

where m( j)
k (pa( j)

ik ) is a regression function using B-spline curves for the k-th parent of the j-th gene, and ε is the error term.

Because a value of this regression function m( j)
k (pa( j)

ik ) can be considered as a contribution of an edge from the k-th parent to
the j-th gene, Tanaka et al. (2020)13 defined ECv as

ECv(i)( jk→ j) = m( j)
k (pa( j)

ik ), (4)

where jk represents the index of the k-th parent of the j-th gene. Tanaka et al. (2020)13 considered the differences of ECvs
as ∆ECv between the control and the TGFβ -treated samples, which extract the distinctive edges with a certain threshold for
∆ECv. These were defined as the subnetworks characterizing the EMT in lung cancer cell lines. Here, we propose an algorithm
that uses ECvs to characterize the patients and elucidate cancer subtypes. Using ECvs as quantified gene networks, patients
with similar molecular systems would have similar ECvs, while patients with different molecular systems would have different
quantified networks. In this context, clustering based on the molecular system differences enables us to identify cancer subtypes.
This requires the gene network estimation from the gene expression data of patients and the calculation of ECvs values for the
estimated edges.
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Figure 2. (a) Heatmap showing hierarchical clustering for the ECv matrix in the STAD dataset. (b) Heatmap showing
hierarchical clustering for the RNA-seq matrix in the STAD dataset.(c-e) The distribution of ∆ECv of edges and absolute log2
fold change in genes in the STAD dataset (See supplementary S2.3). Dashed lines represent of the top 1.0% of the total edges
in every subtype. (f) The Venn diagram represents the number of edges in the STAD dataset. Colored areas in the Venn
diagram represent subtype-specific edges in each subtype.

Classification of cancer subtypes

Assuming E edges in the estimated gene network, the patient’s quantified network is defined as a vector of E elements
(ci1, . . . ,ciE), where ci v is an ECv of the v-th edge for the i-th patient. The quantified networks of all the patients are collected
and used to construct the columns of a matrix, resulting in an ECv matrix whose (i,v) element corresponds to an ECv of the
v-th edge for the i-th patient. Using clustering, the patients of this ECv matrix are classified according to the differences and
similarities between their gene networks. The ECv matrix consists of all the edges of the network, including approximately
20,000 genes and 150,000 edges. Since the majority of the edges do not represent differences in terms of ECv, parts of the
edges are selected prior to clustering. To select the edges for hierarchical clustering based on the ECv matrix, the variance
of each edge among patients is used as the ranking edges to represent the differences across the samples. The top N edges
showing large variances will be selected. Therefore, hierarchical clustering is performed for the ECv matrix, consisting of the
selected N edges, for the classification of patients into the different cancer subtypes.

Extraction of edges

Although hierarchical clustering classifies patients into cancer subtypes, the part of the network that is affected by the clustering
result is unknown. Therefore, distinctive edges with significant ECv differences need to be extracted, as in Tanaka et al.
(2020)13. In their study, they extracted the edges by calculating the ∆ECv between two conditions. However, since their method
cannot be applied for more than two groups, we extended their scheme. The following proposed method allows us to extract
distinctive edges with significant ECv differences using ECvs in multiple groups. Suppose that there are M groups of patients
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Table 1. The relationship between the existing four molecular subtypes and our identified subtypes.

subtype name CIN EBV GS MSI Unknown All
subtype 1 33 10 37 9 24 113
subtype 2 25 3 5 21 22 76
subtype 3 58 11 6 15 83 173

R1, . . . ,RM . We define ∆̃ECv with respect to group Rr out of these M groups as

∆̃ECvRr( jk→ j) =

∣∣∣∣∣ 1
|Rr| ∑

i∈Rr

ECv(i)( jk→ j)− 1
∑s 6=r |Rs| ∑

t∈Rs,s 6=r
ECv(t)( jk→ j)

∣∣∣∣∣ . (5)

The ∆̃ECv of every single edge is then calculated with respect to each subtype, where significant ∆̃ECv edges are regarded as
distinctive edges of specific subtypes.

Results
Dataset
In this study, our proposed method was applied to TCGA RNA-seq datasets of three types of cancer: stomach adenocarcinoma
(STAD)20; lung cancer, including lung adenocarcinoma (LUAD)21 and lung squamous cell carcinoma (LUSC)21 . LUAD and
LUSC were regarded as one dataset and referred to LUNG as they are both lung cancers, and we test whether they are split into
different subtypes. These datasets were preprocessed as described in Supplementary information (Supplementary S2.1).

