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Abstract13

When listening to speech, brain responses time-lock to acoustic events in the stimulus. Recent studies14

have also reported that cortical responses track linguistic representations of speech. However, tracking15

of these representations is often described without controlling for acoustic properties. Therefore, the16

response to these linguistic representations might reflect unaccounted acoustic processing rather than17

language processing. Here we tested several recently proposed linguistic representations, using audiobook18

speech, while controlling for acoustic and other linguistic representations. Indeed, some of these linguistic19

representations were not significantly tracked after controlling for acoustic properties. However, phoneme20

surprisal, cohort entropy, word surprisal and word frequency were significantly tracked over and beyond21

acoustic properties. Additionally, these linguistic representations are tracked similarly across different22

stories, spoken by different readers. Together, this suggests that these representations characterize23

processing of the linguistic content of speech and might allow a behaviour-free evaluation of the speech24

intelligibility.25
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Introduction26

When listening to natural running speech, brain responses time-lock to certain features of the presented27

speech. This phenomenon is called neural tracking (for a review, see, e.g., Brodbeck and Simon, 2020).28

Commonly, neural tracking is studied using an acoustic representation of the speech, for example, the envelope29

or spectrogram (Aiken and Picton, 2008; Ding and Simon, 2012b). Neural tracking of acoustic speech30

representations is modulated by attention: in a two-talker scenario, higher neural tracking is observed for the31

attended talker compared to the ignored talker (e.g., Ding and Simon, 2012a; Horton et al., 2014; O’Sullivan32

et al., 2015; Das et al., 2016). It is also modulated by speech understanding: higher neural tracking is33

observed if the speech is intelligible (Etard and Reichenbach, 2019; Iotzov and Parra, 2019). Interestingly,34

neural tracking also predicts a participant’s behavioral speech-in-noise performance (Ding and Simon, 2013;35

Vanthornhout et al., 2018; Lesenfants et al., 2019). The observation of neural speech tracking does not36

guarantee speech intelligibility, however, since music (Tierney and Kraus, 2014), and the ignored talker in the37

two-talker scenario, are also significantly tracked by the brain (Horton et al., 2014; O’Sullivan et al., 2015;38

Ding and Simon, 2012a).39

A more promising avenue of neurally predicting behavioral speech understanding comes from recent studies40

which reported that linguistic properties, derived from presented speech’s linguistic content, are also tracked41

by the brain (Broderick et al., 2018; Brodbeck et al., 2018; Weissbart et al., 2020; Koskinen et al., 2020).42

Neural tracking of linguistic speech representations has mainly been studied with measures that quantify43

the amount of new linguistic information in a word, such as word surprisal or semantic dissimilarity. These44

representations show a negativity with a latency of around 400 ms relative to word onset (Broderick et al.,45

2018; Weissbart et al., 2020; Koskinen et al., 2020) which is in broad agreement with results of studies46

investigating the N400 event-related brain potential (ERP)-response, an evoked brain responses to words,47

typically studied in carefully controlled stand-alone sentence or word paradigms (Frank et al., 2015; Frank48

and Willems, 2017; for a review on the N400 response, see e.g., Kutas and Federmeier, 2011 and Lau et al.,49

2008). Neural tracking of linguistic properties is also seen at the level of phonemes (Brodbeck et al., 2018;50

Gwilliams and Davis, 2020; Donhauser and Baillet, 2020). Several studies investigating neural tracking of51

linguistic representations report an absence of corresponding responses to the ignored speaker in a two-talker52

speech mixture, suggesting that these linguistic speech representations might reflect speech comprehension53

(Brodbeck et al., 2018; Broderick et al., 2018).54

For clinical applications it would be desirable to develop an objective measure of speech intelligibility derived55

from neural responses to continuous speech. Such a measure would allow for behaviour-free evaluation56
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of speech understanding; this would open doors towards better quantification of speech understanding in57

populations from whom obtaining behavioral measures may be difficult, such as young children or people with58

cognitive impairments, to allow better targeted interventions and better fitting of hearing devices. Few studies,59

however, analyze neural tracking of linguistic representations without controlling for the above-mentioned60

neural tracking of the acoustic properties of the speech (though see Brodbeck et al., 2018; Koskinen et al.,61

2020). This is problematic as linguistic features are often correlated with acoustic features. Indeed, Daube62

et al. (2019) found that acoustic features of speech can explain observed responses to different phoneme63

categories, when controlled for. Thus, without controlling for acoustic properties, speech tracking analysis64

might thus be biased to find spurious significant linguistic representations.65

A measure of neural tracking is derived from the performance of a model, constructed to predict the neural66

response, either electroencephalography (EEG) or magnetoencephalography (MEG), from a number of67

stimulus representations. Apart from linguistic representations, it is important to additionally include lexical68

segmentation of the speech into the model. These represent the onsets of words or phonemes, as distinct from69

acoustic onsets, to which they are not equivalent, though correlated. Word onsets in continuous speech are70

associated with a characteristic brain response (Brodbeck et al., 2018; Sanders and Neville, 2003). Using71

novel words, Sanders et al. (2002) showed that the neural response to a word onset depends on whether72

or not the word is associated with a learned lexical item. Therefore, the response to lexical segmentation73

properties of the speech cannot be purely acoustic. In this study, we control for both acoustic and lexical74

segmentation properties of the speech, to identify the added value of a linguistic speech representation.75

Based upon the above mentioned studies, we evaluate 3 types of linguistic speech representations that differ in76

the degree to which they can contribute to the understanding of the story: (a) at the phoneme level: phoneme77

surprisal and cohort entropy (Brodbeck et al., 2018), (b) at the word level: word surprisal, word entropy, word78

precision and word frequency (Weissbart et al., 2020) and (c) at the contextual level: semantic dissimilarity79

(Broderick et al., 2018). Firstly, we aim to verify whether the existing linguistic representations, proposed in80

in previous studies, are tracked after controlling for the neural tracking of acoustic and lexical segmentation81

properties of the presented speech. Secondly, we explore whether the processing of these linguistic speech82

representations is speaker- and content-specific by evaluating neural tracking across different stories. If83

so, these linguistic representations characterize processing of language and would allow a behaviour-free84

evaluation of speech intelligibility.85
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Materials and Methods86

Participant Details87

The EEG data of 29 young normal-hearing individuals (22 ♀) were analysed. The data were originally88

collected for other studies (Accou et al., 2020; Monesi et al., 2020). Participant age varied between 18 and 2589

years old (mean±std= 20.81 ± 1.94 years). The inclusion criteria were being a native speaker of Dutch and90

having normal hearing, which was verified using pure tone audiometry (octave frequencies between 125 and91

