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Abstract 
 
Interoception, the perception of bodily states, is thought to be inextricably linked to affective qualities such as anxiety. 
While interoception spans sensory to metacognitive processing, it is not clear whether anxiety is differentially related 
to these processing levels. Here we investigated this question in the domain of breathing, using computational 
modelling and high-field (7 Tesla) fMRI to assess brain activity relating to dynamic changes in respiratory resistance 
of varying predictability. Notably, the anterior insula was associated with both interoceptive prediction certainty and 
prediction errors, suggesting an important role in representing and updating models of the body. Individuals with low 
vs. moderate anxiety traits showed differential anterior insula activity for prediction certainty. Multimodal analyses 
of data from fMRI, computational assessments of metacognition, and questionnaires demonstrated that anxiety-
interoception links span all levels, from perceptual sensitivity to metacognition, with the largest effects seen at higher 
levels of interoceptive processes. 
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Introduction 
 
We perceive the world through our body. While questions regarding how we sense and interpret our external 
environment (exteroception) have been highly prominent across centuries of research, the importance and cognitive 
mechanisms of monitoring our internal environment have only more recently gained traction within the neuroscience 
community1–4. ‘Interoception’, the perception of our body and inner physiological condition2, constitutes a 
fundamental component of cerebral processes for maintaining bodily homeostasis5–9.  However, it has also been 
suggested to play a wider role within systems governing emotion, social cognition and decision making4,10. An 
impaired ability to monitor bodily signals has also been hypothesised to exist across a host of psychiatric illnesses11,12, 
and in particular for anxiety13,14. As sympathetic arousal is a reflexive response to a perceived threat, many symptoms 
associated with anxiety manifest themselves in the body (such as a racing heart or shortness of breath). Conversely, 
perceiving bodily states compatible with sympathetic arousal in the absence of external triggers can itself induce 
anxiety14. Miscommunications between the brain and body are thus thought to represent a key component of anxiety, 
where bodily sensations may be under-, over- or mis-interpreted13, to initiate and perpetuate symptoms. 

Studying interoception is not without significant challenges, as bodily signals are both noisy and difficult to 
safely manipulate11. Controlled manipulations of respiratory processes represent a promising way to address these 
challenges: suitable experimental setups allow for dynamic yet safe changes in respiration15–22; furthermore, given 
the vitally important role of breathing for survival, respiratory changes are highly salient. Indeed, laboured, 
unsatisfied, unexpected or uncontrolled breathing can itself be perceived as a dangerous and debilitating interoceptive 
threat23–25. Beyond respiratory diseases24–29, aversive breathing symptoms have been noted to be particularly 
prevalent in many individuals suffering from psychiatric conditions such as anxiety and panic disorder14,30–34. 
 Work towards conceptualising interoceptive dimensions has provided us with a framework to integrate the 
growing body of interoception research. Instead of treating interoception as a single entity, studies now consider both 
different sensory channels (e.g., organ-specific and humoral signals) and cognitive layers of interoceptive 
processing35. These layers encompass multiple levels, ranging from metrics of afferent signal strength at ‘lower’ 
levels (using techniques such as heartbeat evoked potentials)36,37 and psychophysical properties (such as measuring 
perceptual sensitivity38–40) to psychological and cognitive components at ‘higher’ levels35. Notable domains within 
these higher levels include attention toward bodily signals15,41,42, static and dynamic beliefs and models of body 
state2,4,35, and insight into both our interoceptive abilities43–46 and the accuracy of our interoceptive beliefs6,40 
(‘metacognition’). Importantly, research into dynamic models of body state has also connected the interoceptive 
literature to that of learning, where influential (Bayesian) theories of inference about the external world, e.g. 
predictive coding47–50, have been extended to interoception and propose how brains may build models of the changing 
internal environment2,3,6,51,52. 

Here, we build on these conceptual advances and assess the relationship between anxiety and breathing-
related interoception across the multiple hierarchical levels of processing. While previous work has investigated links 
between anxiety and lower-level breathing sensitivity44,53, higher-level beliefs13,45,54,55 or metacognition56 in isolation, 
a unifying perspective is yet to emerge and the relative size of anxiety-associated effects across these hierarchical 
levels is not known. Similarly, we lack insights into dynamic (trial-by-trial) interoceptive processes and underlying 
neurophysiological mechanisms. To address these issues, we adopted a multimodal experimental approach: we 
investigated multiple levels of breathing-related interoceptive processing, including low-level perceptual sensitivity 
and related higher-level metacognition via the Filter Detection Task (FDT)46, subjective interoceptive beliefs via 
questionnaires, and trial-by-trial behaviour and brain activity in a novel Breathing Learning Task (BLT). Both the 
FDT and trial-by-trial behavioural and functional magnetic resonance imaging (fMRI) data from the BLT were 
analysed with separate computational models. All tasks were performed by two matched groups of low and moderate 
anxiety individuals, allowing us to evaluate the relationship between anxiety and each level of interoceptive 
processing across the hierarchy, from interoceptive sensitivity to metacognition. 
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Methods 
 
