
minicore: Fast scRNA-seq clustering with various distances

Daniel N. Baker1, *, Nathan Dyjack2, Vladimir Braverman1, Stephanie C. Hicks2, and Ben
Langmead1, *

1Department of Computer Science, Johns Hopkins University
2Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health

*corresponding authors; dbaker49@jhu.edu, langmea@cs.jhu.edu

March 24, 2021

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 25, 2021. ; https://doi.org/10.1101/2021.03.24.436859doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.24.436859
http://creativecommons.org/licenses/by/4.0/


Abstract

Single-cell RNA-sequencing (scRNA-seq) analyses typically begin by clustering a gene-by-
cell expression matrix to empirically define groups of cells with similar expression profiles.
We describe new methods and a new open source library, minicore, for efficient k-means++
center finding and k-means clustering of scRNA-seq data. Minicore works with sparse count
data, as it emerges from typical scRNA-seq experiments, as well as with dense data from af-
ter dimensionality reduction. Minicore’s novel vectorized weighted reservoir sampling al-
gorithm allows it to find initial k-means++ centers for a 4-million cell dataset in 1.5 minutes
using 20 threads. Minicore can cluster using Euclidean distance, but also supports a wider
class of measures like Jensen-Shannon Divergence, Kullback-Leibler Divergence, and the Bhat-
tacharyya distance, which can be directly applied to count data and probability distributions.

Further, minicore produces lower-cost centerings more efficiently than scikit-learn for
scRNA-seq datasets with millions of cells. With careful handling of priors, minicore im-
plements these distance measures with only minor (<2-fold) speed differences among all dis-
tances. We show that a minicore pipeline consisting of k-means++, localsearch++ and mini-
batch k-means can cluster a 4-million cell dataset in minutes, using less than 10GiB of RAM.
This memory-efficiency enables atlas-scale clustering on laptops and other commodity hard-
ware. Finally, we report findings on which distance measures give clusterings that are most
consistent with known cell type labels.

Availability: The open source library is at https://github.com/dnbaker/minicore.
Code used for experiments is at https://github.com/dnbaker/minicore-experiments.

1 Introduction

Single-cell RNA-sequencing (scRNA-seq) is capable of measuring transcriptome-wide gene ex-
pression in millions of cells per experiment. With the arrival of multi-million-cell datasets [9, 12],
and larger efforts like the Human Cell Atlas [24] on the horizon, the need for methods that rapidly
analyze and cluster (empirically group) cells is growing. This necessitates computational advances
in methods for unsupervised clustering and summarizing large collections of cells.

k-means is one popular clustering framework. It is classically formulated as an expectation
maximization problem that starts from an initial set of k data points that act as “centers” [20], it-
erating to obtain final centers. These centers induce a clustering of the observations into k classes.
k-means++ [2] improves how the initial centers are found, yielding clear mathematical guaran-
tees for the overall clustering. Besides its direct application as clustering methods, k-means and
k-means++ are useful as individual components of other methods, including for data quantiza-
tion [20], spectral clustering [10], outlier detection [28], machine learning [1] and construction of
sketches and coresets [22, 14]. For example, in scRNA-seq analysis, sketching – the selection of
a possibly weighted subset of cells to use – can be used to identify rare cell types. The Geomet-
ric sketching [16], Hopper [13], and submodular sketch [30] methods all employ some form of
center-finding as a subroutine.

We describe a new open source, highly efficient library software library called minicore,
which implements an array of algorithms to find the “center” of a group of cells – essentially
a rough clustering – and for performing k-means clustering seeded by those centers. The ad-
vantages of minicore are threefold. First, minicore uses a new vectorized weighted reservoir
sampling algorithm for its initial center-finding step, making it far more efficient than compet-
ing k-means++ algorithms like that in scikit-learn. Second, Minicore implements a variety of
distance measures, including the widely-used squared Euclidean distance, but also including oth-
ers like Jensen-Shannon Divergence, Kullback-Leibler Divergence, and Bhattacharyya distance,

1

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 25, 2021. ; https://doi.org/10.1101/2021.03.24.436859doi: bioRxiv preprint 

https://github.com/dnbaker/minicore
https://github.com/dnbaker/minicore-experiments
https://doi.org/10.1101/2021.03.24.436859
http://creativecommons.org/licenses/by/4.0/


which can be directly applied to count data or probability distributions. Third, minicore is able
to process both dense, dimensionality-reduced data – the typical input for scRNA-seq clustering
methods – as well as full, sparse, non-reduced matrices of counts. Minicore is unique in its
ability to handle scRNA-seq data in both sparse and dense forms, and its support for distance
measures that account for the original count-based nature of the data.

On real scRNA-seq datasets with up to millions of cells and using squared Euclidean distance,
minicore is substantially faster than scikit-learn and achieves lower objective-function cost. Fur-
ther, minicore can produce centers using a wide variety of distance measures with only minor
differences in the overall running time, facilitating use of distance measures that are better attuned
to the count nature of the data and do not require prior transformations [27]. Finally, we show that
a complete pipeline consisting of minicore’s implementations of k-means++, localsearch++ and
mini-batch k-means can cluster a 4-million cell dataset in minutes using 20 threads and a maxi-
mum resident set size (RAM) of less than 10 GiB.

