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Abstract

Population receptive field (pRF) mapping is a popular tool in computational
neuroimaging that allows for the investigation of receptive field properties, their
topography and interrelations in health and disease. Furthermore, the possibil-
ity to invert population receptive fields provides a decoding model for construct-
ing stimuli from observed cortical activation patterns. This has been suggested
to pave the road towards pRF-based brain-computer interface (BCI) commu-
nication systems, which would be able to directly decode internally visualized
letters from topographically organized brain activity. A major stumbling block
for such an application is, however, that the pRF mapping procedure is com-
putationally heavy and time consuming. To address this, we propose a novel
and fast pRF mapping procedure that is suitable for real-time applications.
The method is build upon hashed-Gaussian encoding of the stimulus, which
significantly reduces computational resources. After the stimulus is encoded,
mapping can be performed using either ridge regression for fast offline analyses
or gradient descent for real-time applications. We validate our model-agnostic
approach in silico, as well as on empirical fMRI data obtained from 3T and 7T
MRI scanners. Our approach is capable of estimating receptive fields and their
parameters for millions of voxels in mere seconds. This method thus facilitates
real-time applications of population receptive field mapping.

Keywords: population receptive field mapping; real-time fMRI; vision;
stimulus encoding;

1. Introduction

The retinotopic organization of the human visual cortex has intrigued neu-
roscientists ever since the beginning of the nineteenth century when visual field
maps were first discovered in soldiers suffering from occipital wounds (Fishman,
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1997). With the advent of functional magnetic resonance imaging (fMRI) in
the early 1990s (Rosen and Savoy, 2012), it became possible to map retino-
topy non-invasively (Sereno et al., 1995; DeYoe et al., 1996; Engel et al., 1997).
Sereno et al. (1995) pioneered a phase encoding procedure that allowed for the
systematic investigation of polar angle and eccentricity distributions. More re-
cently, Dumoulin and Wandell 2008 spearheaded the population receptive field
(pRF) mapping approach which provided an expandable, parametric, model of
receptive fields. This allowed researchers to study additional properties of re-
ceptive fields and their topography as well as relationships between receptive
field properties.

The pRF approach has, for instance, enabled researchers to understand the
relationship between eccentricity and the size of the receptive fields along the
visual hierarchy (Dumoulin and Wandell, 2008; Amano et al., 2009; Harvey and
Dumoulin, 2011; Silva et al., 2018), to investigate neural plasticity and visual
development from childhood to adulthood (Dekker et al., 2019; Gomez et al.,
2018) and to study the dynamic changes of receptive fields in response to atten-
tion (de Haas et al., 2014). Furthermore, pRF modelling has aided researchers’
investigations of pathology such as Alzheimer’s disease (Brewer and Barton,
2014), schizophrenia (Anderson et al., 2017), albinism (Ahmadi et al., 2019)
and even blindness (Georgy et al., 2019). Additionally, the ability to estimate
receptive field parameters is crucial for a number of applications. For instance,
receptive fields can serve as a target for transcranial magnetic stimulation (Sack
et al., 2009) or provide a spatial forward model for computational models (Pe-
ters et al., 2012). Furthermore, receptive fields can be inverted to provide a
decoding model for reconstructing perceived, as well as imagined, visual stimuli
(Thirion et al., 2006; Senden et al., 2019).

The latter has been suggested to pave the road towards pRF-based brain-
computer interface (BCI) communication systems able to directly decode inter-
nally visualized letters from topographically organized brain activity (Senden
et al., 2019). This is hindered, however, by the method’s immense consumption
of computational time and resources. This issue largely remains unaddressed, al-
though some recent work (Thielen et al., 2019) has proposed a fast deep-learning
based mapping algorithm (DeepRF). The DeepRF method deploys a deep con-
volutional neural network (ResNet) which receives a time-series response as
input and predicts the corresponding pRF parameters. Once the network is
trained, pRF parameters can be estimated simply using a rapid forward pass.
This method is indeed faster than standard methods such as grid-search and
achieves faithful estimation of pRF parameters with an average computational
time of 0.01 to 0.03 seconds per voxel. However, the procedure requires the
generated simulated data (for training) and the empirical data to have the same
experimental design. Hence, for empirical data with a new experimental design,
the network needs to be trained again and the training of the deep neural net-
work can take up to several hours. Moreover, the fMRI data typically contains
a large number of voxels. Therefore, despite achieving low computational time
per voxel, the total computational time for all voxels is on the order of several
minutes. This makes the approach unfeasible for real-time analysis. With the
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aim to enable estimation of receptive fields in real-time, we propose here a novel
model-agnostic procedure which can be used offline (using ridge regression) as
well as online (using gradient descent).

The method relies on regularized linear regression whose basis set is a hashed-
Gaussian encoding of the stimulus-evoked response. Specifically, the stimulus
space is exhaustively partitioned as a set of features where each feature uniquely
encodes the stimulus by computing the overlap between the stimulus and a set
of randomly positioned Gaussians. This type of encoding considerably reduces
the memory requirements with a low performance loss and thereby accelerates
the calculations.

Using two previously acquired datasets from 3 Tesla and 7 Tesla MR sys-
tems, we show that the proposed approach works extremely fast. It is able to
estimate receptive field shapes of millions of voxels within seconds. This allows
the selection of visually responsive voxels through cross-validation and subse-
quent estimation of receptive field parameters within about one minute even if
the data consists of more than 4 million voxels.

2. Methods

2.1. Fast Mapping Procedure

Tile Coding and Hashing

To reduce computation time as well as to lower memory requirements, we
encode the stimulus using tile coding and hashing (Albus, 1975, 1981). Tile
coding is a linear function approximation used in reinforcement learning (Sutton
et al., 1998) to deal with large and continuous state spaces. In tile coding, the
state space is exhaustively partitioned into subregions called tiles. Usually, the
presence of an entity within a tile (in this case, the presence of a stimulus in
a region of the visual field) is encoded in a binary fashion. However, it is also
possible to encode features using radial basis functions which have the additional
benefit of varying smoothly. Memory requirements can be reduced further by
hashing a group of individual, non-contiguous, tiles into a single tile. Figure 1
depicts tile-coding and hashing of sample stimuli. The presence of a stimulus
is encoded as the extent of overlap between the stimulus and hashed tilings.
For our purposes, we use a 2-D isotropic Gaussian as the radial basis function.
Subsequently, we hash by combining five randomly selected Gaussians into a
single tile leading to a total of 250 tilings. The 5 Gaussian tiles within a tiling
may or may not overlap. We normalized each tile to ensure that the area under
its surface is equal to one. The code used in this paper is publically available
at https://github.com/ccnmaastricht/real time pRF
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Figure 1: Illustration of tile-coding and hashing. The top rows shows sample stimuli. The
middle row shows sample tilings, each corresponding to a stimulus and each containing 5
Gaussians which make up one tile. The bottom row shows overlap between stimuli and
corresponding tiles.