8000 Hz; no hearing threshold exceeded 20 dB hearing level). The medical ethics committee of the University92

Hospital of Leuven approved the experiments, and all participants signed an informed consent form before93

participating (S57102).94

Experimental Procedure95

EEG Experiment96

Data acquisition The EEG recording was performed in a soundproof booth with Faraday cage (at ExpORL,97

Dept. Neurosciences, KU Leuven) using a 64-channel BioSemi ActiveTwo system (Amsterdam, Netherlands)98

at a sampling frequency of 8192 Hz.99

Stimuli presentation Each participant listened to five Dutch stories: De kleine zeemeermin (DKZ), De100

wilde zwanen (DWZ), De oude lantaarn (DOL), Anna en de vorst (AEDV) and Eline (Table 1). Stories longer101

than 20 minutes were divided into parts, each lasting 13 to 15 minutes (DWZ and AEDV were divided into 2102

parts, DKZ into 3 parts). One or two randomly selected stories or story parts were presented in noise, but103

for this study only participants who listened to all 3 parts of DKZ without background noise were included.104

Additionally, when testing the DKZ-based model on any of the other stories, only participants who listened105

to that story without noise were included (the resulting number of participants is summarized in Table 2).106

Table 1: Details on the presented stories.

Story Author Speaker Duration (min)
De kleine zeemeermin (DKZ) H. C. Andersen Katrien Devos (♀) 46.08
De wilde zwanen (DWZ) H. C. Andersen Katrien Devos (♀) 27.46
De oude lantaarn (DOL) H. C. Andersen Katrien Devos (♀) 16.02
Anna en de vorst (AEDV) Unknown Wivine Decoster (♀) 25.51
Eline Rascal Luc Nuyens (♂) 13.33

Table 2: Amount of participants used for the across story comparisons.

DWZ part 1 DWZ part 2 DOL AEDV part 1 AEDV part 2 Eline
20/29 19/29 22/29 15/29 23/29 23/29
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The speech stimuli were presented bilaterally at 65 dB sound pressure level (SPL, A-weighted) through ER-3A107

insert earphones (Etymotic Research Inc, IL, USA) using the software platform APEX (Dept. Neurosciences,108

KU Leuven) (Francart et al., 2008).109

Signal Processing110

Processing of the EEG signals111

The EEG recording with a sampling frequency of 8192 Hz was downsampled to 256 Hz to decrease the112

processing time. We filtered the EEG using a multi-channel Wiener filter (Somers et al., 2018) to remove113

artifacts due to eye blinks. We referenced the EEG to the common-average and filtered the data between 0.5114

and 25 Hz using a Chebyshev filter (Type II with an attenuation of 80 dB at 10% outside the passband).115

Then additional downsampling to 128 Hz was done.116

Extraction of the predictor variables117

We used speech representations for acoustic properties of the speech (spectrogram, acoustic onsets), lexical118

segmentation of the speech (phoneme onsets, word onsets, function word onsets and content word onsets)119

and linguistic properties (phoneme surprisal, cohort entropy, word surprisal, word entropy, word precision,120

word frequency, semantic dissimilarity). An example of these speech representations is visualized in Figure 1121

(for illustration purposes, only one band of the 8-band spectrogram and acoustic onsets is visualized).122

Spectrogram and acoustic onsets Both of these speech representations reflect the continuous acoustic123

power of the presented speech stimuli. A spectrogram representation was obtained using the Gammatone124

Filterbank Toolkit 1.0 (Heeris (2014); frequency cut-offs at 20 and 5000 Hz, 256 filter channels and a window125

time of 0.01 second). This toolkit calculates a spectrogram representation based on a series of gammatone126

filters inspired by the human auditory system (Slaney, 1998). The resulting filter outputs with logarithmic127

center frequencies were averaged into 8 frequency bands (frequencies below 100 Hz were omitted similar to128

Brodbeck et al. (2020)). Additionally, each frequency band was scaled with exponent 0.6 (Biesmans et al.,129

2016) and downsampled to the same sampling frequency as the processed EEG, namely 128 Hz.130

For each frequency band of the spectrogram, an acoustic onsets representation was computed by applying an131

auditory edge detection model (Fishbach et al., 2001) (using a delay layer with 10 delays from 3 to 5 ms,132

a saturation scaling factor of 30 and receptive field based on the derivative of a Gaussian window with a133

standard deviation of 2 ms (Brodbeck et al., 2020)).134
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Figure 1: Speech representations used in this study. For illustration purpose, only one band of the spectrogram
and acoustic onsets is visualized.

Phoneme onsets and word onsets Time-aligned sequences of phonemes and words were extracted by135

performing a forced alignment of the identified phonemes using the speech alignment component of the136

reading tutor (Duchateau et al., 2009). The resulting representations were one-dimensional arrays with137

impulses on the onsets of, respectively, phonemes and words.138

Content word onsets and function word onsets The Stanford Parser (Klein and Manning, 2003b,a)139

was used to identify the part-of-speech category of each word. We subsequently classified the words into140

2 classes: (a) open class words, also referred to as content words, which included all adjectives, adverbs,141

interjections, nouns and verbs and (b) closed class words, also referred to as function words, which included142

all adpositions, auxiliary verbs, conjunctions, determiners, numerals, articles and pronouns. The resulting143

representations were one-dimensional arrays with impulses at the onsets of, respectively, content or function144

words.145

Linguistic representations at the phoneme level Two linguistic phoneme representations were modeled146

to describe each phoneme’s informativeness in its lexical context, namely phoneme surprisal and cohort entropy147

(Brodbeck et al., 2018). Both representations are derived from the active cohort of words (Marslen-Wilson,148

1987): a set of words which start with the same acoustic input at a given point during the word. Phoneme149
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surprisal reflects how surprising a given phoneme is, given the previous phonemes. It is calculated as the150

negative logarithm of the inverse conditional probability of each phoneme given the preceding phonemes in151

the word. Cohort entropy reflects the degree of competition among words which are compatible with the152

partial phoneme string from word onset to the current phoneme. It is expressed as the Shannon entropy of153

the active cohort of words at each phoneme (for details of both representations, see Brodbeck et al. (2018)).154

The lexicon for determining the cohort was based on a custom pronunciation dictionary maintained at our lab155