2 Results

We collected scRNA-seq datasets of varying size: (a) the PBMC dataset consisting of 68,579 pe-
ripheral blood mononuclear cells (PBMC) from human [32], (b) the Cao et al mouse organogenesis
dataset (Cao2m) consisting of 2,058,652 cells [9], and (c) the Cao et al human fetal gene expression
dataset (Cao4m) consisting of 4,062,980 cells [8]. In all cases, the original form of the data is a
sparse matrix of gene-by-cell nonnegative integer counts. For datasets not originally represented
in compressed-sparse-row (CSR) format, we convert them to that format prior to our experiments.
Each of the three datasets has an associated set of cell-type labels, obtained by the original authors
through an analysis that combined an initial clustering with foreknowledge of specific marker
genes [32, 9, 8]. While these label assignments are not “ground truth,” they capture some biologi-
cal foreknowledge and so we use them to evaluate our final clusterings below.

While minicore can cluster sparse counts directly, we also generated a dense version of each
of the three datasets after applying a dimensionality reduction method. Specifically, we used
the truncated Singular Value Decomposition (SVD) from scikit-learn. Rows of the final matrix
consist of the original data’s projection into the first 500 principal components. We note that a
standard PCA has a “centering” step where the mean is subtracted from each feature. We used a
non-centered SVD since centering causes the matrix to lose its zero entries and become dense, in
turn requiring would require terabytes of memory for an SVD computation over millions of cells.
While non-centered SVD avoids this problem by keeping the matrix sparse, a drawback is that the
resulting principal components are selected based not just on the amount of variability but also
on the magnitudes of the values. This is addressed further in Discussion.

2.1 Fast and accurate center finding with minicore k-means++

We used minicore v0.3 and compared it to scikit-learn’s v0.12.4 function for k-means++ center
finding (sklearn.cluster.kmeans plusplus). We considered various values for the number
of centers, k. We note that scikit-learn supports only the squared Euclidean distance measure and
does not support the use of multiple threads in parallel. For the most direct comparison, we used a
single thread and the squared Euclidean distance only. In all cases, we measured the running time
and squared-Euclidean objective cost of the resulting set of centers. In the case of minicore, we
benchmarked both the k-means++ method (MC), as well as the k-means++ method augmented
by localsearch++ (MCLS). The scikit-learn results are labeled SKL.

2

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 25, 2021. ; https://doi.org/10.1101/2021.03.24.436859doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.24.436859
http://creativecommons.org/licenses/by/4.0/


0

100

200

300

25 50 75 100
k

T
im

e 
in

 s
ec

on
ds

PBMC (sparse)

0

5000

10000

25 50 75 100
k

T
im

e 
in

 s
ec

on
ds

Cao2m (sparse)

0

10000

20000

30000

40000

25 50 75 100
k

T
im

e 
in

 s
ec

on
ds

Cao4m (sparse)

Minicore KM++ Minicore KM++LS++ Scikit−learn KM++

1

10

100

25 50 75 100
k

Lo
g1

0(
tim

e 
in

 s
ec

on
ds

)

PBMC (dense)

10

100

1000

10000

25 50 75 100
k

Lo
g1

0(
tim

e 
in

 s
ec

on
ds

)

Cao2m (dense)

1e+02

1e+03

1e+04

1e+05

25 50 75 100
k

Lo
g1

0(
tim

e 
in

 s
ec

on
ds

)

Cao4m (dense)

Minicore KM++ Minicore KM++LS++ Scikit−learn KM++

Figure 1: minicore k-means++ is faster than scikit-learn k-means++. Performance evaluation
(y-axis) of elapsed time (seconds) for sparse data (top) and log10 transformed time for dense data
(bottom) for increasing sizes of k (x-axis) for the PBMC dataset with 68k cells (left), Cao et al.
dataset with 2 million cells (middle), and Cao et al. dataset with 4 million cells (right). Results
for minicore k-means++ are in red (standard) and green (with localsearch++); scikit-learn k-
means++ is blue.

Using the three datasets, we found that our minicore k-means++ (MC) implementation is
significantly faster when compared to scikit-learn k-means++ (SKL) using both sparse and dense
data (Figure 1, Table 1). For dense input data, the MC mode of minicore had a dramatic speed
advantage, achieving 100–150 times greater speed for the PBMC dataset compared to scikit-learn,
about 50–100 times greater for Cao2m, and about 240–280 times greater for Cao4m. For sparse
data, the MC mode of minicore was 3–9 times faster than scikit-learn depending on the experi-
ment. Our implementation of minicore k-means++ augmented by the localsearch++ procedure
(MCLS) was also always faster than SKL, and was only about 2.5–5 times slower than the MC
mode, depending on the experiment.

Further, we found that both of our minicore k-means++ implementations (MC and MCLS)
obtained comparable or lower costs of the objective function compared to SKL (Table 1). MCLS
obtained the lowest objective in nearly all cases across the three datasets (both dense and sparse).

Overall, the results showed that minicore produces high-quality centers and readily scales
to multi-million cell datasets, even in their original sparse form. For example, the MC mode used
about 2h:15m (single-threaded) to find k = 100 centers for the 4-million cell Cao4m dataset.

Similarly, minicore makes economical use of memory even when working directly on sparse
representations. The 4-million cell dataset can be clustered using less than 10 GiB RAM, allowing
it to run on commodity hardware.