Participants 
Thirty individuals (pre-screened online for MRI compatibility, right handedness, non-smoking status, and no history 
of major somatic or psychological conditions) were recruited into each of two groups, either with very low anxiety 
(score of 20-25 on the Spielberger State-Trait Anxiety Inventory 57; STAI-T), or moderate anxiety (score>=35 STAI-
T). The resulting mean (±std) trait anxiety score for the low anxiety group was 23.2±1.8 and for the moderate anxiety 
group 38.6±4.6. Groups were matched for age and sex (15 females in each group), with mean (±std) ages of 25.4±3.9 
and 24.2±5.0 years for low and moderate anxiety groups, respectively. Behavioural data (not used in any other 
analyses) from an additional 8 participants (four from each group, two females in each) served to determine model 
priors. All participants signed a written, informed consent, and the study was approved by the Cantonal Ethics 
Committee Zurich (Ethics approval BASEC-No. 2017-02330). Each participant completed three tasks over two 
testing sessions: a behavioural session that included questionnaires and a task probing interoceptive sensitivity and 
metacognition (the Filter Detection Task, or FDT), and a brain imaging session where the Breathing Learning Task 
(BLT) was paired with fMRI. Each of these tasks and analyses are described below, and all analyses were pre-
specified in time-stamped analysis plans (https://gitlab.ethz.ch/tnu/analysis-plans/harrison_breathing_anxiety). 
 
Questionnaires 
The main questionnaire set employed was designed to firstly capture subjective affective measures, and secondly 
both general and breathing-specific subjective interoceptive beliefs. The assignment of participants to groups was 
based on the Spielberger Trait Anxiety Inventory (STAI-T)57. Affective qualities that were additionally assessed 
included state anxiety (Spielberger State Anxiety Inventory; STAI-S57), symptoms that are part of anxiety disorder 
(Generalised Anxiety Disorder Questionnaire; GAD-758), anxiety sensitivity (anxiety regarding the symptoms of 
anxiety; Anxiety Sensitivity Index; ASI-359), and symptoms of depression (Centre for Epidemiologic Studies 
Depression Scale; CES-D60). To obtain self-reports of body awareness we used the Body Perception Questionnaire 
(BPQ)61, while the Multidimensional Assessment of Interoceptive Awareness Questionnaire (MAIA)62 was used to 
measure positive and ‘mindful’ attention towards body symptoms. We also measured breathing-related 
catastrophising using the Pain Catastrophising Scale (PCS-B)63, and breathing-related vigilance using the Pain 
Vigilance Awareness Questionnaire (PVQ-B)64 (in both questionnaires, the word ‘breathing’ was substituted for 
‘pain’). Finally, the following supplementary questionnaires were included to explore possible contributing factors 
(e.g. general positive and negative affect, resilience, self-efficacy and fatigue): Positive Affect Negative Affect 
Schedule (PANAS-T)65, Connor-Davidson Resilience Scale66, General Self-Efficacy Scale67, Fatigue Severity Scale 
(FSS)68. The STAI-T and CES-D were completed online as part of the pre-screening process; all other questionnaires 
were completed in the behavioural session at the laboratory. 
 
Analysis: Group differences were tested individually for the 13 scores resulting from the 12 questionnaires, with all 
questionnaires included except the trait anxiety score that was used to screen participants and assign them to groups. 
The data that was used for group comparisons across all modalities were first tested for normality (Anderson-Darling 
test, with p<0.05 rejecting the null hypothesis of normally distributed data), and group differences were determined 
using either two-tailed independent t-tests or Wilcoxon rank sum tests. For the questionnaires, Bonferroni correction 
for the 13 tests was applied, requiring p<0.004 for a corrected significant group difference. Results with p<0.05 not 
surviving correction are reported as exploratory for questionnaires as well as all other data. In a secondary exploratory 
step, group difference analyses were then conducted on the questionnaires’ subcomponent scores (22 scores); please 
see Supplementary Material. 
 
Filter detection task 
Stimuli and task description: To systematically test properties of breathing perception and related metacognition, we 
utilised a perceptual threshold breathing task (the Filter Detection Task; FDT)46. The FDT was used to determine 
interoceptive perceptual sensitivity, decision bias, metacognitive bias (self-reported confidence) and metacognitive 
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performance (congruency between performance and confidence scores) regarding detection of very small variations 
in an inspiratory load. In this task (outlined in Figure 2A), following three baseline breaths either an inspiratory load 
was created via the replacement of an empty filter with combinations of clinical breathing filters, or the empty filter 
was removed and restored onto the system (sham condition) for three further breaths. All filter changes were 
performed behind participants, out of their field of view. After each trial of six breaths, participants were asked to 
decide whether or not a load had been added, as well as reporting their confidence in their decision on a scale of 1-
10 (1=not at all confident in decision, 10=extremely confident in decision). An adapted staircase algorithm was 
utilised to alter task difficulty until participants were between 60-85% accuracy46, and 60 trials were completed at 
the corresponding level of filter load. Respiratory threshold detection45, metacognitive bias69 and interoceptive 
metacognitive performance56 have previously been linked to anxiety symptomology. 
 
Analysis: Breathing-related interoceptive sensitivity (i.e. perceptual threshold) was taken as the number of filters 
required to keep task performance between ~60-85% accuracy. Both decision bias and metacognitive performance 
from the FDT were analysed using the hierarchical HMeta-d statistical model70. This model firstly utilises signal 
detection theory71 to provide single subject parameter estimates for task difficulty (d’; not analysed as performance 
is fixed between 60-85% by design) and decision bias (c, akin to over- or under-reporting the presence of resistance 
with values below and above zero, respectively), as well as using a hierarchical Bayesian formulation of 
metacognitive performance (Mratio, calculated by fitting metacognitive sensitivity meta-d’, then normalising by 
single subject values for d’). Finally, metacognitive bias was calculated as the average confidence scores across all 
analysed trials. Hypothesised group differences were based on previous findings, where respiratory threshold 
detection level was hypothesised to be higher44,53, perceptual decisions biased towards ‘yes’ (or deciding the 
resistance was present; denoted by more negative values for c), metacognitive bias to be lower69 and interoceptive 
metacognitive performance to be lower56 with greater anxiety. All hypotheses had been pre-specified in an analysis 
plan (https://gitlab.ethz.ch/tnu/analysis-plans/harrison_breathing_anxiety). Bonferroni correction for the four tests 
was applied, requiring p<0.013 for a corrected significant group difference. 
 