(created manually and using grapheme-to-phoneme conversion; containing 9157 words). The prior probability156

for each word was based on its frequency in the SUBTLEX-NL database (Keuleers et al., 2010) (phoneme or157

word frequency was log-transformed using a base of 2). The initial phoneme of each word was not modeled in158

these representations. The resulting representations were one-dimensional arrays with impulses at phoneme159

onsets modulated by the value of respectively surprisal or entropy, except for the word’s initial phoneme.160

Phoneme surprisal Cohort entropy

surprisali = −log2( freq(cohorti)
freq(cohorti−1) ) entropyi = −

∑cohorti

word pwordlog2(pword)

Linguistic representations at the word level Linguistic word representations were derived using a161

Dutch 5-gram model (Verwimp et al., 2019) to describe each word’s informativeness independent of sentence162

boundaries, namely word surprisal, word entropy, word precision and word frequency. N-gram models are163

Markov models which describe a word’s probability based on its n− 1 previous words. Word surprisal was164

calculated as the negative logarithm of the conditional probability of the considered word given the 4 preceding165

words. Word entropy is the Shannon entropy of the word given the 4 preceding words. Word precision was166

defined as the inverse of the word entropy. Word frequency was included as the negative logarithm of the167

word’s unigram probability. Note that some of the methods differ slightly between phoneme- and word-level168

representations; we opted to use representations as close as possible to those used previously in the literature.169

The resulting representations were one-dimensional arrays with impulses at word onsets modulated by the170

value of, respectively, surprisal, entropy, precision or word frequency.171

Word surprisal Word frequency
surprisali = −log10(p(wi|wi−5, ..., wi−1)) frequencyi = −log10(p(wi)

Word entropy Word precision
entropyi = −

∑allwords
w p(w|wi−5, ..., wi−1)log10(p(w|wi−5, ..., wi−1)) precisioni = 1

entropyi

Semantic representation To describe the influence of semantic context, semantic dissimilarity was used172

as a measure of how dissimilar a content word is compared to its preceding context (Broderick et al., 2018).173
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Unlike linguistic representations at the word level, this representation takes into account sentence boundaries.174

For each content word in the story, a word embedding was retrieved from a database with word embeddings175

obtained with word2vec (Tulkens et al., 2016) using a combination of different Dutch text corpora (Roularta176

(Roularta Consortium, 2011), Wikipedia (Wikipedia, 2015), SoNaR corpus (Oostdijk et al., 2013)). To177

obtain a value of semantic dissimilarity for a content word, the word embedding of the considered word was178

correlated (Pearson’s correlation) with the average of the previous content words in the considered sentence.179

This correlation value was subtracted from 1 to obtain a value which reflects how dissimilar the word is180

compared to its context. If the word was the initial content word of the sentence, its word embedding was181

correlated with the average of the word embeddings of the content words in the previous sentence. The182

resulting representation was a one-dimensional array with impulses at content word onsets modulated by the183

value of how dissimilar the considered content word is compared to its context.184

Determination of neural tracking185

In this study, we focused on a linear forward modelling approach that predicts the EEG response given186

some preceding speech representations. This forward modelling approach results in (a) a temporal response187

function (TRF) and (b) a prediction accuracy for each EEG channel. A TRF is a linear kernel which describes188

how the brain responds to the speech representations. This TRF can be used to predict the EEG-response189

by convolving it with the speech representations. The predicted EEG-response is then correlated with the190

actual EEG-response, and correlation values are averaged across EEG channels to obtain a single measure191

of prediction accuracy. This prediction accuracy is seen as a measure of neural tracking: the higher the192

prediction accuracy, the better the brain tracks the stimulus.193

(a) To estimate the TRF, we used the Eelbrain toolbox (Brodbeck, 2020) which estimates a TRF for each194

EEG electrode separately using the boosting algorithm by David et al. (2007). We used 4-fold cross-validation195

(4 equally long folds; 2 folds used for training, 1 for validation and 1 fold unseen during training for testing;196

for each testing fold, 3 TRF models were fit, using each of the remaining 3 folds as the validation fold in turn).197

Cross-validation employing the additional test stage using unseen data allows a fair comparison between198

models with different numbers of speech representations. TRFs covered an integration window from 0 to199

900 ms (with a basis of 50 ms Hamming windows, and selective stopping based on the `2-norm after 1 step200

with error increase). For analyzing the TRFs, the resulting TRFs were averaged across all folds. (b) To201

calculate the prediction accuracy, the average TRF from 3 complimentary training folds was used to predict202

the corresponding unseen testing fold. Predictions for all testing folds were then concatenated to compute a203

single model fit metric. The correlation between the predicted and actual EEG was averaged across channels204
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to obtain the prediction accuracy.205

To evaluate whether a speech representation had a significant added value, we compared whether the prediction206

accuracy significantly increased when the representation was added to the model (e.g., to determine the207

added value of word onsets over the spectrogram, we compared the prediction accuracy obtained with the208

model based on the spectrogram to the prediction accuracy of the model based on a combination of the209

spectrogram and word onsets).210

Determination of the peak latency211

The latencies of the response peaks in TRFs were determined for the linguistic speech representations at the212

phoneme level (Brodbeck et al., 2018). Based on the mean TRFs across participants, we identified different213

time windows in which we determined the peak latency (30-90 ms, 90-180 ms and 180-300 ms). For each214

subject, the latency was determined as the time of the maximum of the absolute values of the TRF across215

channels.216

Statistical analysis217

For the statistical analysis, we used the R software package (version 3.6.3) (R Core Team, 2020). We218

performed one-sided Wilcoxon signed-rank tests to identify whether the linguistic representations had added219

value beyond acoustic and lexical segmentation representations. The outcomes of such a test are reported220

with a p-value and effect size. All tests were performed with a significance level of α = 0.05. To inspect221

whether the latencies differed significantly, a two-sided Wilcoxon signed-rank test was performed.222

To compare topographic responses, we applied a method proposed by McCarthy and Wood (1985), which223

evaluates whether the topography differs between two conditions when amplitude effects are discarded.224

The method is based on an ANOVA testing for an interaction between sensor and condition, i.e., testing225

whether the normalized response pattern across sensors is modulated by condition. We compared the average226

topographic response within specific time windows. These time windows were determined as the intersections227

of the time intervals in which the smoothed average TRFs of a frontal and a central channel selection228

significantly differed from 0, for a duration of more than one sample, after smoothing using a hamming kernel229

of 100 ms. This smoothing was performed to decrease the inter-subject variability of the peak latencies.230

