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Abstract Like all physical systems, biological systems are constrained by the laws of physics. However, mathematical
models of biochemistry frequently neglect the conservation of energy, leading to unrealistic behaviour. Energy-based
models that are consistent with conservation of mass, charge and energy have the potential to aid the understanding

of complex interactions between biological components, and are becoming easier to develop with recent advances in
experimental measurements and databases. In this paper, we motivate the use of bond graphs (a modelling tool
from engineering) for energy-based modelling and introduce, BondGraphTools, a Python library for constructing

and analysing bond graph models. We use examples from biochemistry to illustrate how BondGraphTools can be
used to automate model construction in systems biology while maintaining consistency with the laws of physics.

1 Introduction

Biological systems are highly complex, composed of nu-

merous interacting components. Systems biology aims
to explain how complex phenomena arise from interac-
tions between these components [1]. While mathematical
models have been long been used to understand biology,
efforts to integrate these models together have gathered
momentum since the turn of the century, together with
the availability of omics data. Examples of this approach
include whole-cell models that simulate the evolution of
each biomolecule through time, [2–4] through to multi-
scale physiological models [5, 6].

Like any physical system, interactions between bio-
logical components are governed by the laws of physics;
notably conservation of mass, charge and energy. Many
existing approaches in the field of physiology take ad-

vantage of such conservation laws as a means of coupling
models together. This has been used to great success in
using conservation of mass and charge to couple mod-
els of electrophysiology [7, 8] and coupling boundary
conditions in models of fluid flow [9].

ae-mail: edmund.crampin@unimelb.edu.au (corresponding au-
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Energy is fundamental to biological systems, as it

is to physical systems. In his book What is Life?, the
physicist Erwin Schrodinger wrote that living systems
are in a constant fight against a decay to thermody-
namic equilibrium, and must feed on free energy from

the environment to avoid this eventual approach to
equilibrium [10]. Energy-based models that account for
the conservation of mass, charge and energy have the

potential to gain a deeper understanding of the forces
driving biological networks. However, in the field of sys-
tems biology, energy conservation is commonly ignored,

and many models are thermodynamically inconsistent.
As discussed by Soh and Hatzimanikatis [11], difficul-
ties in measuring the thermodynamic parameters have
slowed the uptake of energy-based models. However,
recent developments in thermodynamic databases such
as eQuilibrator [12] have made constructing thermody-
namically detailed models more tractable.

In addition to developments in data availability, there
have also been recent advancements in methodologies

for constructing energy-based models. The approach was
first introduced to biology by Oster et al. [13], but more
recent examples include application to systems biology
by Ederer and Gilles [14], Liebermeister and Klipp [15]
and Gawthrop and Crampin [16]. Whereas traditional ki-
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netic models in biochemistry depend on complex detailed
balance constraints to account for energy conservation, a
key advantage of energy-based models is that individual
parameters can be individually perturbed without vio-
lating thermodynamic consistency. Such developments
are starting to find application in whole-cell modelling,
with Mason and Covert [17] finding that parameterising
models in a thermodynamically consistent fashion can
in fact lead to more robust parameter identification.

The development and analysis of energy-based mod-
els can be significantly simplified if one knows the en-
ergetic properties of each component in a system and
how the components are connected. To this effect, bond
graphs have proved to be valuable tools for enabling the

energy-based approach. Bond graphs were invented by
Henry Paynter as a method of modelling multi-physics
systems in engineering. They were subsequently pro-
posed as a modelling approach in biology by Oster et
al. [13], and more recently developed by Gawthrop and
Crampin [16]. Because bond graphs are based on a
graphical representation, they allow the complexities of
energy-based modelling to be abstracted away so that a
modeller need only deal with a map (graph) of biological
components and their connections.

However, despite recent developments in bond graph
theory, software tools for constructing and simulating
bond graph models, in particular of biological systems,

have not kept up with recent developments in software
practices. Almost all of the existing software implemen-
tations of bond graph modelling are graphical in nature

and within a proprietary or isolated software ecosystem.
For some applications, this is beneficial; vendors can
provide a standardised visual interface with integrated
analysis tools. However, for systems biology, the existing

software lacks the capacity for automation, is hampered
by restricted access to source code and is challenging to
integrate with existing algorithms. Hence, there is need
for a symbolic modelling toolkit that is open-source,
easy to integrate into existing workflows, and written
in an accessible and widely used scripting language. In

particular, there is a need for infrastructure to support
automated model building and simplification.

Here we introduce BondGraphTools, a python li-
brary for building and manipulating symbolic models of
complex physical systems, built upon the standard sci-
entific python libraries. The BondGraphTools package
is different from existing software in both design and

implementation in that it:

1. is explicitly based on physical modelling principles;
2. provides an application program interface (API) as

opposed to a graphical user interface (GUI);

3. is designed for symbolic model composition and order
reduction, as opposed to being primarily a numerical
toolkit;

4. is intended to be used in conjunction with the stan-
dard python libraries, as opposed to being used as a
stand-alone software package;

5. allows for modification and integration as it is open
source, version controlled, and readily available, in-
stead of closed-source and proprietary;

6. is designed with modularity and extensibility in
mind, as opposed to being a monolithic software
suite.

The aims of this paper are threefold: firstly to use
some simple examples to motivate the use of an energy-
based approach for modelling cellular biochemistry (Sect.
2); secondly to illustrate how bond graphs facilitate
this approach (Sect. 3); and thirdly to introduce the
BondGraphTools package for simulating energy-based

models in systems biology (Sects. 5–7). We apply this
energy-based approach to a model of multisite phospho-
rylation to illustrate the advantages of this approach for
large-scale modelling (Sect. 8).

2 A primer on modelling biochemical cycles

Biochemical networks contain numerous thermodynamic
cycles. Here we motivate the need to consider thermo-
dynamics when such cycles exist. As a simple example,
consider the reactions

X 
 Y 
 Z 
 X (1)

Assuming the law of mass action, the system can be
described by the differential equations

ẋX = v3 − v1 (2a)

ẋY = v1 − v2 (2b)

ẋZ = v2 − v3 (2c)

where xs is the concentration of species s ∈ {X,Y,Z}.
The reaction fluxes are defined as

v1 = k+1 xX − k
−
1 xY (3a)

v2 = k+2 xY − k
−
2 xZ (3b)

v3 = k+3 xZ − k
−
3 xX (3c)

where k±i are kinetic constants.