Encoding Stimuli

Using hashed-Gaussians as tiles, it is possible to encode retinotopic stim-
uli. First, an overlap between a binary indicator function and a tiling matrix
Γ(pixels-by-tiles) is computed. The binary indicator function marks the posi-
tion of the stimulus aperture at each moment in time S (time-by-pixels). Subse-
quently, the computed overlap is convolved with a canonical two-gamma hemo-
dynamic response function (HRF) function (h) to obtain the encoded stimulus
φ

φ = SΓ ∗ h (1)

Ridge Regression

We use ridge regression for fast offline pRF mapping (i.e. after all func-
tional volumes have been acquired). Specifically, the BOLD activity response is
modeled by

B = φθ + ε (2)

where θ are the estimated weights and ε denotes the residuals. Note that,
prior to computing θ, both φ and the BOLD data B are z-normalized. In
order to estimate θ, the discrepancy between the measured and predicted BOLD
response (φθ) needs to be minimized. Therefore, we define the error or the loss
as

E =
1

2
(B − φθ)T (B − φθ) +

1

2
λ ‖θ‖22 (3)

In order to avoid over-fitting, we use L2 regularization and λ denotes the reg-
ularization factor. The gradient of the error with respect to θ can be computed
as
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∂E

∂θ
= −φTB + φTφθ + λθ (4)

By setting ∂E
∂θ → 0 and solving for optimal θ, we get

θ =
(
φTφ+ λI

)−1
φTB (5)

Receptive fields can now be straightforwardly obtained by multiplying the
tiling matrix with the estimated θ: W = Γθ. These raw receptive fields are then
subjected to post-processing. The raw receptive fields contain anomalous pixel
intensities. These can be removed by first normalizing the raw receptive fields
to the range [0, 1] and then shrunk by raising them to a power of some positive
integer (shrinkage factor). This shrinks noisy pixel intensities close to 0 while
leaving those close to 1 unaffected (figure 2), thus yielding cleaner receptive
fields.

Figure 2: The effect of shrinking a raw receptive field. a, Raw receptive field displaying
undesirably large pixel intensities. b, The receptive field after shrinkage with a factor of 9. c,
The corresponding ground truth receptive field.

2.1.1. Similarity Metric

In order to compare the receptive fields obtained from ridge regression with
corresponding ground-truth/grid-search receptive fields, we use the Jaccard In-
dex (or Jaccard Similarity). Since the Jaccard Index (JI) is a conservative
metric, we derive a Null-model from a resampling procedure for a better in-
terpretation. Specifically, for each estimated receptive field, we pair it with a
random ground-truth/grid-search receptive field and compute the JI. The aver-
age over these pairs is the JI of one randomization. We repeat this procedure
1000 times to obtain a Null-distribution of randomized JIs. We refer to the
mean of Null-distribution as the baseline.

2.2. Online Gradient Descent

For online pRF mapping we use gradient descent to iteratively update θ with
each acquired volume. In this case, we define the loss function as

E =
1

2
(B − φθ)T (B − φθ) (6)

The gradient of the loss function with respect to the parameter θ is
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∂E

∂θ
= −φTB + φTφθ (7)

At each time point, θ is updated by a factor (learning rate η) of the gradi-
ent. Note that, unlike ridge regression, a regularization term is not needed in
this case, as gradient descent is effectively regularized by the learning rate (see
Appendix A). Considering the nth time point, the update can be computed as

θn = θn−1 + η(φTB − φTφθn−1) (8)

Similar to the offline method, prior to tile coding and hashing, the stimulus
needs to be convolved with the HRF. Furthermore, both the BOLD signal B
and encoded stimulus φ need to be z-normalized. However, in an online setting
this needs to be performed in real-time. Real-time z-normalization requires real-
time estimation of the mean and variance of a signal which can be done using
Welford’s online algorithm (Welford, 1962). Once the current mean x̄(t) and
variance σ2(t) have been estimated, the current z-score can be estimated as

zn =
xn − n̄t
σ2
n

(9)

Voxel Selection

Since not all measured voxels are visual, and hence may not carry signifi-
cant information, a voxel selection procedure is desirable. We evaluate voxels
in terms of the cross-validated Pearson correlation coefficient (fitness) between
their predicted and measured BOLD responses. To account for temporal auto-
correlation in the BOLD response, we use a blocked cross-validation procedure
(Roberts et al., 2017). Specifically, the data is split into p windows along the
time axis. Ridge regression is performed on window 1 and the estimated θ values
are used to predict the BOLD response for the remaining p− 1 windows. This
is followed by ridge regression on windows 1 and 2 and predicting the BOLD
response in the remaining p− 2 windows. This procedure continues until ridge
regression is performed on windows 1 to p − 1 and the BOLD response is pre-
dicted for the pth (last) window. The overall fitness for each voxel is then given
by the mean of fitness values computed for each split. The data used in this
paper has 304 time points. We split the data into 4 windows of equal length
and retain voxels whose fitness falls within the top 1 %.

2.3. Fast pRF Parameter Estimation

Post-processed receptive fields obtained from our ridge regression and gradi-
ent descent methods can be readily used to estimate parameters of an isotropic
Gaussian pRF model (i.e. the x-location, y-location and size) using a fast pro-
cedure. Since peak pixel intensity of a Gaussian receptive field is at its center,
we estimate the x- and y-coordinate of pre-processed model-free receptive fields
by finding the location of their peak pixel intensity. To estimate the size of
receptive fields, our procedure utilizes the relationship between the standard
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deviation, eccentricity and the mean pixel intensity in an isotropic Gaussian
embedded in a finite image. Specifically, given a Gaussian at a fixed location,
mean pixel intensity increases as a function of its standard deviation. Further-
more, in a finite image and assuming a fixed size, mean pixel intensity decreases
as the Gaussian is progressively moved toward the edge of an image. Therefore,
for a given image size, we generate isotropic Gaussians with 25 different stan-
dard deviations, located at 25 eccentricities along an axis of 45◦, and compute
their mean pixel intensities. This can be utilized to perform a linear regression
with mean pixel intensity and eccentricities predicting the receptive field size.
We then use the resulting regression weights together with previously estimated
locations and mean pixel intensity of our receptive fields to obtain an estimate
of their size.