3

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 25, 2021. ; https://doi.org/10.1101/2021.03.24.436859doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.24.436859
http://creativecommons.org/licenses/by/4.0/


2.2 minicore supports distance metrics for both continuous and count data, and
probability distributions

To evaluate minicore’s speed for distance measures beyond the commonly used squared Eu-
clidean distance (SQE) , we ran minicore using other measures, including the Bhattacharyya
Metric (BAT), Kullback-Leibler Divergence (KLD), Jensen-Shannon Divergence (JSD), and cosine
distance (COS). While these measures involve computationally demanding operations like log-
arithms and square roots, minicore optimizes these inner loops using the SLEEF library and
vectorization [26]. An additional challenge is the need to handle 0 counts, which can infinite di-
vergence for measures like the KLD. To address this, we use a lazily applied prior that avoids
having to instantiate a dense version of the matrix at any point. See Methods for more details on
both these points.

Cao2m Cao4m

3 10 25 50 100 3 10 25 50 100

0

200

400

600

k

T
im

e 
in

 s
ec

on
ds

Bhattacharyya metric

Kullback−Leibler Divergence

Squared Euclidean

Jensen−Shannon Divergence

Figure 2: The choice of distance has minor impact on the speed of minicore k-means++. Per-
formance evaluation (y-axis) of elapsed time (seconds) for sparse data for increasing sizes of k
(x-axis) for Cao et al. dataset with 2 million cells (left), and Cao et al. dataset with 4 million cells
(right). For a given dataset and k, the slowest measure never requires more than 61% more time
than is required by the fastest measure. All experiments used 16 simultaneous threads and the
localsearch++ improvement was not run.

Dense Sparse
Dataset k Method Time Cost Time Cost

PBMC 10 MC 0.43 2.10e+08 6.67 2.57e+08
MCLS 1.49 2.06e+08 23.92 2.52e+08
SKL 61.77 2.13e+08 24.50 2.57e+08

25 MC 1.07 1.85e+08 15.74 2.33e+08
MCLS 3.38 1.76e+08 54.53 2.24e+08
SKL 144.16 1.83e+08 59.47 2.39e+08

50 MC 2.94 1.69e+08 34.46 2.20e+08
MCLS 7.50 1.60e+08 107.64 2.17e+08
SKL 317.10 1.67e+08 146.53 2.20e+08

100 MC 4.51 1.57e+08 74.12 2.12e+08
MCLS 15.06 1.50e+08 226.45 2.03e+08
SKL 668.40 1.55e+08 299.97 2.08e+08

Cao2m 10 MC 13.47 3.80e+09 277.72 5.34e+09

4

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 25, 2021. ; https://doi.org/10.1101/2021.03.24.436859doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.24.436859
http://creativecommons.org/licenses/by/4.0/


MCLS 51.70 3.32e+09 970.49 5.39e+09
SKL 1, 389.78 4.38e+09 1, 244.76 5.81e+09

25 MC 44.35 3.12e+09 916.31 5.05e+09
MCLS 132.44 2.99e+09 3, 069.49 5.04e+09
SKL 2, 599.96 3.01e+09 3, 673.07 5.28e+09

50 MC 89.98 2.96e+09 1,240.03 5.00e+09
MCLS 267.69 2.67e+09 4, 115.19 4.95e+09
SKL 5, 241.62 2.76e+09 6, 849.92 4.96e+09

100 MC 128.20 2.61e+09 2,519.19 4.69e+09
MCLS 416.85 2.51e+09 7, 843.00 4.60e+09
SKL 9, 985.61 2.60e+09 13, 176.25 4.78e+09

Cao4m 10 MC 31.90 1.71e+10 478.84 2.60e+10
MCLS 110.01 1.68e+10 2, 158.43 2.35e+10
SKL 7, 863.25 1.74e+10 4, 350.81 2.61e+10

25 MC 71.26 1.43e+10 1,378.24 2.03e+10
MCLS 235.75 1.29e+10 6, 839.51 1.95e+10
SKL 19, 889.98 1.45e+10 10, 160.67 2.02e+10

50 MC 156.88 1.20e+10 5,229.03 1.91e+10
MCLS 482.96 1.20e+10 14, 629.39 1.77e+10
SKL 41, 450.85 1.26e+10 17, 937.88 1.86e+10

100 MC 285.76 1.09e+10 8,085.92 1.67e+10
MCLS 913.19 1.02e+10 22, 974.58 1.64e+10
SKL 79, 269.90 1.04e+10 40, 560.60 1.70e+10

Table 1: k-means++ clustering results for minicore (MC),
minicore with localsearch++ (MCLS), and scikit-learn (SKL). All
experiments use squared Euclidean distance and a single thread of
execution.

Using the 2 million and 4 million Cao et al. datasets, we found that the choice of distance
metric used for minicore’s k-means++ algorithm does impact speed, but not dramatically (Fig-
ure 2). Specifically, we found that the Bhattacharyya Metric (BAT) required less time than squared
Euclidean in all cases, whereas KLD required roughly the same amount of time as SQE, and JSD
generally required the most time. Importantly, the slowest measure (often the JSD) never requires
more than 61% more computation time than the fastest measure.