To determine the significance of TRFs, we used mass-univariate cluster-based permutation tests proposed231

by Maris and Oostenveld (2007), using the Eelbrain (Brodbeck, 2020) implementation. All tests used a232

cluster-forming threshold of uncorrected p=0.05, and evaluated clusters based on the cluster mass statistic,233

tested against a random distribution determined based on 10 000 random permutations of the data. We234
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tested whether the average TRF was significantly different from 0 using permutation tests based on two-tailed235

one-sample t-tests. To determine whether the TRF differed between two speech representations, we used236

permutation tests based on related-measures t-tests. For determining significant clusters, we used a corrected237

significance level of α = 0.05.238

We also compared how well responses to different stories could be predicted using the same TRFs. To239

determine the effect of the story on neural tracking (averaged across EEG sensors), we used the Buildmer240

toolbox to identify the best linear mixed model (LMM) given a series of predictors and all their possible241

interactions based on the likelihood-ratio test (Voeten, 2020). The analysis included a factor with a level242

for each story, a continuous predictor reflecting the presentation order, a distance-from-training-data metric243

and a random effect for participant. The presentation order predictor reflects the linear presentation order244

during the experiment and would therefore be able to model changes of neural tracking over the course of the245

experiment. The distance-from-training-data metric is calculated as the number of stories presented between246

the presentation of the story and DKZ. This metric would allow to investigate whether neural tracking is247

affected by the subject’s mental state (e.g. tiredness; stories presented right before or after the training story248

DKZ have a similar mental state and therefore the neural tracking should be similar).249

Results250

Linguistic properties are reliably tracked within story251

We first analyzed responses to linguistic representations in a single story (DKZ: 45 minutes; 29 participants).252

At each level of representations, we first verified whether the full set at each level of linguistic representations253

had an added value over and beyond the acoustic and lexical segmentation representations (Figure 2.A). At254

both the phoneme and the word level, a model which included all linguistic representations of the considered255

level showed a significantly higher prediction accuracy compared to a model which only included acoustic and256

lexical segmentation representations (phoneme level: p<0.001, effect size=0.682; word level: p=0.015, effect257

size=0.405). However, semantic dissimilarity did not have a significant added value over and beyond acoustic258

and lexical segmentation representations (p=0.641; Figure 2.A). In previous literature, a significant neural259

tracking to semantic dissimilarity is reported, however, without controlling for acoustic feature or content260

word onsets. Consistent with this earlier result, we did observe that semantic dissimilarity by itself does261

yield prediction accuracies significantly above 0 (p<0.001; effect size=0.925). We further found that semantic262

dissimilarity retains its added value over and beyond content word onsets (p<0.001, effect size=0.592).263

However, as stated above, when fully controlling for acoustic speech representations over and above word and264
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phoneme onsets, no added value of semantic dissimilarity was observed.265

At the phoneme and word level, we identified which linguistic representations within the considered level266

contributed significantly over and beyond the other linguistic representations at that level and the acoustical267

and lexical segmentation representations (Figure 2.B). At the phoneme level, phoneme surprisal and cohort268

entropy both had a significant added value over and beyond each other and acoustic speech representations269

(phoneme surprisal: p<0.001, effect size=0.702; cohort entropy: p=0.046, effect size=0.313). However, for270

the linguistic representations at the word level, only word surprisal (p=0.004, effect size=0.492) and word271

frequency (p=0.019, effect size=0.384) contributed significantly to the model while word entropy (p=0.275)272

and word precision (p=0.609) did not have an added value.273

Subsequently, we combined all the significant linguistic representation at the word and phoneme levels derived274

from the first analysis. The significant linguistic speech representations at the phoneme level had an added275

value over and beyond the significant linguistic speech representations at the word level (p=0.001, effect276

size=0.589) and vice versa (p=0.008, effect size=0.448). On average, the prediction accuracy improved by277

1.05 % when the linguistic representations were added to a model which only contains the acoustic and278

lexical segmentation properties of the speech (prediction accuracy increased with 3.4× 10−4, p<0.001, effect279

size=0.713; Figure 2.C). The increase in prediction accuracy over the different sensors is visualized in Figure280

2.C (right inset).281

Neural responses to linguistic features282

We investigated whether the significant linguistic representations reflect separate language processing stages283

by inspecting their TRFs, averaged across participants. Based on the analysis above, we identified a central284

and a frontal channel selection in which the prediction accuracy significantly increased when the linguistic285

representations were added to the model (Figure 2.C: right). The differences in TRFs at the two sensor286

groups suggests that there might be more than one neural source contributing to the results. To test this287

explicitly, we tested in specific time windows whether the topographies were different (McCarthy and Wood,288

1985) (time windows were determined based on the smoothed average TRFs and are annotated with the289

grey horizontal bar in Figure 3). A significant difference between two topographies suggests that the neural290

sources underlying the two topographies are different.291

The TRFs for phoneme surprisal and cohort entropy are shown in Figure 3 (left) for both channel selections292

(TRFs for all channels are shown in Figures A.2a and A.2b). Both linguistic representations at the phoneme293

level show a significant frontal negativity around 100 ms, and a significant central negativity around 250 ms294
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Figure 2: Added value of linguistic representations averaged across channels: Panel A: Increase in
prediction accuracy (Pearson’s r) of the combined representations at each level compared to a baseline model
which included acoustic and lexical segmentation properties of the speech. Panel B: Increase in prediction
accuracy (Pearson’s r) of each representation compared to a baseline model which includes the other linguistic
representations at the considered level. Panel C: Increase in prediction accuracy compared to a baseline
model of a combination of the significant features averaged across channels (left) and in sensor space (right).
(*: p<0.05, **:p<0.01, ***: p<0.001, ****:p<0.0001)
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followed by positive activity from 400 to 800 ms in central regions. We asked whether there is any evidence295

that the neural sources underlying the two TRFs are different. We did not observe a significant difference in296

topography of the earlier negativity around 100 ms (Figure 3: bottom; Table A.2). Interestingly, we observed297

a significantly different topography in the time window from 414 ms to 562 ms, which indicates that the298

underlying neural sources are different (Figure 3; left; Figure A.3; Table A.1). However, judging from the299

difference map shown in Figure A.3, the difference in underlying neural sources is not easy to interpret, and300

could be due to a complex interplay between different neural sources. As the difference is difficult to interpret301

and the p-value is just below the significance threshold, the observed difference in topography might not be a302

robust effect.303

The TRF to both phoneme-level representations shows 3 peaks (Figures A.2a and A.2b). Based upon the304

averaged TRF across participants, we identified 3 time windows wherein we determined the peak latency305