Breathing Learning Task 
Stimuli and task description: To measure behaviour and brain activity concerning the dynamic updating of 
interoceptive beliefs or expectations under uncertainty, a novel associative learning task was developed and 
employed during functional magnetic resonance imaging (fMRI). In this Breathing Learning Task (BLT), 80 trials 
were performed where on each trial two visual cues were paired with either 80% or 20% chance of a subsequent 
inspiratory resistive load. The visual information for the task was presented through the VisualStim system 
(Resonance Technology, Northridge, CA, US). As outlined in Figure 1, participants were required to explicitly 
predict (via button press) whether they would experience a breathing resistance following the presentation of one of 
the cues. Following this prediction and a short (2.5s) pause, a circle appeared on the screen to indicate the stimulus 
period (5s), where participants either experienced inspiratory resistance (70% of their maximal inspiratory resistance, 
measured in the laboratory, delivered via a PowerBreathe KH2; PowerBreathe International Ltd, Warwickshire, UK) 
or no resistance was applied. Rest periods of 7-9s were pseudo-randomised between trials. For the inspiratory 
resistances we used a mechanical breathing system that allows for remote administration and monitoring of 
inspiratory resistive loads (for technical details on resistance administration see Supplementary Figure 1 and previous 
work22). The cue presentations were balanced such that half of all trials delivered the inspiratory resistance. Following 
an initial stable period of 30 trials, the stimulus-association pairing was swapped four times during the remainder of 
the 80 trials (i.e., repeated reversals; Figure 1). Participants were explicitly told that the cues acted as a matched pair 
that could only swap in probability. The trial sequence was pseudorandom and fixed across subjects to ensure 
comparability of the induced learning process. Following every stimulus, participants were asked to rate ‘How 
difficult was it to breathe?”, on a visual analogue scale (VAS) from “Not at all difficult” to “Extremely difficult”. 
Immediately following the final trial of the task, participants were also asked to rate “How anxious were you about 
your breathing” on a VAS from “Not at all anxious” to “Extremely anxious”. 

Two representations of trial-wise quantities were employed for subsequent analyses of data from this task. 
First, a computational model (see below) provided dynamic estimates of both predictions and prediction errors on 
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each trial. Second, a standard categorical approach represented trial-by-trial whether the subjects’ prediction 
decisions indicated the anticipated presence or absence of an upcoming inspiratory resistance, as well as unsurprising 
(i.e. following correct predictions) and surprising (i.e. following incorrect predictions) respiratory stimuli. The latter 
results are presented in the Supplementary Material. 
 
Computational modelling of behavioural data: For the trial-by-trial analysis of behavioural data from the BLT, we 
considered three computational models that are routinely used for associative learning tasks. This included a Rescorla 
Wagner (RW) model (Equation 1) and 2 variants of the Hierarchical Gaussian Filter (HGF) with 2 or 3 levels (HGF2 
and HGF3). While the RW model assumes a fixed learning rate, the HF allows for online adaption of learning rate 
as a function of volatility. All learning models were paired with a unit-square sigmoid response model (Equation 2) 
and were implemented using the Hierarchical Gaussian Filter Toolbox72,73 (version 5.3) from the open-source TAPAS 
software74 (http://www.translationalneuromodeling.org/tapas/). The alternative models were formally compared 
using random effects Bayesian model selection (BMS) as implemented in SPM1275,76. BMS utilises the log model 
evidence (LME) to determine the most likely amongst a set of competing hypotheses (i.e. models) that may have 
generated observed data, and is robust to outliers75. Our analysis plan had specified that a model would be chosen as 
the ‘winning’ model if it demonstrated a protected exceedance probability (PXP) greater than 90%. As explained in 
the Results section, none of our models reached this criterion (although simulations indicated that the proposed 
models could in principle be differentiated; see Supplementary Material for details). We therefore applied the 
simplest of the models considered (i.e. the RW model), as pre-specified in our analysis plan 
(https://gitlab.ethz.ch/tnu/analysis-plans/harrison_breathing_anxiety). 

In our application of the RW model as a perceptual model, the update equation corresponded to a simple 
delta-learning rule with a single free parameter, the learning rate77: 
 

𝑣("#$) = 𝑣(") + 𝛼𝛿(") 
(Equation 1) 

 
where 𝑣("#$) is the predicted probability for a specific outcome (encoded as 0 or 1) on trial (𝑘 + 1), 𝑣(") is the 
estimated outcome probability on the 𝑘th trial, α ∈ [0, 1] is a constant learning rate parameter, and 𝛿(") is the prediction 
error magnitude at trial 𝑘. 