2.4. Data

2.4.1. Simulated Data

We simulate fMRI data for a V1-like cortical sheet extending 55 mm along
and approximately 40 mm orthogonal to the horizontal meridian in both hemi-
spheres. Since such a sheet is akin to a flattened cortical mesh, model units are
referred to as vertices rather than voxels. Each vertex in the model is a 0.5 mm
isotropic patch whose receptive field center is directly related to its position
on the surface in accordance with a complex-logarithmic topographic mapping
(Schwartz, 1980; Balasubramanian et al., 2002) with parameter values (a = 0.7,
α = 0.9; Polimeni et al., 2005). The shape of model receptive fields is given by
a 2-dimensional Gaussian

f (µx, µy, σ) = exp− (x− µx)
2

+ (y − µy)
2

2σ2
(10)

with (µx, µy) being the receptive field center and σ its size. Below an ec-
centricity of e = 2.38 all model vertices have a receptive field size of σ = 0.5
whereas they exhibit a linear relationship with eccentricity (σ = 0.21e) beyond
this cutoff (c.f. Freeman and Simoncelli, 2011).

A simulated fMRI signal (sampled at a rate of 0.5 Hz) for each vertex is
obtained by first performing element-wise multiplication between the receptive
field of a vertex and the effective stimulus presented per time point, summing
the result and subsequently convolving the obtained signal with the canonical
two-gamma hemodynamic response function. Two sources of distortion are
added to the signal. First, a spatial smoothing kernel is applied to simulate
the point-spread function of BOLD activity on the surface of the striate cortex
(Shmuel et al., 2007). Second, autocorrelated noise generated by an Ornstein-
Uhlenbeck process with variance σ2

noise = 0.5 is added. The smoothing kernel
is independently applied to the clean signal and the noise before the two are
combined. We simulate both 3T- and 7T-like signals by adjusting the full-
width at half-maximum of the spatial smoothing kernel (3.5 mm and 2 mm for
3T and 7T, respectively; c.f. Shmuel et al., 2007) and the time constant of the
Ornstein-Uhlenbeck process (2.25 s and 1 s for 3T and 7T, respectively).
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2.4.2. Three Tesla Empirical Data

This dataset, previously described in (Senden et al., 2014), comprises a
retinotopy run obtained from three participants (all male, age range = 27-
35 years, mean age = 32 years). During this run a bar aperture (1.5◦ wide)
revealing a flickering checkerboard pattern (10 Hz) was presented in four orien-
tations. For each orientation, the bar covered the entire screen in 12 discrete
steps (each step lasting 2 s). Within each orientation, the sequence of steps (and
hence of the locations) was randomized and each orientation was presented six
times. Furthermore, within each presentation four bar stimuli were replaced
with mean luminance images for four consecutive steps. These data were ac-
quired on a Siemens 3T Tim Trio scanner equipped with a 32-channel head
coil (Siemens, Erlangen, Germany) using a gradient-echo echo-planar imaging
sequence (31 transversal slices; TR = 2000 ms; TE = 30 ms; FA = 77◦; FoV
= 216 x 216 mm2; 2 mm isotropic resolution; no slice gap; GRAPPA = 2) and
are publicly available (Senden et al., 2014). Preprocessing consisted of slice
scan time correction, (rigid body) motion correction, linear trend removal, and
temporal high-pass filtering (up to 2 cycles per run).

2.4.3. Seven Tesla Empirical Data

This dataset, previously described in (Senden et al., 2019), comprises retino-
topy as well as passive viewing of letter stimuli obtained from six participants
(2 female, age range = 21-49 years, mean age = 30.7 years). During the retino-
topy run a bar aperture (1.33◦ wide) revealing a flickering checkerboard pattern
(10 Hz) was presented in four orientations. For each orientation, the bar cov-
ered the entire screen in 12 discrete steps (each step lasting 3 s). Within each
orientation, the sequence of steps (and hence of the locations) was randomized
and each orientation was presented six times. During the passive viewing run
four letters (’H’, T’, ’S’ and ’C’) were presented in a 8◦ by 8◦ bounding frame
for a duration of 6 s and their shape was filled with a flickering checkerboard
pattern (10 Hz). These data were acquired on a Siemens Magnetom 7T scan-
ner (Siemens; Erlangen, Germany) equipped with a 32 channel head-coil (Nova
Medical Inc.; Wilmington, MA, USA) using high-resolution gradient echo echo-
planar imaging sequence (82 transversal slices; TR = 3000 ms; TE = 26 ms;
generalized auto-calibrating partially parallel acquisitions (GRAPPA) factor =
3; multi-band factor = 2; FA = 55; FoV = 186 x 186 mm2; 0.8 mm isotropic
resolution). In addition, this dataset includes five functional volumes acquired
with opposed phase encoding directions to correct for EPI distortions that oc-
cur at higher field strengths (Andersson et al., 2003). Preprocessing further
consisted of (rigid body) motion correction, linear trend removal, and temporal
high-pass filtering (up to 3 cycles per run).

For visualization purposes, we also include anatomical data for subject 3.
Anatomical data was acquired with a T1-weighted magnetization prepared rapid
acquisition gradient echo (Marques et al., 2010) sequence [240 sagittal slices, ma-
trix = 320 x 320 m, voxel size = 0.7 mm isotropic, first inversion time TI1 =
900 ms, second inversion time TI2 = 2750 ms, echo time (TE) = 2.46 ms repe-
tition time (TR) = 5000 ms, first nominal flip angle = 5◦, and second nominal
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flip angle = 3◦. Anatomical images were interpolated to a nominal resolution of
0.8 mm isotropic to match the resolution of functional images. In the anatomical
images, the grey/white matter boundary was detected and segmented using the
advanced automatic segmentation tools of BrainVoyager 20 which are optimized
for high-field MRI data. A region-growing approach analyzed local intensity
histograms, corrected topological errors of the segmented grey/white matter
border, and finally reconstructed meshes of the cortical surfaces (Kriegeskorte
and Goebel, 2001; Goebel et al., 2006)

2.5. Real-time Processing

To mimic a real-time scenario, we limited the preprocessing to trilinear 3D
rigid body motion correction which was applied in a simulated real-time setup
using Turbo-BrainVoyager (TBV) (v4.0b1, Brain Innovation B.V., Maastricht,
The Netherlands). The data was accessed directly from TBV using a network
interface providing fast transfer speed suitable for real-time applications. The
receiver was implemented in MATLABTM(version 2019a, The Mathworks .inc,
Natick, MA, USA) using JAVA based TCP/IP interfaces.