(respectively, 30 to 90 ms, 90 to 180 ms and 180 to 300 ms). We did not observe a significant difference in306

latency of all 3 peaks of phoneme surprisal and cohort entropy (30 to 90 ms: p=0.257, 90 to 180 ms: p=0.108,307

180 to 300 ms: p=0.287).308

The neural responses to the linguistic representations at the word level are shown in Figure 3 (right). Both309

representations show a significant positive activation in frontal regions around 50 ms, and a prominent310

negativity around 300 to 400 ms after the word onsets. However, the amplitude of this negativity is smaller311

for word frequency. Interestingly, we identified a significant difference in topography for this negativity after312

discarding amplitudes effects (Figure 3: bottom; Figure A.5; Table A.3). The negativity for word frequency313

is situated more centrally compared to the negativity for word surprisal. The topography during the early314

responses to the word onset is also significantly different between the two speech representations (Figure A.5;315

Table A.4). Figure A.5 shows that word surprisal shows more central activation while the early activity of316

word frequency is situated more laterally.317

Additionally, we compared the topography of the negativity around 200 ms of phoneme surprisal (164 ms to318

343 ms) to the topography of the negativity around 400 ms of word surprisal (242 ms to 531 ms). The method319

proposed by McCarthy and Wood (1985) did not identify a significant difference between these topographies320

(Figure A.6).321

Neural processing of content and function words322

Initially, we used a baseline model that represented acoustic properties and the speech’s lexical segmentation.323

This model was kept constant to investigate the added value of different speech representations. However, as324
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Phoneme level Word level

A. TRF for a frontal channel selection

B. TRF for a central channel selection

Cohort entropy

Phoneme surprisal

Word frequency
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Figure 3: TRFs of linguistic representations at the phoneme and word level: The TRFs, averaged
across participants for the different linguistic representations and a channel selection (shown in the central
inset). The shaded area denotes the standard error of the average TRF. The time windows which are
significantly different from zero are annotated with a horizontal line in the same colour as the TRF of the
speech representations. The grey horizontal line denotes the time windows in which the two representations’
average topographies are compared. If a significant topography was observed, the time window is annotated
with a grey star. The corresponding topographies, averaged across this time window, are given as inset below
encircled in the same colour as the TRF. The reported p-value is the p-value as result of the McCarthy-Wood
method (for this method the normalized topographies are used which are not visualized here).
(*: p<0.05, **:p<0.01, ***: p<0.001, ****:p<0.0001)
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we did not observe an added value of semantic dissimilarity, which was encoded at every content word, we325

investigated whether word onsets split up depending on the word class had an added value (Brennan and326

Hale, 2019). In this analysis, we determined whether the differentiation between content and function words327

has an added value by three different models: (A) a baseline model including word onsets and the linguistic328

representations at the word level independent of the word class, (B) a model which differentiated between329

content words and function words for both word onsets as well as the linguistic representations at the word330

level, and (C) a model including a differentiation between content and function words for the word onsets but331

not for the linguistic representations at the word level. For the latter two models, a word onsets predictor for332

all words was included as well to capture TRF components shared between all words.333

We observed an added value of the word class predictors (model C obtains higher prediction accuracies334

compared to model A: p < .001, effect size = 0.723; inset in Figure 4). However, we did not observe an335

added value of differentiating the linguistic speech representations at the word level depending on the word336

class (model B does not obtain higher prediction accuracies than model C: p=0.947). Thus, the response to337

function words differs from the response to content words, but the word class does not modulate responses338

related to word frequency and surprisal.339

Subsequently, we investigated the difference in the response to content and function words by looking at the340

TRFs (Figure 4; TRFs for all channels are shown in Figure A.8a and A.8b). For this analysis, we combined341

the TRF of word onsets and the TRF of content or function words to obtain the response to, respectively, a342

content or function word. The neural responses to words in both classes showed a significant central positivity343

around 50 ms and a negativity around 350 ms. In addition, the response to content words showed a significant344

positivity around 200 ms, while a slightly earlier significant negative response was observed in the response to345

function words.346

For all the above mentioned time windows, a significant difference in topography was observed. The early347

response to function words is situated more centrally than the response to content words while the early348

response to content words shows more frontal activity. In the subsequent time windows around 200 ms,349

the response to content words shows a frontal negativity. The response to function words around 200 ms350

resembles the early response to word onsets with lateralized frontotemporal activation (see Figure 4-C, first351

topography). Around 350 ms, a central negativity is observed for both responses. This time window is also352

associated with a difference in topography, but the difference between the two topographies is difficult to353

interpret (Figure A.7; Table A.5).354

As noted above, the topography of the response to function words around 200 ms resembles the initial355
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response to word onsets. This might be due to the properties of the different word classes: the duration of356

function words is generally shorter than that of content words which implies that the time interval between a357

word and its next word is shorter for function words (on average 239 ms for a function word while 600 ms for358

a content word). The response to function words might thus be more contaminated by a response to the359

subsequent word onset. We investigated whether the TRF of function words was contaminated by the onset360

of the next word. We divided function words into two categories: function words for which the next word361

followed later than 300 ms (n = 587) or earlier than 300 ms (n = 2908). The TRF for function words for362

which the next word followed later than 300 ms significantly differed from the TRF for function words for363

which the next word followed earlier than 300 ms. This significant difference was mainly situated in the early364

response up to 250 ms (3 significant clusters: from 0 to 273 ms in 29 central channels (p<0.001), from 0 to365

250 ms in 17 occipital channels (p<0.001) and from 297 ms to 430 ms in 17 central channels (p=0.008)).366

Additionally, the TRF for function words for which the next word followed later than 300 ms did not show a367

significant activity around 200 ms (the TRF was significant from 0 to 117 ms for 9 frontal channels (p=0.009)368

and from 851 to 914 ms for 10 parietal channels (p=0.031)). These findings suggest that the TRF of function369

words was indeed contaminated by the onset of the next word. The responses to short and long function370

words are shown in Figure A.9 (response was obtained by combining the TRF of word onsets and the TRF of371

the considered function word category).372

Across story373

To confirm that responses to linguistic features are consistent across speaker and story, we verified whether374

linguistic speech representations have added value when the model was trained on DKZ and used to predict375

brain responses to other stories. Except for DWZ_1 (p=0.194) and DOL (p=0.083), a significant increase in376

prediction accuracy is seen when the linguistic speech representations are added (AEDV_1: p < .001, effect377

size=1.035; AEDV_2: p=0.013, effect size=0.466; DWZ_2: p=0.03, effect size=0.431; Eline: p < .001, effect378

size=0.799; Figure 5.A).379

To determine whether or not this variation across the different stories was significant, we identified the380

best LMM, using the predictors story identity, presentation order and presentation distance, to explain the381

difference in prediction accuracy between the model including linguistic representation compared to a model382

which only contained the acoustic and lexical segmentation representations. We observed that only the383

considered story is a significant predictor (LMM using only story as a predictor: AIC=-1231.0 compared to384