It is clear that at steady state, v1 = v2 = v3. How-
ever, because the system is closed, this steady state must
satisfy the stricter constraint that v1 = v2 = v3 = 0.
Otherwise, the reactions would dissipate heat without
any energy being input into the system, violating the
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second law of thermodynamics. With this in mind, from
Eq. 3,

k+1 xX = k−1 xY (4a)

k+2 xY = k−2 xZ (4b)

k+3 xZ = k−3 xX (4c)

By taking the product of the three equations, it is easy
to see that

k+1 xXk
+
2 xY k

+
3 xZ = k−1 xY k

−
2 xZk

−
3 xX ⇒

k+1 k
+
2 k

+
3

k−1 k
−
2 k
−
3

= 1

(5)

Since Eq. 5 is independent of the concentrations of
species, it is a constraint on the kinetic parameters. In
other words, the parameters k±i cannot be independently
chosen and must satisfy Eq. 5 to avoid describing a
system analogous to a perpetual motion machine [14].
This poses a few issues:

1. Detailed balance constraints become substantially

more difficult to calculate for complex biochemical
networks [14]

2. It is challenging to specify kinetic parameters (or

infer from data) while adhering to detailed balance
constraints [18]

An alternative method of representing biochemical
kinetics is the energy-based approach, which explicitly
accounts for the fact that reaction fluxes arise from

chemical potentials [16]. Here, each of the species has
an associated chemical potential

µX = RT ln(KXxX) (6a)

µY = RT ln(KY xY ) (6b)

µZ = RT ln(KZxZ) (6c)

where R = 8.314 J/mol is the ideal gas constant, T
[K] is the temperature and Ki are the thermodynamic
constants of the species. The chemical potentials are

related to reaction rates through the Marcelin-de Donder
equation

v1 = r1(eµX/RT − eµY /RT ) (7a)

v2 = r2(eµY /RT − eµZ/RT ) (7b)

v3 = r3(eµZ/RT − eµX/RT ) (7c)

where ri [mol/s] is the rate parameter for reaction i.
By substituting Eq. 6 into Eq. 7, the equations can be
recast in the same form as Eq. 2, but with the reaction
rates

v1 = r1KXxX − r1KY xY (8a)

v2 = r2KY xY − r2KZxZ (8b)

v3 = r3KZxZ − r3KXxX (8c)

While these equations exhibit the same mass-action
behaviour as the kinetic approach, the thermodynamic
approach is immune to thermodynamic inconsistencies;
by comparing coefficients between Eqs. 3 and 8,

k+1 k
+
2 k

+
3

k−1 k
−
2 k
−
3

=
r1KXr2KY r3KZ

r1KY r2KZr3KX
= 1 (9)

that is, the parameters in the energetic formulation
automatically satisfy the detailed balance constraint in

Eq. 5 and thus the parameters are free to be specified
independently. This has been found to aid in estimating
the parameters for a model of glycolysis [17].

While the above example considered an closed sys-
tem, biological systems in general continuously dissipate

energy. The equilibrium constraint is broken when ex-
ternal chemical species are allowed to interact with the
cycle. For example, we now consider the alternative
reaction network

X + A 
 Y (10a)

Y 
 Z (10b)

Z 
 X + B (10c)

and assume that A and B are kept at constant concen-

trations through external flows. This is a biochemical
cycle frequently used by enzymes. The reaction rates
are

v1 = r1KXxXKAx̄A − r1KY xY (11a)

v2 = r2KY xY − r2KZxZ (11b)

v3 = r3KZxZ − r3KXxXKBx̄B (11c)

where KA and KB are the species constants for A
and B respectively and x̄A and x̄B are the constant

concentrations of A and B. By comparing coefficients
with Eq. 3,

k+1 k
+
2 k

+
3

k−1 k
−
2 k
−
3

=
r1K1KAx̄Ar2K2r3K3

r1K2r2K3r3K1KBx̄B
=
KAx̄A
KBx̄B

(12)

which is not 1 in general, and therefore admits a non-
equilibrium steady state. Thus the addition of external
species provides a source of energy to the system, allow-

ing the system to dissipate energy under steady state
conditions.

3 Introduction to bond graph modelling

Bond graphs provide an abstracted and network-based
framework for understanding and developing energy-
based models. The main principle of bond graph mod-
elling is that the laws of physics provide a justifiable
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A B

Fig. 1 The transfer of power through a bond between port j
on system A and port k on system B.

interface between different models of physical subsys-
tems. In particular any connection between two models
of physical processes must conserve energy.

Bond graphs are a port-based modelling approach
that describes the flow of power through a network of
energy storage and dissipation sub-systems (such as
species and reactions respectively). Ports attached to
a particular subsystem can be related via an energy
conserving ‘power bond’ and are defined in terms of
force-like potentials e (also known in the bond graph
literature as ‘efforts’), and flux-like flows f such that
the (signed) power transfer at any instant is P = ef .
In bond graphs, variables such as voltage, pressure and
chemical potential are potentials; while current, mass
flow and molar flow rate are flow variables. Figure 1
shows an example of a power bond. Here, the power

entering system A is given by PA;j = ejfj , similarly for
B; PB;k = ekfk, such that power is conserved between
systems, i.e. PA;j+PB;k = 0. The directed power transfer
through the bond is therefore

Pbond = ef, with e = ej = ek and f = −fj = fk. (13)

The internal behaviour of systems A and B are captured
via the constitutive relationships ΦA and ΦB, which
store or dissipate energy. We refer interested readers to
the tutorial by Gawthrop and Bevan [19] for an overview
of bond graph modelling and for an in depth treatment
see [20].

In order to model complex systems, we must first
have an idea of what the model subsystems are, and
how they should be connected. All bond graph models
have:

– a number of internal components,
– a (possibly zero) number of external power ports each

of which has two associated variables, a potential-
like e (voltage, force, chemical potential, etc.) and a
flow-like f (current, velocity, molar flow rate, etc.)
such that power P = ef is positive when the process
is consuming or accumulating energy through that

particular port,
– a set of constitutive relations that characterise the

behaviour for a particular model and are either de-
rived from internal components or specified a-priori;
for example generalised linear dissipation (friction,

Ohm’s law) which relates the effort and flow via the
implicit relation 0 = e−Rf . We note that the power
entering this model P = ef = Rf2 is positive semi-
definite for R > 0 indicating, as one would expect,
that resistance always consumes power.

– a (possibly zero) number of parameters/controls
which govern the behaviour of that particular model.
One would consider R in the above example to be a
parameter if R is constant, and a control in all other
cases.

– a (possibly zero) number of state variables (with
associated derivatives), related to power ports via the
model constitutive relations. For example, a linear
potential energy storage has governing equations

Ce − x = 0, f − ẋ = 0, =⇒ P = 1
Cxẋ so

that the energy E(t) stored in the state variable x(t)
at a particular time t in that component (up to a
constant) is E(t) =

∫ t
0
P dt = x(t)2/(2C).

Thus building a bond graph model consists of instan-
tiating the models one wishes to use, defining parent-
child relationships, then specifying energy sharing be-
tween ports. The resulting equations can then be manip-
ulated and simplified to give rise to a set of differential
equations. BondGraphTools can automatically simplify

these equations; this is discussed in Sect. 7. A list of
basic components can be found in Table 1.

In bond graphs, network conservation laws, such as
Kirchhoff’s Laws, are themselves considered components,

and hence must be added just as any other model. For
example, the 0 junction describes the conservation law
where all efforts are equal. Suppose there are n ports
associated with this junction, then the constitutive rela-
tion is

0 = ek − e0 ∀ k ∈ 1, . . . , n− 1,
n−1∑
k=0

fk = 0. (14)

It is clear by inspection that this is indeed power con-
serving. Similarly, the n-port 1 junction, or ‘common
flow’, has relations given by

0 = σjfj − σ0f0 ∀k ∈ 1, . . . n− 1,
n−1∑
k=0

σkek = 0

(15)

where σk = 1 if the associated port k is oriented inwards,
or σk = −1 if oriented outwards.