3. Results

All experiments were performed using MATLABTM(version 2019a, The Math-
works .inc, Natick, MA, USA) running on an HP R© Z440 workstation with an
Intel R© Xeon R© Processor (E5-1650 v4, 32GB RAM) and an Ubuntu 20.04 op-
erating system. The set of hyperparameters (learning rate η = 0.1, shrinkage
factor = 6 and FWHM = 0.15) remain the same for all experiments, except for
reconstruction of perceived letter shapes where a shrinkage factor of 9 was used.
All the figures generated using MATLABTM(including the parts of Figures 1
and 2) were generated using export fig (Altman, 2020).

3.1. Fast Mapping Procedure

3.1.1. Simulated Data

The fast, ridge-based, mapping procedure was first tested on simulated data
to investigate whether it faithfully recovers known population receptive field
shapes and their parameters. Overall, the mean Jaccard Similarity (JS) be-
tween the estimated and ground-truth receptive field shapes was 0.3452 (95 %
CI [0.3409, 0.3495]) and 0.3920 (95 % CI [0.3877, 0.3963]), for simulated 3T
and 7T data, respectively. For comparison, corresponding Null-model JS values
were 0.0418 and 0.0410, respectively. There is thus good correspondence be-
tween estimated and ground-truth receptive field shapes which is also apparent
from the sample receptive fields shown in figure 3. Next, we examined the cor-
respondence between receptive field parameters obtained with the two methods.
While receptive fields mapped using the ridge regression are not exactly Gaus-
sian, estimated parameters nevertheless show an excellent correspondence with
ground truth parameters for both simulated 3T and 7T data (see figures 4 and
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C.18 respectively as well as table 1). Please note that despite the high correla-
tion, the receptive field size tends to be slightly overestimated by our method.
The size of mapped receptive fields can be adjusted using the shrinkage factor.
However, for the sake of comparison, we use a constant shrinkage factor across
the datasets.

Figure 3: Comparison of ridge-estimated and ground-truth receptive fields. a) Small (top)
and large (bottom) estimated and ground-truth receptive fields for simulated 3T data (TR =
2000ms). b) Small (top) and large (bottom) estimated and ground-truth receptive fields for
simulated 7T data (TR = 3000ms).

Figure 4: Estimated vs ground-truth pRF parameters. A line with a slope of 1 is included
as a reference. Voxels whose receptive fields lie outside the field of view were ignored for
estimating pRF parameters. Results are from simulated 3T data. Results for simulated 7T
data are comparable (see supplementary figure C.18).

Next, we evaluated the ridge-based mapping approach in terms of its com-
putational performance. To that end we measured both memory consumption
and the computational time required for the mapping procedure itself as well
as for subsequent parameter estimation. Computational times were estimated
using MATLABTM’s stopwatch utility. The execution time measured using this
utility can be affected by many unknown variables pertaining to memory, pro-
cessor, caching in memory, MATLABTM’s just-in-time compiler, etc. This may
influence the execution time measurement each time a subroutine is executed.
Therefore, we report computational times as a mean over 100 runs. Memory
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X-coordinate Y-coordinate size (σ)

3T 0.9913(95 % CI[0.9909, 0.9916]) 0.9871 (95 % CI [0.9865, 0.9876]) 0.9674 (95 % CI [0.9660, 9686])
7T 0.9958 (95 % CI [0.9957, 9960]) 0.9949 (95 % CI [0.9946, 0.9951]) 0.9681(95 % CI[0.9668, 0.9693])

Table 1: Correlations between estimated and ground-truth pRF parameters

requirements were estimated using GNU/Linux’s pmap command. The memory
requirements reported here are calculated as memmax−mem0, where memmax

is the maximum amount of memory consumed during the procedure and mem0

is the memory occupied by MATLABTMbefore starting the procedure (which
includes loading of data into memory and other background processes occu-
pying memory). Memory consumption during the procedure was logged every
0.1 seconds using GNU/Linux’s watch command. Note that since here we are
only interested in computational performance we test the mapping procedure
on randomly generated data of the size 304−by−voxels. Memory consumption
was averaged over 100 repetitions of the procedure. As can be appreciated from
figure 5 the ridge-based mapping procedure is extremely fast (less than 10 s).
The computational time only starts to increase as the needed memory exceeds
the available memory. As a consequence, virtual memory gets consumed which
slows down the mapping procedure. Memory consumption scales linearly with
the number of voxels and allows for estimation of ∼ 1.75 and ∼ 3.5 million
voxels on systems with 8GB and 16GB of RAM, respectively.

Figure 5: Memory consumption (orange) and computational time (blue), as a function of the
number of voxels for a) ridge regression and b) parameter estimation. Data points corre-
sponding to 0s reflect < 1 Kb.

3.1.2. Empirical Data

Following up on simulation results, we tested the ridge-based mapping pro-
cedure on previously acquired empirical data. Similar to the simulated data, we
asses our method in terms of its ability to estimate pRF shapes and their param-
eters as well as computational performance. Since ground truth receptive field
shapes and parameters are not known for empirical data, we assess our method
on its ability to produce estimates that are consistent with a grid-search pRF
mapping procedure. Sample receptive fields estimated in the 3T and the 7T
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empirical data are shown in figures 6 and 7, respectively. Retinotopic surface
maps for a representative subject in the 7T dataset are shown in figure 8. These
results qualitatively indicate a good agreement between receptive field shapes
and parameters between our method and the grid-search approach. Quantita-
tively, we observe that the Jaccard similarity between receptive fields estimated
using the ridge-based and grid-search methods consistently exceed those ex-
pected based on the Null model. The JS is particularly high for subjects 03,
05 and 06 for the 7T empirical dataset. In terms of correspondence between
the pRF parameters obtained from the fast procedure and those obtained from
grid-search, the correlation coefficients shown in Table 3 indicate that corre-
spondence is generally good. This is also apparent from scatter plots showing
the correspondence between pRF parameters obtained from our method and
grid-search in representative subjects (see 9a and 9b for the 3T and 7T dataset,
respectively).