LMM using only the random effect: AIC=-1229.6). Based on the restricted maximum likelihood, no added385

value of the presentation order was observed (LMM using both story and presentation order as predictors:386
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Figure 4: The response to words depends on the word class: Panel A: The increase in prediction
accuracy (Pearson’s r) of including representations for the word classes into the model. Panel B: The response
to content (blue) and function words (yellow), averaged across participants and a channel selection (marked
yellow in Panel A) where the improvement of the differentiation between the word classes was significant. The
shaded area denotes the standard error of the average TRF. The windows which are significantly different
from zero are annotated with a horizontal line in the same colour as the TRF. The grey horizontal line
denotes the time windows in which the two speech representations’ average topographies are compared. If
a significant topography was observed, the time window is annotated with a grey star. The corresponding
topographies averaged across this time window, are given as insets below encircled in the same colour as
the TRF. The reported p-value is the p-value as result of the McCarthy-Wood method (for this method the
topographies are used which are not visualized here).
(*: p<0.05, **:p<0.01, ***: p<0.001, ****:p<0.0001)
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AIC=-1229.5, LMM using both story and distance-from-training-data metric as predictors: AIC=-1230.2 or387

LMM using story, presentation order and distance-from-training-data metric as predictors: AIC=-1228.8).388

The observed added value of the linguistic speech representations thus differed significantly between stories,389

and presentation order was not able to explain this effect.390

  

A B

Figure 5: Added value of linguistic speech representations across story: Panel A: Increase in pre-
diction accuracy (Pearson’s r) averaged across all sensors of the model including the linguistic representations
compared to the model which only includes acoustic and lexical segmentation properties of the speech. Panel
B: The increase in prediction accuracy, averaged across stories, in sensor space. A cluster-based permutation
test resulted in one large cluster encompassing almost all sensors; the channels which were not included in
the cluster are encircled.

Discussion391

We evaluated which linguistic speech representations are tracked over and beyond the neural tracking of acoustic392

and lexical segmentation representations. The brain reliably tracked phoneme surprisal, cohort entropy, word393

frequency and word surprisal. Additionally, we showed that the tracking of linguistic representations is similar394

across stories. Even when trained on a different story, we observed a significant increase in prediction accuracy395

of linguistic representations when added to a model that accounted for the speech’s acoustic properties and396

lexical segmentation.397

Reliable tracking of linguistic representations at the phoneme level398

For the linguistic representations at the phoneme level, both phoneme surprisal and cohort entropy had a399

significant added value compared to the acoustic and lexical segmentation representations. Similarly, as400

reported by Brodbeck et al. (2018), these phonemic linguistic representations had added value over and401

beyond each other, which suggests that both representations contributed differently to the model.402
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Brodbeck et al. (2018) reported significantly different latencies for phoneme surprisal and cohort entropy403

respectively around 114 ms and 125 ms. We did not observe a significant difference in latency between404

phoneme surprisal and cohort entropy. Additionally, Brodbeck et al. (2018) reported that the anatomical405

regions of the responses to these speech representations did not significantly differ. In our results, the406

topographic response of phoneme surprisal and cohort entropy in a time window around 100 ms did not407

significantly differ either, suggesting spatially similar neural sources (Table A.2). A clear difference with408

the neural responses in the study by Brodbeck et al. (2018) is that the neural responses show more than409

one prominent peak in our study. This might be due to the difference in modality: EEG is sensitive to the410

responses of neural sources which cannot be recorded with MEG.411

Brodbeck et al. (2018) did not elaborate on later activity in the TRF. We observed a negativity around412

250 ms for central channels. This activity did not significantly differ in latency or topography between the413

two linguistic representations. However, in a later time window around 400 to 500 ms, a significantly different414

topographic response is observed for phoneme surprisal and cohort entropy (Figure 3; Table A.1) suggesting415

different underlying neural sources. In the current study, we cannot pinpoint this difference’s precise nature416

because we did not perform source localization. However, this difference in topography is consistent with417

the interpretation that the two representations represent distinct speech processing stages. As Brodbeck418

et al. (2018) suggest, phoneme surprisal might reflect a measure of phoneme prediction error which is used to419

update the active cohort of lexical items. In contrast, cohort entropy likely reflects a representation of this420

cohort of activated lexical items. On the other hand, as the TRF follow a similar time course, the underlying421

neural activity might be correlated with both linguistic representations at the phoneme level.422

Reliable tracking of linguistic representations at the word level423

For the linguistic representations at the word level, word surprisal and word frequency had a significant added424

value compared to each other and acoustic and lexical segmentation representations. However, word entropy425

and word precision did not improve the prediction accuracies.426

Word surprisal was identified as a significant predictor in continuous speech which is in line with the previous427

literature (Weissbart et al., 2020; Koskinen et al., 2020). This suggests that the human brain responds when a428

word is surprising given the previous words. Although word frequency and word surprisal are correlated, there429

is an added value of word frequency over and beyond word surprisal (and vice versa). We cannot exclude the430

possibility that the added-value of word frequency is due to correlations with other word-related predictors,431

such as the word duration or the concreteness of the word, as we did not include those in our analysis.432
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The obtained TRFs to word surprisal and word frequency were consistent with previous reports (Weissbart433

et al., 2020). The neural responses to both linguistic representations show a negativity around 400 ms in central434

parietal areas which can be related to the typical N400 response derived in ERP studies. Interestingly, when435

discarding this negativity’s amplitude around 400 ms, we observed a significant difference in topography (Figure436

3; Figure A.5) suggesting that different underlying neural sources evoke the responses. It is hypothesized that437

the N400 responses might reflect multiple processes, e.g. activation of lexical items which suggest that certain438

words are easier to access from memory as well as the semantic integration of the word into its context (for a439

review Lau et al. (2008) and Kutas and Federmeier (2011)). Our findings suggest that the word surprisal440

and word frequency represent different processes, reflected in the N400, during language comprehension. We441

hypothesize that the response to word frequency is related to the activation of lexical items, as a word with a442

higher frequency is easier to access in long term memory. Word surprisal, as it represents the probability of a443

word given the preceding words, might represent a combination of lexical activation and semantic integration.444