The above perceptual model was paired with a unit-square sigmoid response model72. This response model 
accounts for decision noise by mapping the predicted probability 𝑣(") that the next outcome will be 1 onto the 
probabilities 𝑝,𝑦(") = 1. and 𝑝,𝑦(") = 0. that the agent will choose response 1 or 0, respectively: 
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(Equation 2) 
 
Here, 𝑦(") represents the expressed decision of a subject given the cue (contingency pairs) on trial 𝑘. The parameter 
𝜁 captures how deterministically y is associated with 𝑣. The higher 𝜁, the more likely the agent is to choose the option 
that is more in line with its current prediction. The decision model uses the perceptual model indirectly via its 
inversion72, given the trajectories of trial-wise cues and responses (see Figure 1).  
 In our paradigm, trial-wise outcomes are categorical (resistance vs. no resistance), which raises the question 
of how outcomes should be coded in the computational model. One way would be to model two trajectories, 
separately for resistance and no resistance outcomes, and indicate on any given trial whether the respective outcome 
has occurred (1) or not (0). However, due to the fixed coupling of contingencies in our paradigm (see above) – which 
the participants were explicitly instructed about – a computationally more efficient approach that requires only a 
single model is to code the outcome in relation to the cue. Here, we adopted this coding in “contingency space”, 
following the same procedure as in the supplementary material of Iglesias and colleagues78. Specifically, due to the 
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fixed coupling of contingencies in our paradigm (see above), we represented the occurrence of “no resistance” given 
one cue and the occurrence of “resistance” given the other cue as 1, and both other cue-outcome combinations as 0 
(note that under the subsequent transformations described below, the resulting trajectories of predictions and 
prediction errors would remain identical if the opposite choice had been made). 

Maximum a posteriori (MAP) parameter estimates were obtained using the Brayden-Fletcher-Goldfarb-
Shanno algorithm, as implemented in the HGF toolbox. Prior means and variances were determined using the 
distribution of maximum likelihood estimates fit across 8 pilot participants who were distinct from the participants 
of our study (see Supplementary Material for prior means and variances determined from the pilot data). 

Group differences in model parameter estimates of learning rate (𝛼) and inverse decision temperature (𝜁), as 
well as perception measures of stimulus intensity (averaged across all trials), breathing-related anxiety (rated 
immediately following the task) and prediction response times were tested. Bonferroni correction for five tests was 
applied, requiring p<0.01 for a corrected significant group difference. Results from additional exploratory models 
encompassing anxiety, depression and gender are reported in the Supplementary Material. 

Following random effects Bayesian model selection (BMS75,76), the chosen model was examined in each 
participant with regard to whether it demonstrated an adequate fit. To this end, model fit in each individual was 
compared to the likelihood of obtaining the data by chance79 using the likelihood ratio test (lratiotest function) 
provided in MATLAB. The final behavioural and brain imaging analyses presented here were run without two 
subjects in which non-significant (p>0.05) differences to randomness were encountered. 
 
 

 
Figure 1. The ‘Breathing Learning Task’ (BLT), used to measure dynamic learning of breathing-related stimuli. A) An overview 
of the single trial structure, where one of two cues were presented and participants were asked to predict (based on the cue) 
whether they thought that an inspiratory breathing resistance would follow. When the circle appeared on the screen, either an 
inspiratory resistance or no resistance was applied for 5 seconds, with the resistance set to 70% of the individual’s maximal 
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inspiratory resistance. After every trial, participants were asked to rate the intensity of the previous stimulus. The trace in green 
is an example of a pressure trace recorded at the mouth. B) The 80-trial trajectory structure of the probability that one cue 
predicts inspiratory resistance (black trace), where the alternative cue has an exactly mirrored contingency structure, together 
with example responses (circles). Filled black circles represent stimuli that were correctly predicted, and open black circles 
represent stimuli that were not correctly predicted. Example fitted prediction certainty (top) and prediction error (bottom) 
trajectories are overlaid (red traces). The example trajectories were taken from the participant with the closest learning rate to 
the mean value across all participants. 
 
 
Constructing computationally informed regressors: The trajectories of predictions and prediction errors estimated 
by the RW model were used to construct regressors representing computational trial-by-trial quantities of interest for 
subsequent GLM analyses. In order to investigate the salient effects of inspiratory resistance as an interoceptive 
stimulus, we separated trials into “negative” (occurrence of resistance) and “positive” (no resistance) events and 
represented these events by separate regressors in the GLM (see Figure 4). To achieve this, we first transformed both 
the original prediction and prediction error values (estimated in contingency space) back into the stimulus space, 
according to the cue presented at each trial: 
 

𝑣(")
)*+, ≝ 7

𝑣("), 𝑖𝑓	𝑐𝑢𝑒	𝑡𝑦𝑝𝑒 = 1
1 − 𝑣("), 𝑖𝑓	𝑐𝑢𝑒	𝑡𝑦𝑝𝑒 = 2 

(Equation 3) 
 

𝛿(")
)*+, ≝ 7

𝛿("), 𝑖𝑓	𝑐𝑢𝑒	𝑡𝑦𝑝𝑒 = 1
−𝛿("), 𝑖𝑓	𝑐𝑢𝑒	𝑡𝑦𝑝𝑒 = 2 

(Equation 4) 
 
Here, 𝑣(")

)*+, and 𝛿(")
)*+, now represent the prediction and prediction error values in stimulus space, with 𝑣(")

)*+, = 1 
representing maximal predictions of no resistance and 𝑣(")

)*+, = 0 maximal predictions of resistance. Similarly, 
𝛿(")
)*+, = 1 represents maximal prediction errors of no resistance and 𝛿(")

)*+, = −1 maximal prediction errors of 
resistance (see Supplementary Figure 5 for details). 