4 Bond graph models of biochemical systems

The components relevant to biochemical systems are as
follows. Note that below, the effort variables e represent
chemical potentials µ and the flow variables represent
the fluxes v.
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Table 1 Basic bond graph variables and components, and their analogues in different physical domains.

Bond graph Chemical Electrical Mechanical Hydraulic

Potential (e) Chemical potential µ [J/mol] Voltage V [V] Force F [N] Pressure P [Pa]

Flow (f) Molar flow rate v [mol/s] Current I [A] Velocity v [m/s] Volume flow Q [m3/s]

C Chemical species Capacitor Spring Tank

R Reaction Resistor Damper Pipe

Se Chemostat Voltage source Applied force Pressure source

TF Stoichiometry Transformer Lever Pressure transformer

0 Common species Parallel connection Series connection Parallel connection

1 Reactant/product complexes Series connection Parallel connection Series connection

– Species are represented using Ce components – a
nonlinear version of the capacitor (C component).
They have the constitutive relationships

ẋ− f = 0 (16a)

e−RT ln(Kx) = 0 (16b)

As mentioned previously, this component contains
the species thermodynamic parameter K.

– In cases where a species has a constant concentration,
it is represented by the alternative Se (“potential

source”) component with a constant chemical po-
tential (which is related to concentration). Such a
‘chemostat’ component has the constitutive relation-
ship

e = RT ln(Kx̄) = constant (17)

i.e. this is the same as the Ce component, but with

the dynamics (Eq. 16a) omitted. Since the concen-
tration is constant, we use the notation x̄ to indicate
that dx̄/dt = 0.

– Reactions are represented using Re components,
qhich are equivalent to two-port nonlinear resistors.
These have the constitutive relationships

f1 + f2 = 0 (18a)

f1 − r(ee1/RT − ee2/RT ) = 0 (18b)

where ei and fi are the chemical potentials and
fluxes associated with the ith bond. These equa-
tions are parameterised by the parameter r, the
reaction rate parameter. The power dissipated is
P = f1(e1 − e2) ≥ 0 because f1 > 0⇔ e1 > e2.

– In order to incorporate stoichiometry, 0 and 1 junc-

tions are used. In particular, 0 junctions describe the
involvement of a species in multiple reactions and
the 1 junction describes the involvement of multiple
reactants or products in a single reaction. This is
discussed in more detail below.

– When multiple stoichiometries are involved, TF
(transformer) components can be used to scale the
chemical potentials and fluxes accordingly. These
follow the constitutive relations

f1 − nf2 = 0 (19)

e2 − ne1 = 0 (20)

where n is a parameter for the stoichiometry.

To illustrate, we will represent the reaction networks

discussed in Sect. 2 as bond graphs. The reaction net-
work X 
 Y 
 Z 
 X (Fig. 2A) is represented by the
bond graph in Fig. 2B, where each bond has been la-

belled with its potential and flow variable. As illustrated
by the labels, each Ce component (blue) has constitu-
tive relations defined by Eq. 16 and each Re component
(green) has constitutive relations defined by Eq. 18. Since
each of the species is involved in two reactions, a com-
mon potential (0; purple) junction is used to equate the
chemical potential contributions of the species to each

reaction it is involved in, while simultaneously account-
ing for conservation of mass. When these conservation
equations are accounted for, the efforts and flows can
be computed in terms of chemical potentials and fluxes;
these are shown in Fig. 2C, where the chemical poten-
tials and fluxes are defined as per Eqs. 6–7. Thus, by
using Eq. 16a, it is easily seen that we can recover the
dynamics defined by the differential equations

ẋX = r3KZxZ − r3KXxX − r1KXxX + r1KY xY
(21a)

ẋY = r1KXxX − r1KY xY − r2KY xY + r2KZxZ
(21b)

ẋZ = r2KY xY − r2KZxZ − r3KZxZ + r3KXxX (21c)

We can apply similar principles in defining the dy-
namics of the reaction network X + A 
 Y 
 Z 
 X + B
(Fig. 3A), shown in the bond graph in Fig. 3B. In addi-
tion to the components used in the previous example,
we also use Se components and 1 junctions. The Se
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X

YZ

A Ce:X

Ce:YCe:Z

0

Re:r1

0Re:r20

Re:r3

Ce:X

Ce:YCe:Z

0

Re:r1

0Re:r20

Re:r3

Common potential

B CSpecies

Reaction

Fig. 2 Representations of the reaction network X 
 Y 
 Z 
 X. (A) Biochemical network; (B) Bond graph with efforts and
flows labelled; (C) The same bond graph as in (B), but with chemical potentials and flux variables computed from conservation
laws.

components (blue) are used for the species A and B due

to the fact that we assume that they are chemostats,
i.e. have constant concentration. In this second exam-
ple, some reactions have multiple reactants or products.
In these cases common flow junctions (1; purple) are
required to equate their flows while also summing their
chemical potential contributions to each reaction; for

example, that the forward affinity of the reaction r1 is
µX + µA. Fig. 3B shows the chemical potential and flux
variables associated with each bond, and it can be shown
through substuting the relevant chemical potentials into
the Marcelin-de Donder equation (Eq. 18b) that the
dynamics are governed by the differential equations

ẋX = r3KZxZ − r3KXxXKBx̄B

− r1KXxXKAx̄A + r1KY xY (22a)

ẋY = r1KXxXKAx̄A − r1KY xY

− r2KY xY + r2KZxZ (22b)

ẋZ = r2KY xY − r2KZxZ

− r3KZxZ + r3KXxXKBx̄B (22c)

which as expected, is identical to the equations for the
energy-based approach (Eqs. 2,11).

The approach outlined above can be used to build
dynamic energy-based models of arbitrary scale, which
account for mass, charge and energy conservation. The
approach extends naturally to incorporate electrochemi-
cal [21] and biomechanical systems.

5 BondGraphTools

Broadly speaking, there are two main computational
approaches to bond graph modelling; computer aided de-

sign tools and mathematical software. Computer Aided
Design (CAD) tools follow in the tradition of electrical
design automation and include Dymola1 and 20-sim2 in

1www.3ds.com/products-services/catia/products/

dymola/
2www.20sim.com

which users draft technical schematics of the system from

a library of components. Similarly, mathematical soft-
ware such as MATLAB (Simulink), Maple (MapleSim)
or Mathematica (SystemModeller) also allows users to
construct graphical representations of the model. While
graphical interfaces can be useful in intuitively under-
standing bond graph models, they lack the capacity to

automate the construction of large systems and do not
interface very well with the existing ecosystem of numer-
ical analysis software. Furthermore, the vast majority
of bond graph software is embedded within proprietory

software, limiting the scope for expansion.