Interestingly, the response to word surprisal around 400 ms was very similar to the response around 200 ms in445

phoneme surprisal, and the two topographies did not differ significantly, suggesting similar underlying neural446

sources (Figure A.6). This might suggest that the two effects reflect a shared neural process responding to447

surprising linguistic input.448

Although previous studies reported an added-value of word entropy and word precision (Willems et al., 2016;449

Weissbart et al., 2020), those predictors did not significantly improve the prediction accuracy in our data.450

Using functional magnetic resonance imaging (fMRI), Willems et al. (2016) reported significant responses to451

word entropy, derived from a 3-gram model, in continuous speech. In their study, however, word entropy452

was modeled as the uncertainly of the next word while in our study it was defined as the uncertainty of the453

considered word. If the effect observed in fMRI reflects brain activity related to predicting the next word, as454

suggested by Willems et al. (2016), then we might not expect an effect of current-word entropy in EEG, as455

the corresponding brain activity might have occurred on the previous word. However, another important456

difference is the imaging modality; possibly, the more distributed parietal and frontal sources associated457

with entropy are less visible in EEG. Finally, in contrast to fMRI, our EEG methodology assumes strictly458

time-locked effects. Thus, if an effect is not strictly time-locked, it might be detected in fMRI but not in459

EEG and vice versa.460

We also did not observe an added value of word precision, in contrast to Weissbart et al. (2020). Weissbart461

et al. (2020) reported that the precision of the prediction modulates the neural response to surprisal. However,462

these divergent results might be explained by differences in methodology. We focus on a significant added463

value in prediction accuracy averaged across channels while they determined the significance of the TRF.464
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Because different speech representations are derived from the same speech signal, they are usually correlated.465

Therefore, a non-significant speech representation can still obtain a significant TRF due to its correlation466

with a significant speech representation. By looking at the prediction accuracies, we evaluated whether the467

information of one speech representation contributes over and beyond the information contained in the other468

speech representations. It is, of course, also possible that word precision is associated with a real effect but469

only provides very little non-redundant information, and such a small effect might not have been detected in470

our study.471

Another difference is that Weissbart et al. (2020) used a recurrent neural network (RNN) to derive the472

word-level features. This allows including the whole text as context instead of just n-1 previous words.473

However, we are hesitant to identify the difference in language models as the likely cause of this difference,474

because RNNs did not outperform n-gram models in predicting brain data in studies that directly compared475

the two. Brennan and Hale (2019) did not find a difference in the performance of sequential language models476

when using part-of-speech surprisal derived from a recurrent neural network compared to an n-gram model.477

Additionally, in an ERP study by Frank et al. (2015), the N400 response correlated better with part-of-speech478

surprisal derived from an n-gram model compared to the value derived from an RNN.479

Combining the significant linguistic representations at the phoneme and word level significantly improved480

the prediction accuracies in central channels, frontal channels and left frontotemporal channels (Figure481

2.C). The significance in these left frontotemporal channels suggests additional evidence that the linguistic482

representations reflect language processing.483

No significant neural tracking of linguistic speech representations at the contex-484

tual level485

The predictor semantic dissimilarity did not show a significant added value over and beyond acoustic and486

lexical segmentation properties of the speech. This is not in line with previous findings (Frank and Willems,487

2017; Broderick et al., 2018). A study of sentence reading by Frank and Willems (2017) suggested that488

word surprisal and semantic similarity have indistinguishable N400-like effects on ERPs. In a parallel fMRI489

analysis, where the participant listened to short fragments of audio books, they suggested that processes490

associated with the two variables are localized differently in the brain. Similarly, Broderick et al. (2018)491

showed that in a natural speech, semantic dissimilarity is tracked by the brain. To address this discrepancy492

with the results here, a more detailed analysis was performed, which showed that that semantic dissimilarity493

does provide added value over and beyond content words without controlling for other acoustic and lexical494

segmentation properties of the speech. This suggests that semantic dissimilarity may explain a response to495
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acoustic properties of the speech rather than a response to language processing. In line with our results,496

Dijkstra et al. (2020) reported that no added value of semantic dissimilarity was seen after controlling for497

content word onsets.498

Neural tracking depending on the word class499

We observed that the differentiation between content and function words for word onsets improves the500

prediction accuracy. However, making this differentiation for word surprisal and word frequency did not501

result in increased prediction accuracies. Similar to Frank et al. (2015), we can conclude that the neural502

response to these linguistic speech representations depends on the variation between the words independent of503

word class. Similarly, using continuous speech, Brennan and Hale (2019) observed that word surprisal derived504

from sequential language models (RNN and n-gram) did not interact with the word class. This suggests that505

neural processing of the word’s content might be largely independent of its word class.506

As we did not observe an added value of separating the function words based on the timing of its next word,507

we hypothesize that the activity around 200 ms is an acoustic response to the onset of the subsequent word.508

This was confirmed by an additional analysis: separation between function words with a short and long time509

interval between the word and its next word, did not have an added value. This suggests that the response to510

a function word where the next word starts later than 300 ms does not differ from the response to just the511

word onset. As the TRF to word onset does not show this activity around 200 ms, we therefore presume that512

the TRF to function words is biased by acoustic representation leakage from the next word.513

Due to the acoustic representation leakage from the next word, we cannot compare the response of a content514

word to the response of a function word. Therefore, we only discuss the response to a content word. The515

response to content words shows a peak around 200 ms associated with a frontal negativity. Brennan and516

Hale (2019) also observed a negative frontal activity around 200 ms. However, in their results, the negativity517

was more lateralized. This was only observed for content words and not present for function words in response518

to hierarchical surprisal for a word’s part-of-speech (Brennan and Hale, 2019). As we did not include this519

hierarchical surprisal representation in our analysis, its response might be modeled with to the content word520

predictor. Additionally, we observed a significant difference in topography for the N400. This also contributes521

to the hypothesis that content words and function words have different neural generators (Pulvermüller et al.,522

1995).523
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Neural tracking across stories524