Figure 6: Comparison of ridge-estimated and ground-truth receptive field parameters for 3T
data. a) Small (top) and large (bottom) estimated and ground-truth receptive fields for
subject 1. b,c) Same as panel a for subjects 2 and 3, respectively

Jaccard Similarity baseline

S01 0.2781 (95 % CI [0.2721,0.2840]) 0.0781
S02 0.2607 (95 % CI [0.2554,0.2661]) 0.0957
S03 0.3050 (95 % CI [0.2993,0.3107]) 0.0905

(a)

Jaccard Similarity baseline

S01 0.1939 (95 % CI [0.1903,0.1976]) 0.0605
S02 0.3088 (95 % CI [0.3044,0.3132]) 0.0673
S03 0.4998 (95 % CI [0.4961,0.5035]) 0.0701
S04 0.3333 (95 % CI [0.3295,0.3371]) 0.0707
S05 0.4527 (95 % CI [0.4489,0.4565]) 0.0786
S06 0.4564 (95 % CI [0.4532,0.4595]) 0.0808

(b)

Table 2: Mean Jaccard Similarities between receptive fields estimated with the fast procedure
and those obtained from grid-search for a) 3T and b) 7T empiricial data.

We again evaluate computational performance in terms of computational
times and memory consumption. We estimate both based on 100 runs for each
dataset. Since each subject has a different number of voxels, for each run a
subject was chosen randomly. The computational time is computed separately
for ridge regression, cross-validation and parameter estimation. The mean com-
putational times or execution times for both datasets are reported in tables 4a
and 4b.

The computational times suggest that our algorithm is extremely fast in
mapping receptive fields. The actual mapping procedure happens within a sec-
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Figure 7: Comparison of ridge-estimated and ground-truth receptive field parameters for 7T
data. a) Small (top) and large (bottom) estimated and ground-truth receptive fields for
subject 1. b-f) Same as panel a for subjects 2 to 6, respectively

Figure 8: Exemplary eccentricity and polar angle maps in both hemispheres of subject 3 in
the 7T dataset. The upper row shows maps obtained using our fast parameter estimation
procedure whereas the bottom row shows maps obtained using a grid-search procedure. In
accordance with the correlation results between maps (see table 3b), the two polar angle and
eccentricity maps are visually highly similar.
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Figure 9: Fast procedure vs grid-search estimated pRF parameters for a) 3T (subject 1) and
b) 7T (subject 3) data, respectively. A line with a slope of 1 is included as a reference.

X-coordinate Y-coordinate Standard Deviation

S01 0.7557 (95 % CI [0.7436, 0.7674]) 0.7381 (95 % CI [0.7252, 0.7505]) 0.2287 (95 % CI [0.2023, 0.2548])
S02 0.6906 (95 % CI [0.6758, 0.7048]) 0.7526 (95 % CI [0.7404, 0.7644]) 0.2809 (95 % CI [0.2552, 0.3062])
S03 0.7551 (95 % CI [0.7429, 0.7667]) 0.7270 (95 % CI [0.7137, 0.7398]) 0.1758 (95 % CI [0.1488, 0.2026])

(a)

X-coordinate Y-coordinate Standard Deviation

S01 0.6411 (95 % CI [0.6294, 0.6525]) 0.6042 (95 % CI [0.5916, 0.6165]) 0.0386 (95 % CI [0.0190, 0.0581])
S02 0.7038 (95 % CI [0.6937, 0.7135]) 0.6238 (95 % CI [0.6116, 0.6356]) -0.0298 (95 % CI [-0.0494, -0.0102])
S03 0.9723 (95 % CI [0.9712, 0.9734]) 0.9645 (95 % CI [0.9632, 0.9659]) 0.5693 (95 % CI [0.5559, 0.5824])
S04 0.8332 (95 % CI [0.8271, 0.8391]) 0.7761 (95 % CI [0.7682, 0.7838]) 0.0970 (95 % CI [0.0776, 0.1164])
S05 0.9066 (95 % CI [0.9030, 0.9100]) 0.8976 (95 % CI [0.8937, 0.9013]) 0.3332 (95 % CI [0.3157, 0.3505])
S06 0.9216 (95 % CI [0.9186, 0.9245]) 0.9249 (95 % CI [0.9220, 0.9277]) 0.3229 (95 % CI [0.2941, 0.3295])

(b)

Table 3: Correlation coefficients between the pRF parameters obtained from the fast procedure
and those obtained from grid-search for a) 3T and b) 7T datasets, respectively.

ond for the 3T dataset and in a few seconds for the 7T dataset. Cross-validation,
which selects the best voxels, finishes in a couple of seconds for the 3T dataset
and takes less than a minute for the 7T dataset. The estimation of pRF pa-
rameters (for all voxels) also takes only a few seconds for both datasets. This
means that receptive fields and their pRF parameters are readily available for
further analysis.
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Mean Average data size per subject

Ridge Regression 0.2055 (95 % CI [0.2010,0.2100])
199,931 Voxels x 304 Time VolumesCross-validation 1.3495 (95 % CI [1.3162,1.3828])

Parameter estimation 4.2546 (95 % CI [4.2474,4.2618])

(a)

Mean Average data size per subject

Ridge Regression 7.0519 (95 % CI [6.1177,7.9861])
4,200,164 Voxels X 304 VolumesCross-validation 51.4157 (95 % CI [46.7570 ,56.0744])

Parameter estimation 7.4357 (95 % CI [7.2950 ,7.5764])

(b)

Table 4: Mean computational times in seconds for a) 3T and b) 7T empirical data. The
average data size per subject reflects the amount of data processed by the algorithm at a
time.

3.2. Online Gradient Descent

To demonstrate the capability of online gradient descent to work in a real-
time setting, we mimicked a real-time scenario using TurboBrainVoyagerTM(as
described in section 2.5). We show in Appendix A that ridge regression and
online gradient descent yield similar receptive fields through hyperparameter
sharing. Therefore, we do not provide an evaluation of the ability of the method
to reliably estimate receptive field shapes and parameters. Instead, we evaluate
its performance in terms of whether estimated receptive fields are suitable for
projecting cortical activity back into the visual field. For that purpose we utilize
data acquired as subjects passively viewed letter shapes previously described in
(Senden et al., 2019). The reconstructions obtained from our approach (see
figure 10) are recognizable and comparable those obtained from receptive fields
resulting from grid-search.

Figure 10: Reconstructions of perceived letter shapes.

The mean computational times per time volume per subject for the 3T and
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7T datasets are reported in tables 5a and 5b, respectively. MATLABTMuses
a just-in-time compiler, which has to be executed the first time and has to
first load the subroutine into memory and compile. This often causes the first
iteration to be slower. Therefore, we exclude the execution time of the first
time volume while computing the mean and standard deviation and report it
separately. The average computational time per acquired volume is less than
the repetition time (2000ms for 3T and 3000ms for 7T), which means that the
receptive fields are updated before the next time volume is acquired. This is
especially useful in a real-time setting where analysis needs to be done as the
data is being acquired. Figure 11 depicts how memory requirements scale with
computational time. The computational only starts to increase when needed
memory exceeds the available memory. Generally, up to 1 million voxels can be
comfortably estimated within less than 1500ms and requiring less than 2GB of
RAM.