Secondly, trial-wise prediction values were then transformed to represent the deviation from maximally 
uninformed predictions (i.e., guessing), by taking the distance from 0.5 (see Equations 5 and 6). In the RW model 
prediction values are probabilities bounded by 0 and 1, hence the distance from 'guessing' (at 0.5) reflects the 
‘certainty’ by which the absence or presence of respiratory resistance was predicted. This simple transformation 
enabled us to take into account the role of (un)certainty of predictions – which plays a crucial role in interoception-
oriented theories of anxiety13,80 but, in contrast to Bayesian models, is not represented explicitly in the RW model. 
Specifically, separately for the two event types, we defined certainty of positive predictions (no resistance) and of 
negative predictions (resistance) as the absolute deviation from a prediction with maximum uncertainty (i.e., 0.5): 
 

If 𝑣(")
)*+, > 0.5  𝑣(")

-.) ≝ 𝑣(")
)*+, − 0.5 

(Equation 5) 
 

If 𝑣(")
)*+, < 0.5  𝑣(")

/01 ≝ 0.5 − 𝑣(")
)*+, 

(Equation 6) 
 
Here, both 𝑣(")

-.) and 𝑣(")
/01 exist between 0 and 0.5, with values closer to zero indicating less certain predictions.  

Like predictions, prediction errors were also divided between positive (no resistance) and negative events 
(resistance) values. This was again determined as the absolute deviation from the mid-point of the prediction errors 
(i.e., 0): 
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If 𝛿(") > 0  𝛿(")
-.) ≝ 𝛿(") 

(Equation 7) 
 

If 𝛿(") < 0  𝛿(")
/01 ≝ −𝛿(")  

(Equation 8) 
 
Here, both 𝛿(")

-.) and 𝛿(")
/01 exist between 0 and 1, with values closer to zero indicating smaller prediction errors. Note 

that this derivation gives prediction error values identical to those that would have been obtained by modelling two 
separate trajectories for resistance and no resistance outcomes (see above and 78). 
 
Physiological data processing: Physiological data were recorded at a sampling rate of 1000 Hz, and included heart 
rate, chest distension, pressure of expired carbon dioxide (PETCO2) and oxygen (PETO2), and pressure at the mouth 
(for equipment details see22 and Supplementary Material). In addition to the task, small boluses of a CO2 gas mixture 
(20% CO2; 21% O2; balance N2) were administered during some rest periods, allowing for de-correlation of any 
changes in PETCO2 from task-related neural activity, as previously described18,20,21,81. 

Physiological noise regressors were prepared for inclusion into single-subject general linear models (GLMs, 
described below). Linear interpolation between PETCO2 peaks was used to form an additional CO2 noise regressor, 
which was convolved using a response function based on the haemodynamic response function (HRF) provided by 
SPM with delays of 10s and 20s for the overshoot and undershoot, respectively82. Temporal and dispersion 
derivatives of this CO2 noise regressor were also included. An additional three cardiac- and four respiratory-related 
waveforms (plus one interaction term) were created using PhysIO83. Four respiratory volume per unit time (RVT) 
regressors (delays: -5, 0, 5, 10) were created using the Hilbert-transform estimator in PhysIO84, and convolution with 
a respiratory response function83. 
 
Magnetic resonance imaging: MRI was performed using a 7 Tesla scanner (Philips Medical Systems: Achieva, 
Philips Healthcare, Amsterdam, The Netherlands) and a 32 channel Head Coil (Nova Medical, Wilmington, 
Massachusetts, United States of America). A T2*-weighted, gradient echo EPI was used for functional scanning, 
using a reduced field of view (FOV) with an axial-oblique volume centred over the insula and midbrain structures. 
The FOV comprised 32 slices (sequence parameters: TE 30ms; TR 2.3s; flip angle 75°; voxel size 1.5x1.5x1.5mm; 
slice gap 0.15mm; SENSE factor 3; ascending slice acquisition), with 860 volumes (scan duration 33 mins 9s). A 
matched whole-brain EPI scan (96 slices) was immediately acquired following the task scan for registration purposes. 
Additionally, a whole-brain T1-weighted structural scan with 200 slices was acquired (MPRAGE, sequence 
parameters: TE 4.6ms; TR 10ms; segment-TR 3000ms; TI 1000ms; flip angle 8°; voxel size 0.8x0.8x0.8mm; 
bandwidth; 153.1Hz/Px; sagittal slice orientation). Finally, a task-free (resting-state) functional scan (250 volumes) 
was obtained, with participants instructed to keep their eyes open and fixating a white fixation cross on a black screen. 
 
MRI preprocessing: MRI data analysis was performed using a combination of FSL version 6.0.1 (the Oxford Centre 
for Functional Magnetic Resonance Imaging of the Brain Software Library, Oxford, UK85) and SPM12 (Statistical 
Parametric Mapping software, London, UK) as prespecified in our analysis plan (https://gitlab.ethz.ch/tnu/analysis-
plans/harrison_breathing_anxiety). Image preprocessing was performed using FSL, including motion correction 
(MCFLIRT86), removal of non-brain structures (BET87), and high-pass temporal filtering (Gaussian-weighted least-
squares straight line fitting; 100s cut-off period)88. Independent component analysis (ICA) was used to identify noise 
due to motion, scanner and cerebrospinal fluid artefacts89, and the timeseries of these noise components were entered 
into single-subject GLMs (described below) as nuisance regressors. The functional scans were registered to the 
MNI152 (1x1x1mm) standard space using a three-step process: 1) Linear registration (FLIRT) with 6 degrees of 
freedom (DOF) to align the partial FOV scan to the whole-brain EPI image90; 2) Boundary-based registration (BBR; 
part of the FMRI Expert Analysis Tool, FEAT) with 12 DOF and a weighting mask of the midbrain and insula cortex 
to align the whole-brain EPI to T1 structural image; and 3) Non-linear registration using a combination of FLIRT 
and FNIRT91 to align the T1 structural scan to 1mm standard space. Functional MRI scans were resampled once into 
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standard space with a concatenated warp from all three registration steps, and then spatial smoothing in standard 
space was performed using a Gaussian kernel with 3mm full-width half-maximum using the fslmaths tool. 
 