2.3 minicore supports k-means and mini-batch k-means clustering algorithms

The minicore library also supports both full k-means clustering using Lloyd’s algorithm [21],
and the faster mini-batch k-means algorithm [25, 15]. We sought to measure the efficiency and
accuracy of a full k-means clustering pipeline built from the k-means++, localsearch++, and mini-
batch k-means components of the minicore library. We chose mini-batch k-means rather than
Lloyd’s algorithm because the mini-batch approach has recently been shown to be significantly
faster for large datasets and provides similar results [15]. In all cases, we used k = 25, a mini-
batch k-means batch size of 10,000, 25 rounds of localsearch++, and a prior of 0.01

We again analyzed the PBMC, Cao2m and Cao4m datasets. We evaluated the clusterings using
the cell-type labels provided by the authors of the datasets [32, 9, 8]. Specifically, we used our k-
means clusters as empirical cell labels, comparing these to the “true” labels using the Adjusted
Rand Index (ARI).

5

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 25, 2021. ; https://doi.org/10.1101/2021.03.24.436859doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.24.436859
http://creativecommons.org/licenses/by/4.0/


While we began with the full sparse matrix, we subsampled the rows to consist of the 500 most
variable genes [7], as this often achieved greater Adjusted Rand Index compared to analyzing
the entire matrix. We tried several distance measures: Bhattacharyya Metric (BATMET), Jensen-
Shannon Divergence (JSD), the Kullback-Leibler Divergence (KLD), and Squared Euclidean Dis-
tance (SQE). We ran minicore using 20 simultaneous threads.

We found that minicore was able to cluster the cells in all three datasets in minutes, with
the slowest experiment taking about 12 minutes (Figure 3). For the Cao2m and Cao4m datasets,
timings were in the range of 325–365 seconds and 200–700 seconds respectively.

pbmc cao2m cao4m

17.25 17.50 17.75 330 340 350 360 200 300 400 500 600 700

0.0

0.1

0.2

0.3

Time in seconds

A
dj

us
te

d 
R

an
d 

In
de

x

Bhattacharyya Metric

Jensen−Shannon Divergence

Kullback−Leibler Divergence

Squared Euclidean

Figure 3: Clustering accuracy (ARI, vertical) versus running time (seconds, horizontal) for various
datasets and distance measures. All experiments used the 500 most variable genes, k = 25, a
mini-batch k-means batch size of 10,000, 25 rounds of localsearch++, and a prior of 0.01.

For both Cao2m and Cao4m, the Bhattacharyya Metric (BATMET) was superior to the Kullback-
Leibler Divergence (KLD) and Squared Euclidean distance (SQE), achieving both greater speed
and a higher Adjusted Rand Index for its final clustering. In the case of Cao2m, the JSD was supe-
rior to BATMET on both speed and ARI, but this relationship is reversed for the Cao4m dataset.

We measured minicore’s peak memory footprint (resident set size) when processing the
Cao4m dataset and found that it was less than 10GiB RAM. In short, we found that minicore
was capable of analyzing a 4-million cell dataset in a few minutes using computational resources
consistent with a typical commodity laptop.

3 Discussion

We introduced a new library called minicore for k-means clustering of scRNA-seq datasets. An
efficient, vectorized sampling kernel fuels both its k-means++ center finding algorithm and its
localsearch++ algorithm for refining centers. Combined with an efficient mini-batch k-means im-
plementation, these components form a complete and efficient pipeline for k-means clustering of
scRNA-seq data, requiring about 3.5 minutes to cluster a >4 million cell dataset when using 20
threads and less than 10GiB RAM. This low memory requirement brings even atlas-scale clus-
tering within reach of laptops and other commodity hardware. While we applied minicore to
scRNA-seq here, its algorithms are readily adaptable to other applications, for instance in data
quantization, outlier detection and spectral clustering [20, 10, 28].

6

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 25, 2021. ; https://doi.org/10.1101/2021.03.24.436859doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.24.436859
http://creativecommons.org/licenses/by/4.0/


Minicore’s fast implementations of various distance measures, gives users the flexibility to
tailor the distance measure to the data. Different measures might be appropriate depending on
whether cells are best viewed as vectors of real numbers, vectors of counts, or probability distri-
butions. We showed that distance measures other than squared Euclidean can perform substan-
tially better when evaluated using given cell type labels. In future work, we plan to explore how
minicore can be applied beyond to work, for example, with graph-induced metrics [4].

Another likely application of the algorithms in minicore is to build “sketches” of large single-
cell data compendia. A sketch is a weighted subset of cells that effectively span the gene-expression
space and – like centers – facilitate the identification of accurate predicted cluster labels down-
stream. Sketching approaches have been applied to the problem of obtaining cluster labels that
accurately capture empirical groupings of rare cell types [13, 16, 31].

Finally, we further seek to explore whether our optimized weighted sampling kernel may also
be applicable in the mini-batch k-means algorithm, specifically for the importance sampling re-
quired to drive the gradient-descent version of mini-batch k-means [6] [23].

In some experiments descried here, we used a non-centered version of the truncated Singu-
lar Value Decomposition (SVD) to project datasets into their first 500 principal components. We
avoided the mean centering in order to keep the data sparse in preparation for the SVD. This has
the drawback that the truncated SVD was selecting components based not only on variability, but
also on the magnitudes of the points. In the future, we would like to address this by implement-
ing or otherwise integrating a sparse version of a centered SVD computation into minicore. This
could become an optional first step allowing users to create smaller, dense representations.