BondGraphTools aims to resolve the above issues by
providing a scripting interface rather than a graphical in-

terface, and is developed within the open-source python
language. As a programming interface, BondGraphTools
gives modellers a means to integrate the tools and tech-

niques of software development into their modelling
workflow. This includes being able to script tasks like
model re-parametrisation and batch replacement of

model subcomponents both of which can be tedious
and time-consuming in graphical environments.

Building upon and integrating with the existing
python ecosystem means that BondGraphTools can spe-
cialise in providing an interface for model building with-
out concerning itself with other tasks. This results in

a smaller codebase, and hence more sustainable soft-
ware. Using modern open source practices allows other
developers to easily modify, contribute and build upon
the BondGraphTools codebase. Unlike proprietary soft-

ware, users are free to implement new features and
extend BondGraphTools as they see fit, for example by
using BondGraphTools as a foundation for graphical
modelling environments.

For a large class of systems, particularly in systems
biology, only the network topology of a system may be
known at the time of modelling. As BondGraphTools

represents model parameters symbolically, values are
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A B

Chemostat

Ce:X

Ce:YCe:Z

0

Re:r1

0Re:r20

Re:r3

11

Se:ASe:BX

YZ

AB

Common flow

Fig. 3 Representations of the reaction network X +A
 Y 
 Z 
 X +B. (A) Biochemical network; (B) Bond graph.

free to be determined later in the modelling process via
existing parameter estimation techniques.

BondGraphTools provides a programming language

for building bond graph models which are automati-
cally converted into differential equations to be anal-
ysed or simulated. Python is well established as a ro-
bust and easy-to-use general purpose programming lan-
guage with a wide variety of standardised and well
supported libraries for standard scientific tasks, and

BondGraphTools adheres to python language idioms
by emphasising self-explanatory, self-documenting and
self-contained code.

6 Design motivation and basic use

As discussed in Sect. 3, bond graphs are defined in
terms of their subsystems are and how they are related.
Here we outline the relevant classes of models and how
they are related in BondGraphTools. Throughout the
code examples, we assume BondGraphTools has been
imported as follows:

import BondGraphTools as bgt

We demonstrate code as it appears in a python script,
which could be equally executed by entering the code
into an IPython session or a Jupyter notebook [22].

6.1 Creating models

Models in BondGraphTools are broadly split into two
classes: atomics, which represent processes that are con-
sidered indecomposable and often fundamental; and
composites, which are assembled using other models in a
has-a relationship. Both of these are constructed using

the new function.

New composites can be constructed using

model = bgt.new(name="New Model")

which results in the variable model containing a new
instance of the BondGraph class, the composite base class,
with no components and with the name ‘New Model’.
This is identical to creating new instances of the BondGraph

class directly via

model = bgt.BondGraph(name="New Model")

which is available for the purposes of providing an object
oriented interface.

New atomics can be created in a similar manner by

specifying the model class and value. For example, a
Ce component (available in the BioChem library) can be
initialised by

species = bgt.new("Ce", library="BioChem",
value={’k’:1,’R’:8.314 ,’T’:310})

so that each variable now contains new instances of the
respective atomics. This particular atomic has three

parameters; the thermodynamic constant K = 1, the
ideal gas constant R = 8.314 and the temperature T =
310.

6.2 Defining relationships

There are two categories of relationships between mod-
els in BondGraphTools; structural and energetic, cor-
responding to the components and bonds respectively.
Structural relationships describe composition, how a
given model can contain many simpler models. This
organises systems into a tree-like hierarchy of parent-
children relations between models. Energetic relation-
ships describe how the ports of a given set of child
models are connected within a given parent model.

6.2.1 Structural relationship (components)

In BondGraphTools, components can be added (removed)
from composite models with the add and remove functions.
For example, adding a species component to the com-
posite model can be achieved with
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bgt.add(model , species)

where the first argument is the parent model, and the
remaining arguments are the intended children or com-
ponents.

A file system interface navigates the model hierarchy
and is implemented within the ModelBase class from which
all models inherit. In particular,

– model.uri is a uniform resource identifier (URI) locat-
ing that particular model.

– model.parent refers to the parent model if it exists.
– model.root refers to the top of the model tree.
– For composite models, Composite.components will contain

a list of sub-models.

Atomics are thus analogous to files, and composites to
directories, with the root model analogous to the unix

hostname.

6.2.2 Energetic relationships (bonds)

The energetic relationship defines how power is trans-
ferred between components inside a particular model
via ports which belong to components, and depends

on first establishing a model hierarchy. Once a set of
component-wise relationships is established within a
model, components are connected to each other (and
hence energy bonds defined, in the bond graph termi-
nology). When it is not ambiguous, for example when
connecting a one-port component to a junction with ar-
bitrarily many identical ports, it is sufficient to connect
the component directly via

bgt.connect(component_1 , component_2)

Otherwise one must specify the port by index

target_port = (component_2 , 0)

and connect the port directly:

bgt.connect(component_1 , target_port)

Composite models keep track of the energy relation-
ships (bonds) in the member attribute Composite.bonds.
Similarly, two components can be disconnected via the
disconnect method which has an identical interface to
connect.

6.3 Model attributes

Composite and Atomic models often have associated

parameters which can be accessed by the member at-
tribute ModelBase.params. In keeping with the emphasis on
symbolic equations, parameters can be either numeric
or symbolic values. Once the structure of a composite
model has been established, and the internal connections

defined, one can generate governing equations for the
entire model via ModelBase.constitutive_relations in terms of
the derived state variables ModelBase.state_vars to be used
for further analysis.

7 Symbolic composition and reduction

Once a model has been constructed, simplified equa-
tions are automatically derived using symbolic algebraic
tools. Having a simplified symbolic representation of the
system is valuable as it provides modellers a way to ex-
port the equations into whatever format they desire. In
particular, the set of implicit equations can easily be fed
into standard parameter estimation routines, discretised
for implementation in other architectures, or passed to
solver routines.

Core to BondGraphTools is symbolic model reduc-

tion. This relies on the fact that each model or compo-
nent has a set of constitutive relations Φ(X) = 0 which
are implicit equations defining the model behaviour in
terms of how power is manipulated.

7.1 Model structure

The local co-ordinate space of a model α is taken to be
Xα = {ẋα, eα, fα, xα, uα} where x, ẋ are the vectors of
storage co-ordinates and time derivatives respectively,
e, f are the power interconnection variables effort and

flow, and u are controls or inputs. Let us assume that
dimxα = nα, dim eα = dim fα = mα, dimuα = kα for
finite nα,mα, kα and nα +mα ≥ 1 so that there is non-

trivial behaviour. We also define Nα = 2(nα+mα) +kα.
One can define a matrix Lα ∈ RNα×Nα , a vector field
Vα : Xα → RNα such that the constitutive relations are
equivalent to

0 = LαX + Vα(X) ∀X ∈ Xα. (23)

We expect Lα to be sparse and rankLα ≤ nα + mα +
kα < Nα so that there is at least one eigenspace of
Lα per state variable pair, unconnected port or control
input.

7.2 Composition

Any number of constitutive relations Φ = [Φα, Φβ , . . .] = 0

can thus be combined via

0 = LX + V (X)

=

Lα 0 . . .
0 Lβ 0
... 0

. . .