Single-subject general linear model: Single-subject estimates of the general linear model (GLM) were performed 
using SPM. A GLM was constructed for each of the participants, with a design matrix informed by trial-wise 
estimates from the RW model of each participant (see above). An additional analysis, using a more classical (non-
computational model-based) design matrix, is presented in the Supplementary Material. Alongside the task regressors 
described below, rigorous de-noising was performed by the inclusion of the following regressors (all described 
above): the convolved end-tidal CO2 regressor plus temporal and dispersion derivatives, six motion regressors 
trajectories plus their first-order derivatives, physiological noise regressors (provided by the PhysIO toolbox) and 
ICA components identified as noise. 

The regressors of interest in the design matrix were as follows (compare Figure 1A):  
1) A ‘Cue’ regressor (80 repeats), with onsets and durations (2.5s) determined by the presentations of visual 

cues and a magnitude of 1; 
2) A ‘Positive prediction’ regressor, with onsets given by the presentation of each corresponding visual cue 

(when no-resistance was predicted), durations of 0.5s and magnitudes given by 𝑣(")
-.) in Equation 5; 

3) A ‘Negative prediction’ regressor, with onsets given by the presentation of each corresponding visual cue 
(when resistance was predicted), durations of 0.5s and magnitudes given by 𝑣(")

/01 in Equation 6; 
4) A ‘No resistance’ stimulus regressor, with onset timings according to the first inspiration that occurred after 

the presentation of the visual cue, and durations as the remaining time of the potential resistance period 
(circle in Figure 1), with a magnitude of 1; 

5) A ‘Resistance’ stimulus regressor, with onset timings according to the initiation of the inspiratory resistance 
(identified from the downward inflection of the inspiratory pressure trace) after the presentation of the visual 
cue, and durations as the remaining time of the resistance period (circle in Figure 1), with a magnitude of 1; 

6) A ‘Positive prediction error’ regressor, with onsets given by the start of each corresponding no resistance 
period, durations of 0.5 s and magnitudes given by 𝛿(")

-.)in Equation 7; 
7) A ‘Negative prediction error’ regressor, with onsets given by the start of each corresponding resistance 

period, durations of 0.5 s and magnitudes given by 𝛿(")
/01 in Equation 8; 

8) A ‘Rating period’ noise regressor, with onsets and durations covering the period where participants were 
asked to rate the difficulty of the previous stimulus, and with a magnitude of 1. 

 
Regressors 1-8 were included in the design matrix after convolution with a standard HRF in SPM12, together with 
their temporal and dispersion derivatives. Contrasts of interest from this design examined brain activity associated 
with the average across positive and negative valence for both predictions and prediction errors, as well as the 
difference due to valence (i.e. positive vs. negative) for both predictions and prediction errors. 
 
Group analysis: Firstly, for the analysis of our entire field of view, contrasts of interest were assessed using random 
effects group-level GLM analyses based on the summary statistics approach in SPM12. The group-level GLM 
consisted of a factorial design with both a group mean and group difference regressor. The analyses used a 
significance level of p<0.05 with family-wise error (FWE) correction at the cluster-level, with a cluster-defining 
threshold of p<0.001. Secondly, for our region of interest (ROI) analysis, we used FSL’s non-parametric threshold-
free cluster enhancement92 within a combined mask of the anterior insula and periaqueductal gray (PAG). This 
analysis employed a significance level of p<0.05, with FWE correction across the joint mask. While the anterior 
insula and PAG have previously been shown to be involved in both conditioned anticipation and perception of 
inspiratory resistances15,16,18,20,21,93 as well as prediction errors94 and precision95 towards pain perception, our current 
analysis considers computational trial-by-trial estimates of interoceptive predictions and prediction errors for the first 
time. The mask of the anterior insula was taken from the Brainnetome atlas96 (bilateral ventral and dorsal anterior 
insula regions), and the PAG incorporated an anatomically-defined mask that has been used in previous fMRI 
publications20,21. 
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Multi-modal analysis 
Data: The different task modalities were then combined into a multi-modal analysis to assess both the relationships 
between and shared variance amongst measures. The data entered into this analysis consisted of: 

1) The scores from the four main affective questionnaires that were not used to pre-screen the participants 
(STAI-S57, GAD-758, ASI-359 and CES-D60); 

2) The four interoceptive questionnaires (BPQ61, MAIA62, PCS-B63 and PVQ-B64); 
3) The four FDT measures (breathing sensitivity, decision bias c, metacognitive bias, metacognitive 

performance Mratio); and 
4) The individual peak anterior insula activity associated with both positive and negative predictions, as well 

as positive and negative prediction errors. Activity was extracted from a 4mm sphere, centred on each 
participant’s maximal contrast estimate within a Brainnetome atlas mask of the anterior insula96, using the 
first eigenvariate of the data. 

 
Multi-modal correlations and shared variance: A correlation matrix of all 16 included measures was calculated in 
order to visualise the relationships between all variables. The significance values of the correlation coefficients were 
taken as p<0.05 (exploratory), and a false discovery rate (FDR) correction for multiple comparisons was applied 
(using the mafdr function in MATLAB). 