4 Methods

4.1 k-means++ algorithms in minicore

k-means gives an efficient way to choose an initial set of centers in preparation for the more work-
intensive k-means optimization procedure. Unlike the simple strategy of choosing centers uni-
formly at random, k-means++ guarantees that the objective achieved by the downstream k-means
procedure will be within a multiplicative O(log k) factor of the optimal cost objective.

The k-means++ algorithm involves choosing one center per step across k steps. In the first
step, a center is chosen from among the data points uniformly at random. In subsequent steps,
a new center is chosen in a weighted random fashion, with the probability of selecting a given
point being proportional to its cost, specifically the distance to the nearest already-selected center.
The algorithm therefore is a weighted sampling procedure. We now describe in detail, as similar
sampling procedures form the core of multiple components of minicore.

Sampling kernel. In a given step of k-means++, a simple sampling strategy would be to cal-
culate the cost of each as-yet-unchosen data point (potential “center” gene) then draw a random
variate from a multinomial distribution weighted by those costs. Computationally, this can be ac-
complished in four steps: first, calculate a cost for each point, next calculate a prefix sum over the
array of all costs, next generate a uniform random variate in [0, C] where C is the total cost, then
perform binary search over the prefix-sum array to identify the point corresponding to the ran-
dom variate. While binary search is fast, the costs, and therefore the prefix sum, must be at least
partially re-computed in each of the k steps. Further, the prefix sum computation has an inherent
dependence structure that inhibits parallelization, though O(n log n)-time parallel solutions exist.

7

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 25, 2021. ; https://doi.org/10.1101/2021.03.24.436859doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.24.436859
http://creativecommons.org/licenses/by/4.0/


Minicore instead uses a parallelized reservoir-sampling approach that extends an algorithm
by Hübschle-Schneider & Sanders [17]. That algorithm uses the fact that weighted sampling with-
out replacement is equivalent to generating an exponential random variate for each data point,
then selecting the point(s) with minimal variates. Importantly, variates can be drawn in paral-
lel batches using single instruction multiple data (SIMD) instructions, providing instruction-level
parallelism. Specifically, we use the SIMD-accelerated Polynomial Congruential Generator (PCG)
SIMDPCG [19, 11]. Because variates are drawn independently for each point, minicore can ad-
ditionally use multiple simultaneous threads to generate variates in parallel across processors.

While drawing the random variates involves a computationally expensive logarithm, we used
the SLEEF library to compute batches of logarithms accurately and in parallel using SIMD in-
structions. As described in [17], exponential random variates can be sampled equivalently either
by generated a random value v ∼ U(0, 1) and exponentiating by the inverse of the weight v

1
w ,

or, equivalently logging and dividing by the weight − ln v
w , which is more numerically stable. We

found this numerically stable alternative to be about 3 times as fast as exponentiating.
It is common for k-means++ implementations to select more than one potential new center

in a single step, ultimately choosing the center that yields the lowest overall cost. Our parallel
implementation accomplishes this using a per-thread heap data structure. SIMD instructions are
used to determine which from among the random variates in a chunk are small enough to be
added to the heap. If any are small enough, a serial loop extracts the variates and adds them. As a
thread proceeds along the array of variates, heap updates become rarer, allowing the vast majority
of the computation to remain SIMD parallelized. Finally, the samples in the per-thread heaps are
combined to obtain an overall sample.

We can eliminate a significant number of branches in building the heap using Population
Counts (popcount) and Count Trailing Zeros (CTZ) instructions. For each vector of new candi-
date variates, we compare it to the broadcasted ceiling, convert to a bitmask, and popcount, and
switch on the value of the popcount, performing the heap update once per nonzero in the bitmask.
We access the “current” bit by counting trailing zeros and indexing the relevant variate.

This sampling kernel is a core feature of our library, accessible with a C and C++ APIs in the
free and MIT-licensed [3] library. While we described the sampling approach in the context of
k-means++, it also forms the core of the localsearch++ algorithm described below.

localsearch++. Lattanzi and Sohler suggested an augmentation of k-means++ that adds sam-
pling with local search heuristics [18]. At each iteration in localsearch++, there is an additional
final step that selects the center that contributes the least to the objective. It eliminates that center
and replaces it by a newly-sampled point. We re-use the previous sampling kernel to implement
the weighted sampling required by this approach. To our knowledge, this is the first application
of localsearch++ to distance measures beyond squared Euclidean distance.

4.2 Distance measures and sparsity in minicore

While k-means++ is most commonly implemented using Euclidean distance, it has also been
shown that the k-means++ procedure yields aO(log k)-approximate solution in expectation when
using other distance measures and divergences [5]. Specifically, this applies to the class known as
Bregman divergences, as well as convex combinations thereof. This class includes relevant mea-
sures such as Kullback-Leibler Divergence (KLD), Jensen-Shannon Divergence (JSD), Squared Eu-
clidean distance (SQE) and others. Given this fact, we decided to implement the four distance
measures detailed in Table 2.

