Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Environmental genomics points to non-diazotrophic Trichodesmium species abundant and widespread in the open ocean

Tom O. Delmont
doi: https://doi.org/10.1101/2021.03.24.436785
Tom O. Delmont
Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: tomodelmont@gmail.com
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

Abstract

Filamentous and colony-forming cells within the cyanobacterial genus Trichodesmium might account for nearly half of nitrogen fixation in the sunlit ocean, a critical mechanism that sustains plankton’s primary productivity at large-scale. Here, we report the genome-resolved metagenomic characterization of two newly identified marine species we tentatively named ‘Ca. Trichodesmium miru’ and ‘Ca. Trichodesmium nobis’. Near-complete environmental genomes for those closely related candidate species revealed unexpected functional features including a lack of the entire nitrogen fixation gene apparatus and hydrogen recycling genes concomitant with the enrichment of nitrogen assimilation genes and apparent acquisition of the nirb gene from a non-cyanobacterial lineage. These comparative genomic insights were cross-validated by complementary metagenomic investigations. Our results contrast with the current paradigm that Trichodesmium species are necessarily capable of nitrogen fixation. The black queen hypothesis could explain gene loss linked to nitrogen fixation among Trichodesmium species, possibly triggered by gene acquisitions from the colony epibionts. Critically, the candidate species are not only widespread in the 3-2000 μm planktonic size fraction of the surface of the oceans and seas, but might also substantially expand the ecological niche of Trichodesmium, stressing the need to disconnect taxonomic signal for this genus from a microbial community’s ability to fix nitrogen. Especially, differentiating diazotrophic from non-diazotrophic populations when counting Trichodesmium filaments and colonies might help refine our understanding of the marine nitrogen balance. While culture representatives are needed to move beyond metagenomic insights, we are reminded that established links between taxonomic lineages and functional traits might not always hold true.

Competing Interest Statement

The authors have declared no competing interest.

Footnotes

  • https://www.genoscope.cns.fr/tara/

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.
Back to top
PreviousNext
Posted March 24, 2021.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Environmental genomics points to non-diazotrophic Trichodesmium species abundant and widespread in the open ocean
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Environmental genomics points to non-diazotrophic Trichodesmium species abundant and widespread in the open ocean
Tom O. Delmont
bioRxiv 2021.03.24.436785; doi: https://doi.org/10.1101/2021.03.24.436785
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Environmental genomics points to non-diazotrophic Trichodesmium species abundant and widespread in the open ocean
Tom O. Delmont
bioRxiv 2021.03.24.436785; doi: https://doi.org/10.1101/2021.03.24.436785

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Microbiology
Subject Areas
All Articles
  • Animal Behavior and Cognition (4235)
  • Biochemistry (9136)
  • Bioengineering (6784)
  • Bioinformatics (24001)
  • Biophysics (12129)
  • Cancer Biology (9534)
  • Cell Biology (13778)
  • Clinical Trials (138)
  • Developmental Biology (7636)
  • Ecology (11702)
  • Epidemiology (2066)
  • Evolutionary Biology (15513)
  • Genetics (10644)
  • Genomics (14327)
  • Immunology (9483)
  • Microbiology (22841)
  • Molecular Biology (9090)
  • Neuroscience (48995)
  • Paleontology (355)
  • Pathology (1482)
  • Pharmacology and Toxicology (2570)
  • Physiology (3846)
  • Plant Biology (8331)
  • Scientific Communication and Education (1471)
  • Synthetic Biology (2296)
  • Systems Biology (6192)
  • Zoology (1301)