X +

Vα ◦ παVβ ◦ πβ
...

 (X) (24)
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where X ∈ X = Xα⊕Xβ ⊕ . . . is the direct sum of local
co-ordinate spaces and πα : X → Xα is a projection
back into local co-ordinates. One can easily incorporate
interconnecting power bonds by noting that a bond con-
necting port i on component α to port j on component
β can be represented by the rows

0 = eα;i − eβ;j = [θe;α;i,−θe;β;j ]
(
Xα

Xβ

)
(25)

and

0 = fα;i + fβ;j = [θf ;α;i, θf ;β;j ]

(
Xα

Xβ

)
(26)

where θe;α;i is the co-basis vector such that θe;α;iXα =
eα;i i.e,.; θe;α;i is a row vector with one in the column
corresponding to eα;i (similarly for θe;β;j , and θf ;α;i and
θf ;β;j for the flow variables). It follows that the set of all
bonds form a junction structure on the larger space X
represented by a full rank matrix J such that JX = 0
with row rank identical to the number of bonds. It

is convenient to simply consider this as an additional
constitutive relation, and append it to the linearised
matrix L in Eq. 24.

Given the space X, there exists an orthonormal
permutation matrix P such that X ′ = P−1X, and

X ′ = (ẋα, ẋβ , . . . eα, fα, eβ , fβ , . . . , xα, xβ , . . . , uα, uβ , . . .).

(27)

It also follows from elementary linear algebra that there
is exists an invertible matrix Λ such that L′ = ΛLP
is in a reduced upper triangular form (reduced row

echelon form with leading terms always on the diagonal),
resulting in an exact simplification of Eq. 24

ΛLX + ΛV (X) = L′X ′ + V ′(X ′) = 0 (28)

where V ′(X ′) = ΛV (PX ′). The coordinate ordering,
and hence the permutation matrix P is chosen so that
(in the linear case) triangularisation produces the correct
order of dependence when substitution is performed;
rates of change, efforts and flows are expressed in terms
of state and control variables. This can be trivially
extended to simple nonlinear cases as non-zero diagonal
entries of L′ determine substitution rules, though more
complicated systems can produce irreducible algebraic
constraints.

7.3 Output

Constitutive relations, retrieved via member attribute
ModelBase.constitutive_relations by evaluating Eq. 28, can
be generated for any model at any level of the structural
tree, and is performed in a recursive manner to reduce

the number of calculations. Reduced symbolic models
can be passed into a simulation service, which renders
Eq. 28 as a function, then initialises and solves the
associated initial value problem, for example by

u = "sin(t)"
t,x = simulate(model ,

x0=x0,
timespan =[0 ,100] ,
control_vars =[u]),
dt=0.1

Numerical integration is provided by the SUNDIALS [23]
suite of differential algebraic equation solvers.

8 Examples

8.1 Closed biochemical cycle

Here we demonstrate the basic features of BondGraphTools
by constructing the the bond graph of the biochemical
cycle in Fig. 2. This is shown in the snippet below.

def biochemical_cycle(name="Cycle"):
R = 8.314
T = 310.0

model = bgt.new(name=name)
X = bgt.new("Ce",name="X",library="BioChem",

value={’k’:1,’R’:R,’T’:T})
Y = bgt.new("Ce",name="Y",library="BioChem",

value={’k’:2,’R’:R,’T’:T})
Z = bgt.new("Ce",name="Z",library="BioChem",

value={’k’:3,’R’:R,’T’:T})
common_X = bgt.new("0",name="X")
common_Y = bgt.new("0",name="Y")
common_Z = bgt.new("0",name="Z")
r1 = bgt.new("Re",name="r1",library="BioChem",

value={’r’:1,’R’:R,’T’:T})
r2 = bgt.new("Re",name="r2",library="BioChem",

value={’r’:2,’R’:R,’T’:T})
r3 = bgt.new("Re",name="r3",library="BioChem",

value={’r’:3,’R’:R,’T’:T})
bgt.add(model ,X,Y,Z,common_X ,common_Y ,common_Z ,

r1,r2,r3)

bgt.connect(common_X ,X) # bond 0
bgt.connect(common_X ,r1) # bond 1
bgt.connect(r1,common_Y) # bond 2
bgt.connect(common_Y ,Y) # bond 3
bgt.connect(common_Y ,r2) # bond 4
bgt.connect(r2,common_Z) # bond 5
bgt.connect(common_Z ,Z) # bond 6
bgt.connect(common_Z ,r3) # bond 7
bgt.connect(r3,common_X) # bond 8

return model

model1 = biochemical_cycle ()

Line 5 instantiates a new model. Lines 6–22 create
the components in the bond graph model and add them
to the model. Finally, the components are connected in
lines 24–32, with the bonds labelled according to their
indices in Fig. 2B

Note that for this particular model, we define a func-
tion biochemical_cycle to construct the model. One of the
advantages offered by implementing BondGraphTools

in a scripting language is that functions can be used to
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make multiple copies of the same template. Later, we
use this function as a basis for constructing the similar
model of an open biochemical cycle (Fig. 3).

For this model, we use the parameters (KX ,KY ,KZ) =
(1, 2, 3) mM−1 and (r1, r2, r3) = (1, 2, 3) s−1. These are
added to the model by passing in value arguments; ’k’
refers to the species constant K and ’r’ refers to the re-
action rate r. For Ce and Re components, the ideal gas
constant R and temperature T also need to be specified.

Once the components, connections and parameters
have been defined, BondGraphTools will automatically
derive the constitutive relations through the command

model1.constitutive_relations. The output is shown on the
snippet below

[dx_0 + 4*x_0 - 2*x_1 - 9*x_2 ,
dx_1 - x_0 + 6*x_1 - 6*x_2 ,
dx_2 - 3*x_0 - 4*x_1 + 15*x_2]

As can be seen, these correspond to Eq. 21 once

the parameters have been substituted, where the state
variables x 0, x 1 and x 2 have been mapped to xX , xY
and xZ respectively.

We run simulations of the model using the initial
conditions (xX , xY , xZ) = (2, 2, 2) mM over the time
span 0 s < t < 1 s. In the code below, we run separate
simulations of the model with different values of KX .

x0 = [2.0 ,2.0 ,2.0]
tspan = (0 ,1.0)
K_X_vals = [1.0, 2.0, 3.0, 4.0]
sol_t = []
sol_x = []
for K_X in K_X_vals:

(model1/"C:X"). set_param(’k’,K_X)
t,x = bgt.simulate(model1 ,tspan ,x0 ,dt =0.01)
sol_t.append(t)
sol_x.append(x)

We use line 7 to change the value of KX once the
model has been created. Here, the uri is used to retrieve
the Ce:A component (model1/"C:A"), following which the
.set_params method is used to alter its K value.

The flux through reaction 1 (Eq. 8a) is plotted
against time in Fig 4. As can be seen, regardless of
the value of KX , the flux settles to zero at steady state,
as expected of a thermodynamically consistent model.
It can easily be verified by modifying the above code
that the same is true when the reaction parameters are
altered. This illustrates that parameters in an energy-
based model can be independently perturbed without
violating thermodynamic consistency, which is not the
case in general for kinetic models.