8

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 25, 2021. ; https://doi.org/10.1101/2021.03.24.436859doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.24.436859
http://creativecommons.org/licenses/by/4.0/


Name Abbreviation Formula

Squared Euclidean SQE
∑

i(Xi − Yi)2

Kullbeck-Liebler Divergence KLD
∑

i X̂i × log X̂i

Ŷi

Jensen-Shannon Divergence JSD 1
2 × (KL(X, X+Y

2 ) +KL(Y, X+Y
2 ))

Bhattacharyya Metric BATMET
√
1−
√
X ·
√
Y

Table 2: Formulas for distance measures implemented in minicore. Let Xi, Yi denote the ith

observation (gene) for cells X and Y . Let X̂i and Ŷi denote the scaled (normalized by total cell-
wide count) version of this entry. These all belong to the class of Bregman divergences, except the
JSD which is a convex combination of Bregman divergences.

An important concern when implementing this other measures is how they handle 0 values
in the data matrix. KL Divergences can be infinite for zero-valued entries, and other measures
can have issues with numerical stability in these cases. This can be addressed by the use of a
“prior” [29] of a Gamma(β, β) distribution, with a value β > 0. The a posteriori estimates are then
Ni + β, ensuring no 0-valued entries. These are effectively “pseudo-counts,” a common way to
adjust scRNA-seq data. Selecting β = 1 corresponds to a Dirichlet prior, while smaller values will
penalize missing or low-count observations, and larger values will move points closer together
for probability distribution-based distances.

This in turn creates another concern: a matrix adjusted by the prior will have no zero-valued
entries, essentially becoming a dense matrix. This greatly increases the space and time required,
making these distances impractical for large datasets. We instead compute distances with a lazy
prior adjustment for all features, accounting for the zero-count features in aggregate. This is par-
ticularly advantageous for sparse matrices with a small number of nonzero values (nnz). In par-
ticular, we can perform distance computations in O(nnz) space and time rather than O(d), where
d is the number of features. The general pseudocode for our distance computations is in Algo-
rithm 1 1. For perspective, the 4-million cell dataset with 63,561 columns would require 960GiB
of memory, nearly 100 times the 9.8GiB of the Compressed-Sparse Row (“CSR”) representation
when using 16-bit indices and data fields. In this way, minicore can cluster atlas-scale datasets
in reasonable working memory, operating directly on the sparse data.

4.3 Other optimizations

While minicore can cluster datasets in a fraction of the space the dense instantiation would re-
quire, it can scale even further while managing memory requirements through the use of memory-
mapping. This can be done in Python by loading the input data from disk via numpy.memmap
instead of numpy.fromfile, applied either to the original matrix (in the case of dense data) or on the
“data”, “indices”, and “indptr” arrays (in the case of CSR arrays).

Because these arrays are often traversed in predictable fashion, typically sequential, we can
off-load to disk, running transparently on datasets which significantly exceed machine RAM even
in compressed form.

We also use memory-mapping by default in localsearch++, as an array of size (k, npoints) may
exceed available memory, and its sequential access patterns are convenient for memory-mapped
data.

9

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 25, 2021. ; https://doi.org/10.1101/2021.03.24.436859doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.24.436859
http://creativecommons.org/licenses/by/4.0/


Algorithm 1: Generic Algorithm for Sparsity-Preserving distance computations given a
prior adjustment β

Result: Distance under prior β
Given: X = (Vx, Ix, Nx)
Y = (Vy, Iy, Ny),
d = dimensionality of data,
and β > 0;
X and Y are in triple notation, where (Vj , Ij , Nj) represents a compressed-sparse vector’s

“data”, “indices”, and “length” fields.
Nnsnz : number of shared non-zero fields in the merged pair of vectors
xi and yi are indexing variables into left and right sparse vectors
xi ← 0, yi ← 0
Bx and By = empty buffers;
Nnsnz = 0 Number of nonzeros in the merged vector
while xi < Nx or yi < Ny do

if xi < yi then
append(Bx, (V xi

x + β));
append(By, (β));
Nnsnz ← Nnsnz + 1
xi ← xi + 1;

end
else if yi < xi then

append(Bx, (β));
append(By, (V yi

y + β));
Nnsnz ← Nnsnz + 1
yi ← yi + 1;

end
else

append(Bx, (V xi
x + β));

append(By, (yxi
i + β));

Nnsnz ← Nnsnz + 1
xi ← xi + 1; yi ← yi + 1;

end
end
return (d−Nnsnz)× distance(0, 0) +

∑
x,y∈(Bx,By)

distance(x, y)

5 Acknowledgments

We thank Daniel Lemire and Wenzel Jakob for their fast SIMD Polynomial Congruential Generator
Pseudorandom Number Generators.

Part of this research project was conducted using computational resources at the Maryland
Advanced Research Computing Center (MARCC).

6 Funding

DNB and BL were supported by NIH/NIGMS grants R01GM118568 and R35GM139602 to BL.
SCH and ND were supported by NIH/NHGRI R00HG009007 to SCH. This work was also sup-
ported by CZF2019-002443 (SCH) from the Chan Zuckerberg Initiative DAF, an advised fund of
Silicon Valley Community Foundation.