Classification based on ECv matrix
We calculated the ECv of every single edge in the estimated network for each patient, respectively. This ECv calculation
generated a matrix of numerical values consisting of patient-specific molecular systems. To select the edges for hierarchical
clustering based on the ECv matrix, the variances of edges were calculated as described in Method section. For TCGA datasets,
we selected the top N = 250 edges with the highest variances in ECv among the patients. These 250 edges corresponded to
approximately 0.01% of the total number of edges. Classifying the patients by the small number of edges supposed to be
a potentially better classification method. To classify the patients into network-based subtypes, we performed hierarchical
clustering for the ECv matrix consisting of the selected edges in three types of cancer. The ECv heatmap revealed a high
variance among the intrinsic ECv matrix of the samples (Fig. 2a, Fig.S1). The clustering results of the ECv heatmap indicate that
patients of each cancer type were classified into three major subtypes, namely subtype 1, subtype 2, and subtype 3, according to
the similarities and differences between the patient networks (Fig. 2a, Fig.S1). In our dataset, N = 250 was approximately the
minimum number of edges that produced biologically and clinically meaningful results, as we described in Result section later.

Extraction subtype-specific edges
The ∆ECv value was calculated for every single edge in each subtype across three types of cancer. Edges with a high represent
significant differences between subtypes. The distribution of suggested that only limited edges showed significant differences
(Fig. 2c-e, Fig. S2). Based on the distributions of ∆̃ECv, the top 1.0% of the total edges in the estimated network were found to
differ significantly. Therefore, we selected the corresponding edges from each subtype and removed any edges that were also
selected for other subtypes (Fig. 2f, Fig. S3). We denoted the extracted edges as subtype-specific edges. Networks consisting
of these subtype-specific edges were considered as a subnetwork characterizing the identified subtypes.

Applications in TCGA stomach cancer datasets
Stomach cancer is one of the most common leading causes of cancer-related death worldwide22. In the original TCGA paper,
the authors demonstrated that stomach cancer is a heterogeneous disease with four molecular subtypes—Epstein-Barr virus
(EBV), microsatellite instability (MSI), genomically stable (GS), and chromosomal instability (CIN)20. These subtypes are
based on the six platforms of the multi-omics molecular signature: somatic mutation, mRNA expression, miRNA expression,
promoter methylation, somatic copy number alteration, and protein expression20. However, as previously mentioned20, no
significance was observed between the prognoses of the subtypes (log-rank test p-value = 0.10 > 0.05) (Fig. 3a). This suggests
that the multi-omics-based subtypes did not account for the clinical significance, such that subtyping may not provide an
opportunity to improve therapeutic treatments. We hypothesized that multi-omics data provide limited information on tumor
subtyping. Rather, the differences in molecular systems may explain the differences in patients’ prognoses.
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Figure 3. (a) Kaplan-Meier survival probability curves of patients for the multi-omics-based subtypes. The log-rank test
between two subtypes; 0.45 (CIN vs EBV) > 0.05, 0.30 (CIN vs GS) > 0.05, and 0.50 (CIN vs MSI) > 0.05, 0.31 (EBV vs
GS) > 0.05, 0.95 (EBV vs MSI) > 0.05, 0.16 (GS vs MSI) > 0.05. (b) Kaplan-Meier survival probability curves of patients for
the identified network-based subtypes. The log-rank test between two subtypes; 0.00016 (subtype 1 vs 2) < 0.05, 0.042
(subtype 1 vs 3) < 0.05, and 0.013 (subtype 2 vs 3) < 0.05. (c) Kaplan-Meier survival probability curves of patients for the
identified RNA-seq based three subtypes. The log-rank test between two subtypes; 0.70 (subtype 1 vs 2) > 0.05, 0.091
(subtype 1 vs 3) > 0.05, and 0.14 (subtype 2 vs 3) > 0.05. (d) Kaplan-Meier survival probability curves of patients for the
identified RNA-seq based two major subtypes. The log-rank test p-value = 0.19 > 0.05
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To address this issue, we applied the proposed method to the preprocessed RNA-seq datasets of STAD. As described in
Result section above, the clustering results of the ECv heatmap indicate that stomach cancer is classified into three major
subtypes: subtype 1 (113 samples), subtype 2 (76 samples), and subtype 3 (173 samples) (Fig. 2a). To determine the relationship
between the existing multi-omics-based subtypes and our identified subtypes, we summarized the number of patients across
them (Table 1) and found that our subtyping was different from the multi-omics-based subtypes. These findings suggest that our
proposed method, based on the patient-specific molecular systems, can identify novel cancer subtypes that cannot be captured
by existing methods using multi-omics data. To investigate the extent to which our proposed method classifies cancer subtypes,
we conducted a survival analysis of the three identified subtypes. A better method for subtype classification is key for the
identification of cancer subtypes and different prognoses, since patients with different molecular systems require different
drug treatments. The Kaplan-Meier survival probability curves in the identified subtypes indicated that each subtype had a
significantly different prognosis pattern (log-rank test p-value = 0.00011 < 0.05) (Fig. 3b).