Figure 11: Memory and computational time requirements for the real-time pRF as a function
of the number of voxels. Data points corresponding to 0s reflect < 1 Kb of memory consumed
and < 0.01 seconds required for execution, respectively.
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Mean First Iteration Number of Voxels

S01 0.1439 (95 % CI [0.1425, 0.1453]) 0.2648 229,125
S02 0.1172 (95 % CI [0.1159, 0.1185]) 0.2007 177,684
S03 0.1249 (95 % CI [0.1235, 0.1263]) 0.2181 192,984

(a)

Mean First Iteration Number of Voxels

S01 2.3974 (95 % CI [2.3651, 2.4297]) 5.1320 4,553,058
S02 2.0619 (95 % CI [2.0568, 2.0670]) 4.2419 3,957,690
S03 2.4027 (95 % CI [2.3973, 2.4081]) 4.9889 4,564,020
S04 2.0082 (95 % CI [1.9809, 2.0355]) 3.9555 3,830,696
S05 2.1258 (95 % CI [2.1150, 2.1366]) 4.5136 4,023,250
S06 2.2441 (95 % CI [2.2392, 2.2490]) 4.7994 4,272,268

(b)

Table 5: Mean computational time (in seconds) per time volume per subject for the real-
time mapping technique performed on a) 3T and b) 7T empirical data. For each subject,
data for 304 time volumes was recorded. Since the first iteration (corresponding to the first
time volume) is usually abnormally high, it is not included for computing mean and standard
deviation.

3.3. Poorly estimated receptive field size

At larger eccentricities our approach shows poor correspondence with the
grid-search algorithm in terms of receptive field size. This is surprising giving
the good correspondence between estimated and ground-truth receptive field
sizes for simulated data. One potential reason for the discrepancy between our
(model-free) and the grid-search approach is that the latter assumes receptive
fields to have a circular shape. If receptive fields are not circular, a grid-search
method may estimate receptive field sizes inaccurately. Several studies have
suggested that receptive fields become increasingly elongated at higher eccen-
tricities (Greene et al., 2014; Silson et al., 2018; Lee et al., 2013) rendering this
a viable explanation for the discrepancy. An alternative explanation, assuming
receptive fields are generally circular, is that the model-based grid search pro-
cedure can accurately capture sizes of receptive fields located beyond the visual
field of view (the region of the visual field covered by the stimulus) whereas
our model-free procedure cannot. Indeed, our model-free procedure would pro-
duce a smaller, elongated, receptive field located within the field of view if a
large receptive field is located outside the field of view. Below we explore both
possibilities.

3.3.1. Anisotropic Model

We investigate the ability of our approach to capture elongated receptive
fields by generating simulated data (similar to 2.4.1) using anisotropic Gaussians
as ground-truth receptive fields:
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f(x, y) = exp(−(
(x− x0)2

2σ2
x

+
(y − y0)2

2σ2
y

)) (11)

We vary σy as a ratio of σx such that the ratio between σx and σy increases
with eccentricity. We first obtain σx as described in section 2.4.1. We then
compute σy = ratio ∗ σx; where ratio is σx rescaled in the range [0.5, 3]. We
generate simulated 3T an 7T data with this anisotropic model with the remain-
ing simulation parameters remaining the same as described in section 2.4.1. We
define standard deviation σ of such anisotropic receptive fields as the geometric
mean of σx and σy, that is, σ =

√
σxσy. Using the geometric mean ensures that

the area of an ellipse with semi-minor axis σx and semi-major axis σy is the
same as a circle with radius of σ.

To examine whether or not our approach reliably captures the shape of
the receptive fields, we visually inspect them. Figures 12 and 13 show that
our approach is able to generally capture anisotropic receptive field shapes and
sizes rather well. The corresponding correlation coefficients are reported in Ta-
ble 7. However, as receptive fields become more elongated, our method tends
to slightly underestimate their size. Interestingly, the grid-search method as-
suming isotropic receptive fields tends to somewhat overestimate receptive field
sizes at large eccentricities. In conjunction, these effects can account for the
discrepancy between the ridge-based and grid-search pRF mapping procedure.
In order to analyze our approach quantitatively, we compute the JS between
estimated receptive fields, ground truth receptive fields and the receptive fields
obtained from grid-search (see Table 6). Note that the grid-search method yields
pure Gaussians containing no anomalous activations whereas our method yields
anomalous activations surrounding the receptive field. Even slight anomalies
get penalized in the JS thus accounting for overall better fit observed for the
grid-search method.

Figure 12: Comparison of ridge-estimated and anisotropic ground-truth receptive fields. a)
Small (top) and large (bottom) estimated and ground-truth receptive fields for simulated
3T data. b) Small (top) and large (bottom) estimated and ground-truth receptive fields for
simulated 7T data.
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Figure 13: Comparison of receptive field size estimates and ground truth. a) Sizes estimated
using our fast procedure vs ground truth sizes. b) Sizes estimated using grid-search vs ground
truth sizes. c) Sizes estimated using our fast procedure vs grid-search estimates. Al results
are based on simulated 3T. Results for simulated 7T data are shown in C.20

Jaccard Similarity baseline

Ridge regression vs. ground truth 0.4023 (95 % CI [0.3989,0.4057]) 0.0567
Grid search vs. ground truth 0.6217 (95 % CI [0.6195,0.6238]) 0.0522
Ridge regression vs. grid search 0.4207 (95 % CI [0.4171,0.4243]) 0.0652

(a)

Jaccard Similarity baseline

Ridge regression vs. ground truth 0.4470 (95 % CI [0.4439,0.4502]) 0.0565
Grid search vs. ground truth 0.6324 (95 % CI [0.6299,0.6349]) 0.0490
Ridge regression vs. grid search 0.4140 (95 % CI [0.4100,0.4181]) 0.0582

(b)

Table 6: The mean Jaccard Similarity between fast and grid-search estimated pRF parameters
for a) 3T and b) 7T simulated data based on the anisotropic ground-truth receptive fields.