When the model trained on one story is applied to another story, an added value of the linguistic representations525

is seen in 4 out of 6 stories or story parts. Although the mean of the difference in prediction accuracy is526

above 0, two stories (DOL and DWZ_1) did not reach significance in the Wilcoxon tests. Looking at the527

analysis using a LMM, the presentation order did not explain variance in the observed prediction accuracies528

across the stories, but the story identity did. A possible explanation is that some stories or story parts may529

be more appealing than others due to the story content, influencing the measured signal to noise ratio (SNR)530

of the measured EEG responses.531

A caveat of this study is that the stimulus does not allow to compare the predictors between an understandable532

and a not understandable condition. However, as we investigated the neural tracking across different stories,533

we observed an added value of these linguistic representations for most stories: 4 out of 6 stories which were534

spoken by either the same or a different speaker with the same or opposite sex as the speaker of the training535

story. Looking at table 1, it is not the case that the story spoken by the same speaker or a speaker of the536

same sex performs best. This suggests that the tracking of linguistic representations is largely independent of537

speaker characteristics and the story’s content. Therefore, we hypothesize that the neural tracking of these538

speech representations represents language processing rather than tracking the speech’s acoustic properties or539

lexical segmentation.540

Our results show that linguistic representations of the speech are reliably tracked by the brain over and beyond541

acoustic and lexical segmentation properties. Many recent studies focus on linguistic representations of the542

speech without properly controlling for acoustic properties. We want to stress the importance of controlling543

for acoustic and lexical segmentation properties. We have further shown that these linguistic representations544

can be trained on one story and applied to another story, which supports the idea of generalized tracking545

across stories and narrators. Since these linguistic representations are tracked over and beyond acoustics, and546

across different stories, this provides strong evidence that these representations represent language processing.547

These findings pave the way for development of a neural marker for speech intelligibility, which would allow548

for behaviour-free evaluation of the speech intelligibility.549

Conclusion550

Linguistic representations explain the brain responses over and beyond acoustic responses to speech. We551

found significant neural tracking of phoneme surprisal, cohort entropy, word surprisal and word frequency over552

and beyond the tracking of the speech’s acoustic properties and lexical segmentation. This was not observed553
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for word entropy, word precision and semantic dissimilarity. In this paper, we showed the importance of554

controlling for acoustic and lexical segmentation properties of the speech when estimating the added value of555

linguistic representations.556

Additionally, we were able to predict brain responses to speakers and stories not seen during training. This557

suggests that the processing of these linguistic speech representations is independent of the presented content558

and speaker and, therefore, show evidence that higher stages of languages processing are modelled. Therefore559

these linguistic representations show promise for a behaviour-free evaluation of the speech intelligibility in560

audiological and other clinical settings.561
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Appendix677

Figure A.1: Comparison of the prediction accuracies of the acoustic model (grey) and the acoustic model
with linguistic predictors (green). The acoustic model contains all acoustic and linguistic segmentation speech
representations.

Table A.1: Intersections of the significant time windows of phoneme surprisal and cohort entropy with the
p-value of the interaction term between sensor and speech representation obtained via the method proposed
by McCarthy and Wood (1985) for a central channel selection.

Time window (ms) P-value of interaction
164-273
414-562
586-609
703-843

p=0.309
p=0.035
p=0.847
p=0.980

Table A.2: Intersections of the significant time windows of phoneme surprisal and cohort entropy with the
p-value of the interaction term between sensor and speech representation obtained via the method proposed
by McCarthy and Wood (1985) for a frontal channel selection.

Time window (ms) P-value of interaction
102-164
367-461
773-914

p=0.263
p=0.634
p=0.994
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(a) TRF of phoneme surprisal

(b) TRF of cohort entropy

Figure A.2: The average TRF to the linguistic predictors at the phoneme level. The channel responses over
time which are significantly different from zero, are annotated in blue. The insets below show the topographic
responses at the peak latencies annotated with the dashed vertical lines.
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Figure A.3: The normalized TRF-weights averaged across participants within the time window 414 ms to
562 ms for phoneme surprisal (left) and cohort entropy (middle) and the resulting difference (left).

Table A.3: Intersections of the significant time windows of word surprisal and word frequency with the
p-value of the interaction term between sensor and speech representation obtained via the method proposed
by McCarthy and Wood (1985) for a central channel selection.

Time window (ms) P-value of interaction
242-484
766-788
883-914

p<0.001
p=0.201
p=0.287

Table A.4: Intersections of the significant time windows of word surprisal and word frequency with the
p-value of the interaction term between sensor and speech representation obtained via the method proposed
by McCarthy and Wood (1985) for a frontal channel selection.

Time window (ms) P-value of interaction
0-62

305-351
578-679

p<0.001
p=0.058
p=0.458

Table A.5: Time windows of prominent peaks in the response to content and function words with the p-value
of the interaction term between sensor and speech representation obtained via the method proposed by
McCarthy and Wood (1985).

Time window (ms) P-value of interaction
-16-86
148-164
227-25
297-375
523-547

p<0.001
p<0.001
p<0.001
p<0.001
p=0.436
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(a) TRF of word surprisal

(b) TRF of word frequency

Figure A.4: The average TRF to the linguistic predictors at the word level. The channel responses over time
which are significantly different from zero, are annotated in blue. The insets below show the topographic
responses at the peak latencies annotated with the dashed vertical lines.
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(a) Time interval: -8 to 62 ms

(b) Time interval: 242 to 484 ms

Figure A.5: The normalized TRF-weights averaged across participants within 2 different time windows for
word surprisal (left) and word frequency (middle) and the resulting difference (left).

Figure A.6: The normalized TRF-weights averaged across participants within the time window 242 ms to
531 ms for word surprisal (left), 164 ms to 343 ms for phoneme surprisal (middle) and the resulting difference
(left).
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(a) Time interval: -16 to 86 ms

(b) Time interval: 148 to 164 ms

(c) Time interval: 227 to 250 ms

(d) Time interval: 297 to 375 ms

Figure A.7: The normalized TRF-weights averaged across participants within 4 different time windows for
the response to a content word (left) and a function word (middle) and its resulting difference (left).
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(a) Response to content word

(b) Response to function word

Figure A.8: The average neural response to a content (top) and function word (below). The channel responses
over time which are significantly different from zero, are annotated in blue. The insets below show the
topographic responses at the peak latencies annotated with the dashed vertical lines.
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(a) Response to a function word which the next word followed earlier than 300 ms

(b) Response to a function word which the next word followed later than 300 ms

Figure A.9: The average neural response to a function word which the next word followed earlier than 300 ms
(top) and later than 300 ms (below). The channel responses over time which are significantly different from
zero, are annotated in blue. The insets below show the topographic responses at the peak latencies annotated
with the dashed vertical lines.
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Figure A.10: The average neural response to word onsets. The channel responses over time which are
significantly different from zero, are annotated in blue. The insets below show the topographic responses at
the peak latencies annotated with the dashed vertical lines.

Figure A.11: Comparison of the prediction accuracies of the acoustic model (grey) and the acoustic model
with linguistic predictors (green) for each story.
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