Furthermore, to confirm whether the gene network information improves the classification of the cancer subtypes, hierarchi-
cal clustering was performed using RNA-seq data alone, without network information. The top 322 genes showing the highest
variances of the RNA-seq data in STAD were selected, as the 250 edges with the ECv matrix were composed of 322 genes.
Consequently, we identified three RNA-seq-based subtypes (Fig. 2b). However, these subtypes did not show any significant
differences in terms of their prognoses (Fig. 3c). Despite employing two major subtypes in the clustering result, the differences
were not significant (Fig. 3d). To determine the relationship between the network-based and the RNA-seq-based subtypes, we
summarized the number of patients across them (Table S2) and found that network-based subtypes were different from the
RNA-seq-based subtypes. These results further suggest that our network-based method might generate a better cancer subtyping
profile. Moreover to confirm whether the gene network information improves the classification of the cancer subtypes, we also
applied the iNMF method, since it is a successful method for cancer subtyping that can handle multi-omics data23. We set three
clusters when performing the iNMF as we identified three subtypes in our method. However, although we performed using
gene expression data alone and using multi-omics data consisting of gene expression, miRNA expression, copy number and
DNA methylation, in both cases, these subtypes did not show any significant differences in their prognosis (Fig.S4).

To characterize the network-based subtypes obtained from the ECv matrix, we highlighted the subnetworks composed of
subtype-specific edges in the estimated basal network (Fig. 4a). The subtype-specific edges constituted a module in the basal
network, especially in terms of subtype 3 (Fig. 2f, Fig. 4a). In Fig. 4a, the node layout of the basal network was arranged
only using its topological structure. This suggests that the differences in the partial modules of the network might affect the
classification of the cancer subtypes. Furthermore, to account for the properties of the identified subtypes, we verified their
molecular features using gene ontology analysis. The subtype-specific networks were composed of 250, 1186, and 407 genes
in subtype 1, subtype 2, and subtype 3, respectively. The ontology analysis results indicated that, according to the top five
biological function terms, each subtype had a characteristic molecular feature (Table 2). Although most of the biological
functions in the subtypes were related to development, the developmental stages or tissues varied between the subtypes. For
example, “cardiovascular system development and function” was found in subtype 1, while “embryonic development” was
found in subtype 2 and “cellular development” was found in subtype 3. In particular, the top five of biological functions in
subtype 3, which were associated with a moderate prognosis, were completely different from those in the other subtypes.
Most of the biological functions observed in subtype 1 and subtype 2 were related to development, while “cellular growth and
proliferation” and “cell-to-cell signaling and interaction” were observed exclusively for subtype 3. Furthermore, we visualized
a network composed of subtype-specific edges (Fig. 2f) and extracted the largest connected component from the visualized
network in each subtype (Fig. 4b). The results suggested that the subtype-specific edges in subtypes 2 and 3 were composed of
a large connected subnetwork. Moreover, we found SALL2, ETNK2, and APBB1 were located as the top hub genes in subtype 2.
These genes are implied as cancer-related genes24–26, and thus may play an important role in characterizing these subtypes.