X-coordinate Y-coordinate Standard Deviation

Ridge regression vs. ground truth 0.9900 (95 % CI [0.9895, 0.9903]) 0.9886 (95 % CI [0.9881, 0.9890]) 0.9588 (95 % CI [0.9571, 0.9604])
Grid search vs. ground truth 0.9950 (95 % CI [0.9948, 0.9952]) 0.9962 (95 % CI [0.9960, 0.9963]) 0.9163 (95 % CI [0.9130, 0.9195])

Ridge Regression vs. grid search 0.9909 (95 % CI [0.9905, 0.9913]) 0.9891 (95 % CI [0.9887, 0.9896]) 0.9122 (95 % CI [0.9088, 0.9156])

(a)

X-coordinate Y-coordinate Standard Deviation

Ridge regression vs. ground truth 0.9915 (95 % CI [0.9912, 0.9919]) 0.9940 (95 % CI [0.9938, 0.9942]) 0.9615 (95 % CI [0.9599, 0.9630])
Grid search vs. ground truth 0.9971 (95 % CI [0.9970, 0.9972]) 0.9972 (95 % CI [0.9971, 0.9973]) 0.9215 (95 % CI [0.9184, 0.9245])

Ridge Regression vs. grid search 0.9923 (95 % CI [0.9920, 0.9926]) 0.9927 (95 % CI [0.9924, 0.9930]) 0.9115 (95 % CI [0.9081, 0.9149])

(b)

Table 7: Correlation coefficients between fast and grid-search estimated pRF parameters for
simulated a) 3T and b) 7T data based on anisotropic ground-truth receptive fields.
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3.3.2. Receptive Fields Beyond the Field of View

Next we examine to what extent our approach fails to effectively map recep-
tive fields that (partially) lie beyond the field of view. For such receptive fields
our approach maps the part that is within the field of view as an anisotropic re-
ceptive field with a relatively smaller size. The grid-search method, on the other
hand, estimates these receptive fields correctly (see figure 14). This can account
for the discrepancy between receptive field estimates between our method and
the grid-search procedure.

In order to map larger receptive fields, we recommend using a stimulus that
covers a larger field of view. Figure 15 shows the relationship between the
field of view, receptive field eccentricity and the maximum reliable estimate
of receptive field size using our method. We define a metric which allows us
to determine the largest estimated receptive field which is also predicted with
high accuracy. We first normalize the sizes of estimated (σr) and ground-truth
standard deviations (σt) to the range [0, 1]. Then, we select the largest reliable
standard deviation as argmax

σεΣr

(σr,norm(1 − |σt,norm − σr,norm|)). We simulate

receptive fields located at a range of eccentricities [0, 30] with a range of sizes
[0.5, 30] and estimate them with stimuli covering a range of field of views [5, 25].
As can be appreciated from the figure, accuracy of receptive field sizes obtained
from our fast parameter estimation procedure depends on the field of view and
on eccentricity. This should be taken into account when interpreting results
obtained from our method.

Figure 14: Fast procedure vs grid-search estimated pRF parameters for simulated 3T data.
A line with a slope of 1 is included as a reference.
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Figure 15: Largest reliably estimated receptive field size as a function of eccentricity and field
of view. The surface plot was smoothed using smooth2 (Hilands, 2020)

4. Discussion and Conclusion

We propose a fast and model-free approach for receptive field mapping and
pRF parameter estimation that is suitable for real-time applications. A voxel-
to-pixel map typically is a huge data matrix which requires much computer
memory in order to be stored and to be operated on; rendering operations slow.
To reduce data by more than 90%, we encode the stimulus using tile coding
and hashing. This lowers memory requirements and hence strongly reduces
computational time. We evaluated our approach on simulated as well as real
empirical data in terms of computational times, fidelity of estimated receptive
field shapes and parameters and the suitability of estimated pRF shapes for
projecting cortical activity back into the visual field.

We find that our approach is extremely fast at mapping pRFs and estimat-
ing their parameters with computational times in the order of seconds and ∼ 1
minute, respectively. Specifically, because our approach can successfully esti-
mate receptive field shapes for large amounts of voxels in mere seconds, it is
straightforward to identify the best performing (i.e. visually responsive) voxels
by conducting a quick cross-validation procedure. This allows limiting parame-
ter estimation to these voxels and thus to keep computational time low for this
process as well. This also eliminates the need of using a pre-defined mask. Fur-
thermore, cross-validation is performed in batches and we provide the option of
adjusting the batch size which can further speed up parameter estimation.

In terms of fidelity, we observe excellent correspondences between estimated
pRFs and ground-truth pRFs both in terms of shapes and parameters for sim-
ulated data. For empirical data, we observe excellent correspondence between
pRF locations estimated from our procedure using grid-search on an isotropic
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Gaussian model. However, for pRF size (standard deviation) of the receptive
fields results of the two methods correspond less well. In particular for larger ec-
centricities correspondence is poor. This is because our method finds anisotropic
(elongated) receptive fields. Similar observations were also reported in (Lee
et al., 2013) and it was suggested that the receptive fields tend to be anisotropic
towards the edge of the stimulus space. The authors argue that when a receptive
field partially lies outside the stimulus space, the part of the receptive field that
lies inside may be incorrectly identified as having an oval shape. This would
be in line with recent studies arguing that receptive fields are generally circu-
lar in shape (Lerma-Usabiaga et al., 2020). Other studies have suggested that
receptive fields do become increasingly elongated at higher eccentricities. To
investigate how both possibilities affect our mapping procedure we conducted
additional, unplanned, analyses.

First, we simulated data based on elliptical receptive fields. We observe ex-
cellent correspondence between pRF parameters from our approach and ground-
truth parameters. Our algorithm estimates the size of such elliptical receptive
fields better than the grid-search method. This means that our method is flex-
ible and freer in capturing the shape of the receptive fields than model-based
methods. As such, our method is in principle able to capture the true shape
of a receptive field. However, an analysis of how receptive field size estimates
are effected by their eccentricity and the visual field of view revealed that esti-
mates are only accurate within a certain region of the visual field of view. The
flexibility of our method comes at the cost of an inability to deal with large,
circular, receptive fields that lie beyond the field of view (i.e. outside the re-
gion of stimulation). This is in line with the observation that linear encoding
methods (such as ridge regression) fail to reliably estimate large receptive fields
(Lage-Castellanos et al., 2020); or rather the receptive fields that partially lie
beyond the field of view.

From results shown figure 15 it is possible to derive up to which eccentricity
receptive field size estimates are reliable given the field of view of a particular
experimental setup. In order to map receptive fields outside of that region,
we recommend either using a larger stimulus space or to use a model-based
algorithm, such as a Levenberg-Marquadt algorithm or the grid-search method,
to fit pRF parameters. To benefit from the fast procedures described here as well
as the accuracy of grid-search, it is recommended to utilize the cross-validation
procedure included in our method to identify visually responsive voxels and
hence to reduce the total number of voxels for which grid-search needs to be
performed.