8.2 Open biochemical cycle

We next create a bond graph model of the open bio-
chemical cycle in Fig. 3 using BondGraphTools. While
we could use the same approach as in above section,
here we demonstrate the flexibility of BondGraphTools
by instead making an incremental change to the above
model. This is demonstrated in the code snippet below.

model2 = biochemical_cycle(name="Open cycle")
r1 = model2 /("R:r1")
r3 = model2 /("R:r3")
common_X = model2 /("0:X")
bgt.disconnect(common_X ,r1)
bgt.disconnect(r3,common_X)

R = 8.314
T = 310.0
K_A = 1
x_A = 1
K_B = 2
x_B = 1

A = bgt.new("Se",name="A",
value={’e’:R*T*np.log(K_A*x_A )})

B = bgt.new("Se",name="B",
value={’e’:R*T*np.log(K_B*x_B )})

XA = bgt.new("1",name="XA")
XB = bgt.new("1",name="XB")
bgt.add(model2 ,A,B,XA,XB)

bgt.connect(common_X ,XA)
bgt.connect(A,XA)
bgt.connect(XA ,r1)
bgt.connect(r3 ,XB)
bgt.connect(XB ,common_X)
bgt.connect(XB ,B)

We first create a new copy of the closed biochemi-
cal cycle and assign it to the model2 variable (line 1).

Following this, in lines 2–6 we use the uri interface to
retrieve and disconnect the connections of the 0 junc-
tion connected to Ce:X from the reactions Re:r1 and
Re:r2. Finally, we add two Se components and two 1
junctions to the model and then connect them according
to Fig. 3. By default, the parameters have been set to
KA = 1 mM−1, KB = 2 mM−1, x̄A = x̄B = 1 mM.

We next run simulations of the model for different
values of x̄A, varying from 0.02 to 200 mM (Fig. 5).
The simulations are run from 0 to 10 seconds to ensure
the model reaches a steady state, and for each simu-
lation, the flux v1 is recorded at t = 10 s and plotted
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against the cycle affinity A = µA−µB . As expected, the

steady-state flux has the same sign as the affinity. The
cycle has the overall reaction A 
 B, and the laws of
thermodynamics dictate that the conversion of A to B

will only proceed if µA > µB , regardless of the complex-
ity of the transition. This is reflected in the plot being
constrained to the bottom left and upper right quad-
rants. Similarly, the cycle stalls at x̄A = 2 mM, where
µA = µB = RT ln(2), which also corresponds to the
equilibrium condition xB/xA = KA/KB = 1/2. These
results are an illustration of the fact that energy-based

models ensure open cycles are consistent with the laws
of thermodynamics, just as they are with closed cycles.

8.3 Multisite phosphorylation

To further demonstrate the the capabilities that
BondGraphTools has for automation, we make a model
of a more complex multisite phosphorylation system. As
discussed in Mallavarapu et al. [24], the phosphoryla-
tion of proteins is an interesting case study for modular
modelling approaches as these networks can be highly
complex and are capable of reaching multiple steady
states. Protein phosphorylation can have three types of
properties:

1. The number of sites available for phosphorylation
2. They can be sequential or non-sequential. Sequen-

tial phosphorylation is when sites must be phos-
phorylated in a specific order, whereas sites in non-
sequential phosphorylation may be phosphorylated
in any order.

3. They can be distributive or processive. Distributive
phosphorylation only allows a single site to be phos-
phorylated at a time, whereas processive phospho-
rylation allows multiple sites (up to an integer p)
to be phosphorylated or dephosphorylated at once.

We call p the processivity number, and p = 1 for
distributive phosphorylation.

Here we construct a bond graph model of a dis-
tributive, sequential four-site phosphorylation network,
based on the system described by Thomson and Gu-

nawardena [25]. The reactions for this network are shown
in Fig. 6. The substrate is denoted as S, with subscripts
indicating the number of phosphorylated sites. The ki-
nase is denoted by E and the phosphatase is denoted by
F. We have made the following adaptations to the Thom-
son and Gunawardena model [25] to make it compatible
with the energy-based approach:

1. Since thermodynamic consistency requires reversible

reactions, all reactions are assumed to operate in
both directions. In cases where reactions were origi-
nally defined to be irreversible, the parameters were
chosen to give small reverse rate constants.

2. Because energy from the hydrolysis of ATP is re-
quired to drive kinases and phosphatases, ATP, ADP

and Pi have been added as reactants and products.
3. The energetic parameters r and K were used rather

than kinetic parameters k±i

Details of how the parameters were determined are given
in Appendix A.

In many cases, there are proteins with as many as 40
phosphorylation sites [24], resulting in complex phospho-
rylation mechanisms. Automation by computer software

can significantly reduce the time to develop models of
these systems and reduce the occurence of errors. Here
we introduce an an alternative method of constructing
biochemical models available in BondGraphTools: the
reaction builder. In the code snippet below, we show how
a series of reactions can be defined as a series of strings,
with a bond graph model algorithmically constructed

from the reaction network in Fig. 6.

from BondGraphTools.reaction_builder \
import Reaction_Network

rn = Reaction_Network(
name="4-site sequential phosphorylation")

rn.add_reaction("E + S0 + ATP = ES0",name="e1a")
rn.add_reaction("ES0 = E + S1 + ADP",name="e1b")
rn.add_reaction("F + S1 = FS1",name="f1a")
rn.add_reaction("FS1 = F + S0 + Pi",name="f1b")
rn.add_reaction("E + S1 + ATP = ES1",name="e2a")
rn.add_reaction("ES1 = E + S2 + ADP",name="e2b")
rn.add_reaction("F + S2 = FS2",name="f2a")
rn.add_reaction("FS2 = F + S1 + Pi",name="f2b")
rn.add_reaction("E + S2 + ATP = ES2",name="e3a")
rn.add_reaction("ES2 = E + S3 + ADP",name="e3b")
rn.add_reaction("F + S3 = FS3",name="f3a")
rn.add_reaction("FS3 = F + S2 + Pi",name="f3b")
rn.add_reaction("E + S3 + ATP = ES3",name="e4a")
rn.add_reaction("ES3 = E + S4 + ADP",name="e4b")
rn.add_reaction("F + S4 = FS4",name="f4a")
rn.add_reaction("FS4 = F + S3 + Pi",name="f4b")

rn.add_chemostat("ATP")
rn.add_chemostat("ADP")
rn.add_chemostat("Pi")

model = rn.as_network_model(normalised=True)
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Fig. 6 A reaction scheme of distributive sequential phosphorylation of four sites. The names of each reaction are labelled in
blue.

As illustrated by the code, the reaction_builder module
has the following functionalities:

1. A new reaction network can be initialised using the
Reaction_Network class (lines 3–4)

2. New reactions can be added using the .add_reaction

method (lines 5–20)
3. Chemostats can be labelled using the .add_chemostat

method. (lines 22–24). In this example, we assume
that the concentrations of ATP, ADP and Pi are
maintained at constant levels, and thus define them
as chemostats.