Identification of cancer subtypes in lung cancer
To test the effectiveness of our method in other datasets, we applied it to the lung cancer dataset (LUNG). As shown in Fig. S1,
the clustering results of the ECv heatmap indicate that lung cancer is classified into three subtypes: subtype 1 (227 samples),
subtype 2 (121 samples), and subtype 3 (343 samples). Then, survival analysis was conducted, similar to STAD analysis. The
Kaplan-Meier survival probability curves in the identified subtypes indicate that each subtype has a significantly different
pattern of prognosis (log-rank test p-value = 1.3e-14 < 0.05) (Fig. S5a). Next, the differences in the molecular features between
the identified subtypes were determined. The subtype-specific networks were found to be composed of 158, 1049, and 582
genes in subtype 1, subtype 2, and subtype 3, respectively. Gene ontology analysis of the subtypes indicate that all of the top
five biological functions varied between them (Table S3). These findings suggest that our proposed method might also work for
different cancer types. Moreover, hierarchical clustering followed by survival analysis, was performed for RNA-seq data as
shown in the STAD section. Consequently, three RNA-seq-based subtypes were identified and the prognoses of these subtypes
were significantly different (log-rank test p-value = 1.5e-15 < 0.05) (Fig. S5b and S5c). While the patients in network-based
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Figure 4. Visualization of subtype-specific subnetworks in the STAD dataset. (a) Subnetworks of subtype-specific edges were
highlighted with the basal network (blue). (b) The biggest connected component in the subnetwork of subtype-specific edges in
each subtype. Edges and nodes were colored by each subtype: subtype 1 (gray), subtype 2 (magenta), and subtype 3 (green).
Colored nodes were hub nodes in each subtype and the color gradient represents the outdegree of hubs.
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Table 2. The top five terms of biological functions in the STAD dataset.

subtype 1 subtype 2 subtype 3
cardiovascular system

development and function cellular movement cellular development
skeletal and muscular system

development and function embryonic development cellular growth and proliferation

organismal development organismal development
hematological system

development and function

cellular assembly and organization
nervous system development

and function
lymphoid tissue structure

and development

tissue development tissue development
cell-to-cell

signaling and interaction

subtype 1 were almost identical with those in RNA-seq-based subtype 1, those in network-based subtype 2 and subtype 3 were
different from RNA-seq-based subtypes (Table S4). Furthermore, the network-based and RNA-seq-based clustering could
almost completely classify LUAD and LUSC (Table S4). This may suggest that patients with various molecular features can be
classified even without network information, as LUAD and LUSC have characteristic molecular features that are significant for
classifying them using transcriptome data27, 28. Gene ontology analysis indicates that network-based subtypes could reveal
completely different characteristic molecular features among the subtypes. Thus, this suggests that our method can identify
novel subtypes that cannot be detected using RNA-seq clustering. We also visualized a network composed of subtype-specific
edges (Fig. S6a) and extracted the largest connected component from the visualized network in each subtype (Fig. S6b-d).

Discussion
In this study, we proposed a novel method for the classification of cancer subtypes based on patient-specific molecular systems.
The proposed method is able to identify novel subtypes with different prognoses, as well as the differences in molecular
properties between stomach cancer and lung cancer. Differences in molecular systems are not necessarily associated with the
prognoses of patients. However, it is likely to affect the effectiveness and/or medical treatment options available for these
patients. For this reason, our novel subtypes may be related to prognosis of patient.

Although many types of omics data are currently available, it remains difficult to integrate multi-omics data in research.
Each type of omics data can be used to classify cancers into various subtypes in terms of prognosis, pathological findings, and
others. However, since our proposed method uses only transcriptome data, even though our gene network-based method was
successful, it may not be sufficient to obtain an in-depth understanding of the molecular systems. Despite this, changes in the
different layers of omics networks influence the transcriptome profile at some level. This could explain why our proposed
method, based on the gene network, was able to identify novel cancer subtypes using only the transcriptome data. There,
however, remains room for improvement in the method reported in this study, wherein classification using multi-omics data
based on estimated systems represents an informative strategy for the identification of cancer subtypes.

Data availability
All the patient lists generated in this study are provided in the supplementary data. All the networks are available at NDEx
(The basal network in STAD; https://www.ndexbio.org/viewer/networks/1dabd135-8bab-11eb-9e72-
0ac135e8bacf, The subtype-specific network in STAD; https://www.ndexbio.org/viewer/networks/4e61c7cf-
8889-11eb-9e72-0ac135e8bacf, The basal network in LUNG; https://www.ndexbio.org/viewer/networks/
0e943431-8e00-11eb-9e72-0ac135e8bacf, The subtype-specific network in LUNG; https://www.ndexbio.
org/viewer/networks/be019ba4-8e01-11eb-9e72-0ac135e8bacf).
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