Importantly, for the purpose of projecting cortical activations back into the
visual field, the true shape of receptive fields at the edges of the visual field
do not matter. Indeed, as can be seen from figure 10, our model-free approach
faithfully reconstructs the letter shapes from their associated BOLD activity.
Recognizable reconstructions of these shapes was possible even though data
underwent real-time preprocessing which is generally considered being of lower
quality than offline preprocessing. This highlights that our method is suitable
for real-time applications such as content-based BCI letter-speller systems.
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In that context it is also important to highlight that the results reported
here were obtained using a single set of hyperparameters (learning rate, FWHM
and shrinkage factor) except for reconstruction of mental imagery where we
use higher shrinkage factor. While the choice of hyperparameters can affect
mapping procedure and parameter estimation (refer to Appendix B), the set
of hyperparameters used here produced robust results across participants, field
strength and pre-processing procedures.

In conclusion, we present an extremely fast and flexible pRF mapping ap-
proach which can be either used in parallel with data acquisition (online gradient
descent) or after the data has been fully acquired (ridge regression). This opens
the door for real-time applications that rely on pRF estimates such as BCI
speller systems. We also propose a fast method to estimate pRF parameters. A
limitation of this method and model-free approaches in general is that receptive
fields partially lying beyond the stimulus space are dealt with poorly. This can
be remedied by combining fast estimation of receptive fields with a subsequent
grid-search step.
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Appendix A. Hyperparameter sharing between gradient descent and
ridge regression

Here we show that, under reasonable assumptions, the learning rate for gra-
dient descent and the regularization parameter in ridge regression are inversely
related. In a real-time setting, each iteration of online gradient descent corre-
sponds to observing a single data point (time volume). Alternatively, one might
consider performing an offline gradient descent with a single iteration where a
single batch contains the entire dataset. That is, referring to equation 8, n = 1
and n− 1 = 0. If we assume that we initialize θ0 ← 0, where θ0 is the optimal
solution, then we get:

θ = ηφTB (A.1)

And from equtaion 5, we have:

θ =
(
φTφ+ λI

)−1
φTB (A.2)

For the case that λ = 1
η and that λ is sufficiently large such that ΦTΦ+λI ≈

λI,

ηΦTB ≈ (ΦTΦ + λI)−1ΦTB (A.3)

Thus, if we use λ = 1
η with a sufficiently large λ, ridge regression and online

gradient descent yield similar results.

Appendix B. Effect of hyperparameters on mapping procedure

The set of hyperparameters involved in the mapping procedure are learning
rate (or regularization parameter), FWHM of hashed Gaussians and shrinkage.
Note that we do not address learning rate and regularization parameter sepa-
rately since we assume them to be the inverse of each other (refer to Appendix
A). For all the experiments reported in this paper, we use the same set of hy-
perparameters (except for projecting cortical activity back into the visual field,
which benefits from slightly higher shrinkage).

In order to understand how the choice of hyperparameters can affect map-
ping procedure, we fine-tune them by minimizing an objective function using
Bayesian Optimization. Bayesian Optimization enables us to visualize the model
mean (estimated objective function surface). For objective function or loss func-
tion we use Jaccard Distance which can be defined as:

fJD(X,Y ) = 1−
∑
imin(xi, yi)∑
imax(xi, yi)

(B.1)

In figure B.16, we present objective function models of two cases: B.16a
where we keep shrinkage constant and B.16b where keep learning rate constant.
It can be seen from figure B.16a that the mapping procedure is not very sensitive
to learning rate. However, for the relation proved in A.3 to hold true, we

27

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 25, 2021. ; https://doi.org/10.1101/2021.03.24.436795doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.24.436795
http://creativecommons.org/licenses/by/4.0/


recommend using a small value of learning rate (< 1). Shrinkage does not have
any effect on mapping itself, since it is used after the mapping procedure to
remove abnormal pixels surrounding the receptive fields. Using a large value
of shrinkage will reduce the size of the receptive field. FWHM, however, has a
direct effect on the mapping procedure. Figure B.17 shows how a combination
of FWHM and shrinkage affect the shape of the mapped receptive fields. Using
a large FWHM would result in a large overlap between the stimulus and hashed
Gaussians, thereby over-encoding the presence of the stimulus. As a result, the
mapping procedure would overestimate the size of the receptive fields. This
effect is clear from figure B.17, where we visually compare the receptive fields
(for the same voxel) obtained using different values of FWHM. The shrinkage
and FWHM have an opposite effect on the receptive fields. Hence it is important
to use a balanced choice of FWHM and shrinkage in order to obtain optimal
receptive fields.

Figure B.16: Estimated objective function model for a) the learning rate and the FWHM (the
shrinkage was set to 6 b) the shrinkage and FWHM (the learning rate was set to η = 0.1.
The hyperparameters were optimized for Jaccard Distance between mapped receptive fields
and ground-truth receptive fields based on 3T-like simulated data. The optimization was
performed using Bayesian Optimization. The optimization was stopped after 40 evaluations.

Figure B.17: The effect of FWHM of hashed Gaussians on mapped receptive fields. The
receptive field on the top left is the ground-truth receptive field based on 3T-like simulated
data. The rest of the receptive fields were mapped using different FWHMs in the range [0.1, 1].
The learning rate was kept constant to 0.1 and shrinkage was not used. Note that, we use
FWHM relative to resolution of stimulus space and hence it is restricted to the range [0, 1].
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Appendix C. Supplementary Figures

Figure C.18: Scatter plots between the pRF parameters (location and size) estimated using
the fast estimation technique and the ground-truth pRF parameters for 7Tesla-like simulated
data. The voxels lying beyond the radius of measured visual field (maximum eccentricity)
were ignored for estimating pRF parameters.

Figure C.19: Scatter plots between the pRF parameters (location and size) estimated using
fast estimation technique (ridge regression) and the grid search method on 3 Tesla empirical
data. The subfigures a and b correspond to subjects 02 and subject 03 respectively.

Figure C.20: Comparison of receptive field size estimates and ground truth for 7T empirical
data. a) Sizes estimated using our fast procedure vs ground truth sizes. b) Sizes estimated
using grid-search vs ground truth sizes. c) Sizes estimated using our fast procedure vs grid-
search estimates.
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Figure C.21: Scatter plots between the pRF parameters (location and size) estimated using
fast estimation technique (ridge regression) and the grid search method on 3 Tesla empirical
data. The subfigures a, b, c, d, e correspond to subjects 01, 02, 04, 05 and 06 respectively.
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