4. A bond graph model can be algorithmically built

from the reaction network using the .as_network_model

method (line 26).

Once the bond graph model has been constructed,

the usual functions and methods in BondGraphTools

can be used to define parameters and run simulations
(see Sects. 8.1–8.2).

We simulate the model with the initial conditions
[E] = [F ] = 2.8 µM, [S0] = αStot and [S4] = (1−α)Stot,
where α is a parameter varied between 0 and 0.98 and
Stot = 10 µM. The simulation results in Fig. 7 show

that the system exhibits three distinct steady states
(lines in blue, green and red), which is consistent with
previous results on these types of models [24,25].

We note that since BondGraphTools is embedded
in python, it is very flexible in generating models of
with similar but non-identical structures. For example,
the code for this example could easily be generalised
to construct energy-based models of distributive phos-

phorylation with an arbitrary number of sites n and
processivity p. This is shown in the code snippet be-
low, where the function multisite(n,p) will create a bond
graph model of a phosphorylation system with n sites
and processivity p.
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Fig. 7 Simulations of the distributive sequential four-site
phosphorylation model. The simulations were run with the
initial conditions [E] = [F ] = 2.8 µM, [S0] = αStot and
[S4] = (1 − α)Stot, where α is varied between 0 and 0.98
and Stot = 10 µM. All other concentrations had an initial
concentration of zero. Depending on the initial conditions,
the system can achieve one of three steady states; these are
grouped into blue, green and red lines.

def multisite(n_sites ,processivity =1,
name="Multisite Phosphorylation"):

substrates = [f"S{i}" for i in range(n_sites +1)]
(E,F,ATP ,ADP ,Pi) = ("E","F","ATP","ADP","Pi")

rn = Reaction_Network(name=name)
for p in range(1, processivity +1):

for i in range(n_sites+1-p):
Sa = substrates[i]
Sb = substrates[i+p]
if p == 1:

p_str = ""
else:

p_str = f"{p}*"

# Kinase reactions
rn.add_reaction(

f"{Sa}+{E}+{ p_str}{ATP}="+
f"{E}{Sa}_{p_str [: -1]}{ ATP}",
name=f"e({i},{i+p})a")

rn.add_reaction(
f"{E}{Sa}_{p_str [: -1]}{ ATP}="
+f"{Sb}+{E}+{ p_str }{ADP}",
name=f"e({i},{i+p})b")

# Phosphatase reactions
rn.add_reaction(

f"{Sb}+{F}={F}{Sb}",
name=f"f({i+p},{i})a")

rn.add_reaction(
f"{F}{Sb}={Sa}+{F}+{ p_str}{Pi}",
name=f"f({i+p},{i})b")

rn.add_chemostat(ATP)
rn.add_chemostat(ADP)
rn.add_chemostat(Pi)

model = rn.as_network_model(normalised=True)
return model
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9 Discussion

Biological systems are constrained by the laws of physics
in general and the laws of thermodynamics in particular.
Here we have argued for the use of an energy-based
approach for developing models consistent with the laws
of physics. Bond graphs are an established modelling
tool for enabling this approach, and we have introduced
BondGraphTools, a software package that adds a layer
of automation to bond graph modelling.

9.1 Model abstraction

The complexity of large projects, modelling or other-
wise, is often made tractable by introducing abstrac-
tions which allow individuals to ‘divide-and-conquer’ the
problem. For this to work, one requires a way for sub-
components to interface with each other. Bond graphs

bring this to modelling by framing the interconnection
in terms of power, which in turn allows BondGraphTools
to define a consistent way of joining sub-models together

(via ports). Hence, one avoids some connectivity issues
such an inability for models to interface and failing to
account for loading, which are issues that commonly

arise in systems and synthetic biology [3,26]. Further-
more, the energy-based parameterisation of biochemical
systems that an energy-based approach provides has the
potential to resolve potential inconsistencies between

models [17].
Over recent years, systems biologists have favoured a

“white-box” approach to modularity. Here, each module
is itself a simulatable model that can be later merged
or composed with other models, possibly through se-
mantic annotation of components [27, 28]. White-box
modularity requires connections to be exposed on the
fly and implementing this approach requires a degree of
flexibility that is unavailable through traditional graph-
ical interfaces for bond graph software. This white-box
approach has recently been applied in the context of
bond graphs [29, 30], and BondGraphTools is particu-
larly suited to implementing white-box modularity by
being embedded in a scripting environment. Further-
more, python contains an object-oriented interface that
could potentially allow an annotation scheme to be built
on top of components in BondGraphTools.

BondGraphTools has a similar philosophy to the pro-
grammatic modelling approach in systems biology, as
implemented by little b [24] and more recently PySB [31].

Key features that these packages share are that: (a)
each model is an object in a computer program that can
be modified, and (b) that they are embedded within a
scripting environment, which allows models to be created
through highly abstracted means such as functions, rules

and macros. However, BondGraphTools differs from the
above two packages in that it creates energy-based mod-
els with energetic parameters, and that it is a general
purpose representation, making it more suitable for
multi-physical systems such as electrophysiology and
mechanochemistry. Further work will aim to provide a
richer set of interfaces to BondGraphTools for systems
biology, including incorporating abstracted approaches
such as rule-based modelling [32] and building a library
of macros for common motifs such as enzyme-catalysed

reactions.

9.2 Towards multi-physics, multiscale models

A characteristic of biology is that it spans across mul-
tiple physical domains: electrophysiology and redox re-
actions are electrochemical systems, whereas muscle
contraction and mechanosensation are mechanochemi-
cal processes. Bond graphs have the potential to drive
theoretical advances in these fields due to their gener-

alised nature, which naturally allows models to span
across different physical domains. Connections between
ports representing different physical domains are made

using the energy-transmitting TF (transformer) com-
ponent [19, 20]. Thus, for example, the chemical and
electrical domains are connected using a transformer

with modulus F ; the Faraday constant. Indeed, bond
graphs have already been shown to be useful in these ar-
eas [21, 33–36]. Due to the inherent modularity of bond
graphs, such models could potentially be linked models

of circulation to create multi-scale models of organs [37].

An area of active research is the construction of
fully integrated models of heart cells, incorporating

electrophysiology, calcium signalling, contraction and
metabolism [38, 39]. In some cases, heart disease has
been hypothesised to arise from the dysregulation of
matching energy production to demand. Thus, bond
graph models are ideally suited to answering these ques-
tions with their ability to model across multiple physical
domains and their thermodynamic consistency.

9.3 Version controlled models

Because new biological datasets are actively being gener-
ated, models in systems biology are frequently updated
in light of new measurements, and later models will often

inherit parameters and equations from earlier models.
It is therefore of critical importance the provenance
of models to be recorded, particularly with respect to
the relationship between parameters and equations to
experimental protocols and data [40].
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In BondGraphTools, models are constructed via an
API, and hence the entire process is textual. This means
that models can be version controlled using standard
concurrent versioning systems (CVS) such as git, mer-
curial or svn. In Sect. 8.2, we discussed one way in
which BondGraphTools could be relevant in this space
by reusing a template to make an incremental change
to a model. We envision that libraries of models cre-
ated by BondGraphTools could be assembled, shared
and updated in the same way one would package and
distribute a python script. While the application of
BondGraphTools here is a subject of future work, it is
clear that the utility of integrating efficient and well
established ‘off-the-shelf’ version tracking along with the

distribution of model libraries cannot be understated.