To assess the shared variance across measures and delineate which measures were most strongly associated 
with affective qualities, we entered all specified data into a principal component analysis (PCA), following 
normalisation using z-scoring within each variable. The number of significant components were determined by 
comparing the variance explained of each component to a null distribution, created by randomly shuffling (n=1000) 
the measures from each variable across participants. Components were considered significant if the variance 
explained was above the 95% confidence interval of the corresponding component’s null distribution. 

To assess the relationship between each of the significant components and anxiety, the component scores for 
low and moderate anxiety were compared using either independent t-tests or Wilcoxon rank sum tests (following 
Anderson-Darling tests for normality). The significance values of the group differences in component scores were 
taken as p<0.05 (exploratory), and a false discovery rate (FDR) correction for multiple comparisons (number of 
significant components) was applied. 
 An independent code review was performed on all data analysis procedures, and the analysis code is available 
on GitLab (https://gitlab.ethz.ch/tnu/code/harrison_breathing_anxiety_code). 
 
 
Results 
 
Questionnaire results 
The group summaries and comparisons for each of the affective and interoceptive questionnaires (excluding the trait 
anxiety score that was used for group allocation) are displayed in Figure 2. The group summary values and statistics 
presented are either mean±standard error (ste) when values were normally distributed and thus compared using 
unpaired T-tests, or median±inter-quartile range (iqr) when values were not normally distributed and thus compared 
using Wilcoxon rank sum tests. Scores from all questionnaires of affective symptoms employed were found to be 
highly significantly different between low and moderate trait anxiety groups: Individuals with moderate levels of 
trait anxiety demonstrated higher state anxiety (STAI-S mean±ste; low anxiety=25.7±0.7; moderate 
anxiety=34.1±1.2; T=-6.1; p<0.01), higher levels of anxiety disorder symptoms (GAD-7 median±iqr; low 
anxiety=1.0±2.0; moderate anxiety=4.0±3.0; Z=-5.9; p<0.01), greater anxiety sensitivity (ASI mean±ste; low 
anxiety=6.8±0.8; moderate anxiety=18.4±1.5; T=-6.9; p<0.01), and higher levels of depression symptoms (CES-D 
median±iqr; low anxiety=6.5±3.0; moderate anxiety=14.0±6.0; Z=-6.0; p<0.01). 

The interoceptive questionnaires we used measured ‘positively-minded’ interoceptive awareness, overall 
body awareness, breathing symptom catastrophising and breathing symptom vigilance. All except breathing-related 
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vigilance were also found to be highly significantly different between groups. Individuals with moderate levels of 
trait anxiety demonstrated reduced ‘positively-minded’ interoceptive awareness (MAIA mean±ste; low 
anxiety=109.1±4.6; moderate anxiety=84.6±3.7; T=4.2; p<0.01) and greater reports of overall body awareness (BPQ 
median±iqr; low anxiety=66.0±68.0; moderate anxiety=104.0±52.0; Z=-2.5; p=0.01) in line with previous 
research13,45,54,55. Additionally, elevated levels of breathing-related catastrophising were observed in the moderate 
anxiety group (PCS-B median±iqr; low anxiety=3.5±11.0; moderate anxiety=14.0±17.0; Z=-3.3; p<0.01), while no 
statistically significant difference was observed for breathing-related vigilance (PVQ-B mean±ste; low 
anxiety=16.3±2.2; moderate anxiety=21.4±2.5; T=-1.5; p=0.13). Results for sub-component scores and additional 
questionnaires can be found in the Supplementary Material. 
 
 

 
Figure 2. Results from the affective questionnaires (A) and interoceptive questionnaires (B) measured in groups of healthy 
individuals with either low levels of anxiety (score of 20-25 on the Spielberger Trait Anxiety Inventory, STAI-T) or moderate 
anxiety (score of 35+ on the STAI-T). Affective questionnaires (A): ‘State anxiety’, Spielberger State Anxiety Inventory; ‘GAD-
7’, Generalised Anxiety Disorder Questionnaire; ‘Anxiety sensitivity’, Anxiety Sensitivity Index; ‘Depression’, Centre for 
Epidemiologic Studies Depression Scale. Interoceptive questionnaires (B): ‘MAIA’, Multidimensional Assessment of 
Interoceptive Awareness Questionnaire; ‘BPQ’, Body Perception Questionnaire; ‘Breathing catastrophising’, Pain 
Catastrophising Scale (with the word ‘pain’ substituted for ‘breathing’); ‘Breathing vigilance’, Pain Vigilance Awareness 
Questionnaire (with the word ‘pain’ substituted for ‘breathing’). *Significant at p<0.05; **Significant following Bonferroni 
correction for multiple comparisons across all 8 questionnaires. Bar plots represent mean±standard error values, with the 
distribution of values overlaid in grey. Bar plot code adapted from the CANLAB Toolbox (https://github.com/canlab). 
 