10

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 25, 2021. ; https://doi.org/10.1101/2021.03.24.436859doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.24.436859
http://creativecommons.org/licenses/by/4.0/


References

[1] Ahn, E., Kumar, A., Feng, D., Fulham, M.J., Kim, J.: Unsupervised feature learning with
k-means and an ensemble of deep convolutional neural networks for medical image classifi-
cation. CoRR, arXiv:1906.03359 (2019)

[2] Arthur, D., Vassilvitskii, S.: K-means++: The advantages of careful seeding. SODA p.
1027–1035 (2007)

[3] Baker, D.: libsimdsampling. http://github.com/dnbaker/libsimdsampling (2008),
[Online; accessed 7 Feb, 2021]

[4] Balcan, M.F.F., Ehrlich, S., Liang, Y.: Distributed k-means and k-median clustering on general
topologies. Advances in Neural Information Processing Systems 26, 1995–2003 (2013)

[5] Banerjee, A., Merugu, S., Dhillon, I.S., Ghosh, J.: Clustering with bregman divergences. Jour-
nal of Machine Learning Research 6(58), 1705–1749 (2005), http://jmlr.org/papers/
v6/banerjee05b.html

[6] Bottou, L., Bengio, Y.: Convergence properties of the k-means algorithms. In: Advances in
neural information processing systems. pp. 585–592 (1995)

[7] Brennecke, P., Anders, S., Kim, J.K., Kołodziejczyk, A.A., Zhang, X., Proserpio, V., Baying,
B., Benes, V., Teichmann, S.A., Marioni, J.C., Heisler, M.G.: Accounting for technical noise in
single-cell RNA-seq experiments. Nat Methods 10(11), 1093–1095 (Nov 2013)

[8] Cao, J., O’Day, D.R., Pliner, H.A., Kingsley, P.D., Deng, M., Daza, R.M., Zager, M.A., Aldinger,
K.A., Blecher-Gonen, R., Zhang, F., Spielmann, M., Palis, J., Doherty, D., Steemers, F.J., Glass,
I.A., Trapnell, C., Shendure, J.: A human cell atlas of fetal gene expression. Science 370(6518)
(11 2020)

[9] Cao, J., Spielmann, M., Qiu, X., Huang, X., Ibrahim, D.M., Hill, A.J., Zhang, F., Mundlos,
S., Christiansen, L., Steemers, F.J., Trapnell, C., Shendure, J.: The single-cell transcriptional
landscape of mammalian organogenesis. Nature 566(7745), 496–502 (02 2019)

[10] Chen, X., Cai, D.: Large scale spectral clustering with landmark-based representation. In:
Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence. p. 313–318.
AAAI’11, AAAI Press (2011)

[11] Daniel Lemire, W.J.: Simdpcg. https://github.com/lemire/simdpcg (2013)

[12] Datlinger, P., Rendeiro, A.F., Boenke, T., Krausgruber, T., Barreca, D., Bock, C.:
Ultra-high throughput single-cell rna sequencing by combinatorial fluidic indexing.
bioRxiv (2019). https://doi.org/10.1101/2019.12.17.879304, https://www.biorxiv.org/
content/early/2019/12/18/2019.12.17.879304

[13] DeMeo, B., Berger, B.: Hopper: a mathematically optimal algorithm for sketching biological
data. Bioinformatics 36, i236–i241 (07 2020)

[14] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data.
CoRR abs/1106.1379 (2011), http://arxiv.org/abs/1106.1379

11

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 25, 2021. ; https://doi.org/10.1101/2021.03.24.436859doi: bioRxiv preprint 

http://github.com/dnbaker/libsimdsampling
http://jmlr.org/papers/v6/banerjee05b.html
http://jmlr.org/papers/v6/banerjee05b.html
https://github.com/lemire/simdpcg
https://www.biorxiv.org/content/early/2019/12/18/2019.12.17.879304
https://www.biorxiv.org/content/early/2019/12/18/2019.12.17.879304
http://arxiv.org/abs/1106.1379
https://doi.org/10.1101/2021.03.24.436859
http://creativecommons.org/licenses/by/4.0/


[15] Hicks, S.C., Liu, R., Ni, Y., Purdom, E., Risso, D.: mbkmeans: Fast clustering for
single cell data using mini-batch k-means. PLOS Computational Biology 17(1), 1–18
(01 2021). https://doi.org/10.1371/journal.pcbi.1008625, https://doi.org/10.1371/
journal.pcbi.1008625

[16] Hie, B., Cho, H., DeMeo, B., Bryson, B., Berger, B.: Geometric Sketching Compactly Summa-
rizes the Single-Cell Transcriptomic Landscape. Cell Syst 8(6), 483–493 (06 2019)

[17] Hübschle-Schneider, L., Sanders, P.: Communication-efficient (weighted) reservoir sampling
from fully distributed data streams (2020)

[18] Lattanzi, S., Sohler, C.: A better k-means++ algorithm via local search. In: Chaudhuri, K.,
Salakhutdinov, R. (eds.) Proceedings of the 36th International Conference on Machine Learn-
ing. Proceedings of Machine Learning Research, vol. 97, pp. 3662–3671. PMLR (09–15 Jun
2019), http://proceedings.mlr.press/v97/lattanzi19a.html

[19] Lemire, D.: Simdpcg. https://lemire.me/blog/2018/06/07/
vectorizing-random-number-generators-for-greater-speed-pcg-and-xorshift128-avx-512-edition/
(2016-2018)

[20] Lloyd, S.P.: Least squares quantization in pcm. IEEE Transactions on Information Theory 28,
129–137 (1982)

[21] Lloyd, S.P.: Least squares quantization in pcm. IEEE Trans. Information Theory 28, 129–136
(1982)

[22] Lucic, M., Bachem, O., Krause, A.: Strong coresets for hard and soft bregman clustering with
applications to exponential family mixtures (2016)