9.4 Sustainable software practices

The development of BondGraphTools employs many

sustainable software techniques which benefit both de-
velopers and users. BondGraphTools is available on
the python package index (PyPI) and requires python
3.7. The latest version can be installed using the con-
sole command pip3 install BondGraphTools and re-
quires only the python and SUNDIALS binaries to be
pre-installed. Further installation guides, tutorial, and

code documentation is hosted on readthedocs3 which
is updated automatically as new versions are released.
Source code is accessible online4 and is distributed un-
der the permissive, open-source Apache 2.0 license. Se-
mantic versioning via git tags is used to keep track of
releases in perpetuity. The code required to run the

examples in this paper are available both on GitHub5

and Zenodo6 for posterity to capture both the library
and dependencies’ state at the time of publication to
ensure reproducibility [41].

Development of BondGraphTools proceeds within an

agile iterative and adaptative methodology, as opposed
to using a sequential plan-build-test process, which en-
sures that usable software is prioritised and time is not
wasted on planning features that users are less interested

in. Instead, requirements and design emerge out of the
development process and user experiences, with punc-
tuated breaks for refactoring to simplify the codebase.
Test-driven development (TDD) is employed to ensure
quality, continuity and stability with automated inte-
gration/testing and code metrics provided via Travis.ci7

3http://bondgraphtools.readthedocs.io
4https://github.com/BondGraphTools
5https://github.com/uomsystemsbiology/BGT-Biology
6https://doi.org/10.5281/zenodo.4626922
7https://www.travis-ci.com

and CodeClimate8 respectively. With TDD, unit tests
for new software features are specified and implemented
before development begins. A feature is then complete
once it passes the corresponding unit tests (in addition
to the existing tests) prompting integration of the new
code into the trunk of code base. TDD is eminently
suited to API or library development as developing a
battery of tests for common use cases is an integral
part of the development process ensuring that existing
functionality does not break as new features are added

and encouraging developers to think hard about the
library interface. At the time of writing, test coverage is
around 80%, which is respectable in the context of an
active, iterative development process.

The feature development and bug status can be

tracked using the GitHub issue interface. Users are en-
courage to log bug reports about any issues they might
have.

10 Conclusion

Specialist tools are required to build and analyse com-
plex biophysical systems and these often take the form
of monolithic computer aided design applications, or

extensions to mathematical software. Here we have
presented BondGraphTools, an open source python li-
brary for systems modelling which enables the model
building process to be scripted, allowing for automa-

tion previously unavailable. Further, BondGraphTools
uses best-practice software engineering techniques to
increase the sustainability and longevity of the soft-

ware. We have demonstrated how BondGraphTools can
contribute to the modeller’s workflow by considering a
number of biological models in the existing literature.
BondGraphTools continues to be actively developed and
used across a variety of problem domains in systems
biology, bio-electrics and electrical engineering, and also
has potential applications in optomechanics [42]. Al-

though basic symbolic model order reduction exists
within BondGraphTools, an important future research
direction involves developing and implementing scalable
symbolic order reduction algorithms for nonlinear sys-
tems. Reduced order equations are a desired output as
they are a simpler representation of the system dynam-
ics, giving greater insight into how parameters effect
emergent states and speeding up numerical simulations.
This is particularly important for systems with multiple
time scales, occurring commonly in biology and engineer-

ing, which can pose significant challenges to numerical
solvers. BondGraphTools offers an promising platform

8www.codeclimate.com
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on which to develop both exact and approximate sym-
bolic reduction algorithms which would be a useful in
systems biology, but also more broadly in engineering,
scientific computing and computational mathematics.
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Appendix A: Parameters for multisite
phosphorylation

When only kinetic data are available, the energetic pa-
rameters cannot be determined uniquely due to the
relative nature of chemical potential and the absence
of reference values. This parameter undeterminacy has

been discussed in previous papers, where sets in pa-
rameter space with equivalent kinetic behaviours were
defined [17, 21, 43]. However, for this model, we will

avoid the issue of parameter uncertainty for simplicity
and refer the reader to the above articles for further
information.

We make the following assumptions on the energetic
parameters:

– We set µATP = 50 kJ/mol, µADP = 0 kJ/mol and
µPi = 0 kJ/mol since the free energy of ATP hy-
drolysis ∆G = µADP + µPi − µATP typically varies
between −50 kJ/mol and −60 kJ/mol in physiologi-
cal contexts.

– We set KE = KF = KS0 = 1 nM−1 (corresponding
to a free energy of formation of zero at a standard
concentration of 1 nM).

– We assume that the energetics of phosphorylation
are identical for each site, i.e. KSi+1

= γKSi . Hence,
in conjunction with the above assumption, KSi = γi.
For reasons that we justify later, we have chosen
γ = 3.47× 104.

Note that implicit in the above assumptions are that
ADP, Pi, S0, E and F are the “reference species” whose
chemical potentials are used to define the potentials of

the rest of the species. It is relatively straightforward to
adapt the assumptions when the more standard chem-
ical free energies of formation are used, in which the
chemical potentials of each species are referenced to
their constituent elements in their standard states.

The rest of the parameters can be determined from
the kinetic parameters in Thomson and Gunawardena
[25]. Omitting chemostats, each of the enzyme-catalysed
reactions follows the generic structure

Su + X
a


b

XSu
c


d

Sv + X (A.1)

where Su and Sv are the input substrates, X = E or F
and XSu is the complex. The kinetic constants of Thom-
son and Gunawardena are given in Table 2. Since the re-
action scheme does not explicitly account for chemostats,
they have been absorbed into the kinetic parameters.

We need to determine the rate constants of both
reactions and the species constant of XSu. These can

be determined using the following equations, which are
derived by writing kinetic parameters in terms of the
energetic parameters:

ra = a/(KSuKEe
Afcs/RT ) (A.2)

KXSu = b/ra (A.3)

rb = c/KXSu (A.4)

where Afcs and is the potential of the reactant chemostat
(if present). Similarly, we can define Arcs as the potential

of the product chemostat. Thus, for kinases (E), Afcs =
µATP and Arcs = µADP. For phosphatases (F), Afcs = 0
and Arcs = µPi.

The remaining kinetic constant d = rbSvA
r
cs is as-

sumed to be zero in Thomson and Gunawardena, but
this is impossible in a real system, which requires all
reactions to be reversible. Thus, we choose the final
parameter γ to minimise the magnitude of these rate
constants, or more precisely, we minimise their squared
sum

J =
4∑
i=1

(dEi )2 +
4∑
i=1

(dFi )2 (A.5)

where dXi is the parameter d for the ith kinase (X = E)
or phosphatase (X = F) reaction. A value of γ = 3.47× 104

will minimise J . The full list of energetic parameters is
given in Tables 3–4.
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