[23] Needell, D., Srebro, N., Ward, R.: Stochastic gradient descent, weighted sampling, and the
randomized kaczmarz algorithm (2015)

[24] Rozenblatt-Rosen, O., Stubbington, M.J.T., Regev, A., Teichmann, S.A.: The Human Cell At-
las: from vision to reality. Nature 550(7677), 451–453 (10 2017)

[25] Sculley, D.: Web-Scale k-Means Clustering. In: Proceedings of the 19th International Confer-
ence on World Wide Web. p. 1177–1178. WWW ’10, Association for Computing Machinery,
New York, NY, USA (2010). https://doi.org/10.1145/1772690.1772862, https://doi.org/
10.1145/1772690.1772862

[26] Shibata, N., Petrogalli, F.: Sleef: A portable vectorized library of c standard mathemat-
ical functions. IEEE Transactions on Parallel and Distributed Systems 31(6), 1316–1327
(Jun 2020). https://doi.org/10.1109/tpds.2019.2960333, http://dx.doi.org/10.1109/
TPDS.2019.2960333

[27] Townes, F.W., Hicks, S.C., Aryee, M.J., Irizarry, R.A.: Feature selection and dimension re-
duction for single-cell RNA-Seq based on a multinomial model. Genome Biol 20(1), 295 (12
2019)

[28] Wei, Y., Jang-Jaccard, J., Sabrina, F., McIntosh, T.R.: Msd-kmeans: A novel algorithm for
efficient detection of global and local outliers. CoRR abs/1910.06588 (2019), http://arxiv.
org/abs/1910.06588

12

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 25, 2021. ; https://doi.org/10.1101/2021.03.24.436859doi: bioRxiv preprint 

https://doi.org/10.1371/journal.pcbi.1008625
https://doi.org/10.1371/journal.pcbi.1008625
http://proceedings.mlr.press/v97/lattanzi19a.html
https://lemire.me/blog/2018/06/07/vectorizing-random-number-generators-for-greater-speed-pcg-and-xorshift128-avx-512-edition/
https://lemire.me/blog/2018/06/07/vectorizing-random-number-generators-for-greater-speed-pcg-and-xorshift128-avx-512-edition/
https://doi.org/10.1145/1772690.1772862
https://doi.org/10.1145/1772690.1772862
http://dx.doi.org/10.1109/TPDS.2019.2960333
http://dx.doi.org/10.1109/TPDS.2019.2960333
http://arxiv.org/abs/1910.06588
http://arxiv.org/abs/1910.06588
https://doi.org/10.1101/2021.03.24.436859
http://creativecommons.org/licenses/by/4.0/


[29] Witten, D.M.: Classification and clustering of sequencing data using a poisson model. The
Annals of Applied Statistics 5(4), 2493–2518 (Dec 2011). https://doi.org/10.1214/11-aoas493,
http://dx.doi.org/10.1214/11-AOAS493

[30] Yang, W., Bilmes, J., Noble, W.S.: Submodular sketches of single-cell rna-seq measurements.
In: Proceedings of the 11th ACM International Conference on Bioinformatics, Computational
Biology and Health Informatics. BCB ’20, Association for Computing Machinery, New York,
NY, USA (2020). https://doi.org/10.1145/3388440.3412409, https://doi.org/10.1145/
3388440.3412409

[31] Yang, W., Schreiber, J., Bilmes, J., Noble, W.S.: Submodular sketches of single-cell rna-seq
measurements. bioRxiv (2020). https://doi.org/10.1101/2020.05.01.066738, https://www.
biorxiv.org/content/early/2020/05/07/2020.05.01.066738

[32] Zheng, G.X., Terry, J.M., Belgrader, P., Ryvkin, P., Bent, Z.W., Wilson, R., Ziraldo, S.B.,
Wheeler, T.D., McDermott, G.P., Zhu, J., Gregory, M.T., Shuga, J., Montesclaros, L., Under-
wood, J.G., Masquelier, D.A., Nishimura, S.Y., Schnall-Levin, M., Wyatt, P.W., Hindson, C.M.,
Bharadwaj, R., Wong, A., Ness, K.D., Beppu, L.W., Deeg, H.J., McFarland, C., Loeb, K.R., Va-
lente, W.J., Ericson, N.G., Stevens, E.A., Radich, J.P., Mikkelsen, T.S., Hindson, B.J., Bielas,
J.H.: Massively parallel digital transcriptional profiling of single cells. Nat Commun 8, 14049
(01 2017)

13

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 25, 2021. ; https://doi.org/10.1101/2021.03.24.436859doi: bioRxiv preprint 

http://dx.doi.org/10.1214/11-AOAS493
https://doi.org/10.1145/3388440.3412409
https://doi.org/10.1145/3388440.3412409
https://www.biorxiv.org/content/early/2020/05/07/2020.05.01.066738
https://www.biorxiv.org/content/early/2020/05/07/2020.05.01.066738
https://doi.org/10.1101/2021.03.24.436859
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Results
	Fast and accurate center finding with minicore k-means++
	minicore supports distance metrics for both continuous and count data, and probability distributions
	minicore supports k-means and mini-batch k-means clustering algorithms

	Discussion
	Methods
	k-means++ algorithms in minicore
	Distance measures and sparsity in minicore
	Other optimizations

	Acknowledgments
	Funding