 
Filter Detection Task results 
The group summaries and comparisons for each of the FDT measures are displayed in Figure 3. The FDT output 
includes the number of filters at perceptual threshold (indicative of perceptual sensitivity, where a greater number of 
filters indicates lower perceptual sensitivity), decision bias (with c<0 indicating a tendency to report the presence of 
a filter), metacognitive bias (calculated from average confidence scores) and metacognitive performance (reflecting 
the congruence between confidence scores and performance accuracy). Individuals with moderate levels of trait 
anxiety demonstrated both lower perceptual sensitivity (in line with previous findings44,53) (filter number median±iqr; 
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low anxiety=3.0±2.0; moderate anxiety=4.0±2.0; Z=-2.4; p=0.01) and lower metacognitive bias (average confidence 
score median±iqr; low anxiety=6.7±2.2; moderate anxiety=6.2±2.1; Z=2.0; p=0.02) than those with low levels of 
anxiety, with a similar level of metacognitive performance (Mratio median±iqr; low anxiety=0.8±0.0; moderate 
anxiety=0.8±0.1; Z=0.7; p=0.23). Decision bias was not found to be different between the groups (decision bias c 
parameter mean±ste; low anxiety=0.15±0.06; moderate anxiety=0.05±0.06; T=1.1; p<0.14) The relationship between 
greater anxiety and reduced confidence is consistent with results previously observed in the exteroceptive (visual) 
domain, where decreased confidence related to individual levels of both anxiety and depression69. 
 
 

 
Figure 3. A) Trial structure of the ‘Filter Detection Task’ (FDT). For each trial participants first took three breaths on the 
system (‘baseline period’), before either an inspiratory resistance or sham was applied. Following three further breaths, 
participants removed the mouthpiece and reported their decision as to whether a resistance was added (Yes/No), and their 
confidence in their decision (1-10, 1=not at all confident / guessing; 10=maximally confident in their decision). B) Results from 
the FDT: Individuals with moderate anxiety (score of 35+ on the STAI-T57) demonstrated a higher (less sensitive) perceptual 
threshold and lower metacognitive bias (lower average confidence, independent of task accuracy) when compared to individuals 
with low levels of anxiety (score of 20-25 on the STAI-T57). No difference was found between groups for decision bias (where c 
values below zero indicate a tendency to report the presence of resistance) nor metacognitive performance (where higher values 
indicate better metacognitive performance). *Significant at p<0.05; **Significant following Bonferroni correction for multiple 
comparisons across all FDT measures. Bar plots represent mean±standard error values, with the distribution of values overlaid 
in grey. Bar plot code adapted from the CANLAB Toolbox (https://github.com/canlab). 
 
 
Breathing Learning Task results 
Behavioural data modelling: When comparing the plausibility of the three alternative models (a Rescorla Wagner, 
RW; a 2-level Hierarchical Gaussian Filter, HGF2; and a 3-level Hierarchical Gaussian Filter, HGF3) using random 
effects Bayesian model selection75, no single model was found to have a protected exceedance probability (PXP) 
greater than 90% (RW:HGF2:HGF3 PXP=0.30:0.40:0.30, Supplementary Table 6). Therefore, as specified in our 
analysis plan (https://gitlab.ethz.ch/tnu/analysis-plans/harrison_breathing_anxiety), we conducted our model-based 
analysis using the conceptually most simple model (the RW model), in accordance with Occam’s Razor. Two 
participants (one from each anxiety group) were excluded from any further model-based analyses and comparisons 
since their model fit was not significantly different to a model based on chance. 
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 Both model-based and behavioural parameter comparisons are presented in Table 1. For the estimated model 
parameters, no difference was observed between the groups for either learning rate (a) and inverse decision 
temperature (ζ). Results from parameter comparisons between groups including the excluded participants can be 
found in the Supplementary Material. For the subjective measures, no difference was observed between the groups 
for breathing difficulty ratings, while the task-induced anxiety ratings were significantly greater in those with 
moderate anxiety (Table 1). Additionally, no difference in any physiological measures were observed 
(Supplementary Table 3), nor in relative head motion during the task (average root mean square displacement (±std) 
for low anxiety=0.17±0.10 mm; moderate anxiety=0.18±0.07 mm; Wilcoxon rank sum p=0.91). 
 
Computational modelling of brain activity: The overall and between-group BLT brain activity analysis results are 
displayed in Figures 4 and 5. In the analysis for the entire field of view, activations related to interoceptive prediction 
certainty and prediction errors across all participants is shown in Figure 4. Dorsolateral prefrontal cortex (dlPFC), 
anterior insula (aIns), anterior cingulate cortex (ACC) and middle frontal gyrus (MFG) demonstrated significant 
deactivations with overall prediction certainty (i.e. averaged across trials with positive and negative prediction 
certainty; Figure 4A). In contrast, aIns, ACC, MFG and PAG demonstrated significant activations with overall 
prediction error values (i.e. averaged across trials with positive and negative prediction errors; Figure 4B). A small 
number of differences due to valence (differences between positive and negative outcomes) were found for prediction 
errors but not prediction certainty, with negative prediction errors associated with deactivations of left dlPFC and 
activations of left posterior insula (Figure 4B). While no main effect of anxiety group was observed, an interaction 
effect was found using the ROI analysis between valence and groups for predictions in the bilateral aIns (Figure 5). 
In contrast, no group or interaction effects were found for prediction errors. Brain activity associated with inspiratory 
resistance is provided in the Supplementary Material for comparison with previously published results15–21. 
 
 

 
Figure 4. The upper plots demonstrate how estimated prediction (in A) and prediction error (in B) trajectories are encoded as 
positive (i.e. towards no resistance) and negative (i.e. towards resistance) prediction certainty values and prediction error 
magnitudes. The example trajectories were taken from the participant with the closest learning rate to the mean value across all 
participants. The solid grey lines demonstrate the estimated prediction or prediction error traces (in stimulus space). Positive 
trial values are demonstrated in blue and the negative trial values in red, encoded as distance from 0 (i.e. absolute values; right 
axes). The brain images represent significant activity across both groups for prediction certainty (averaged over trials with 
positive and negative prediction certainty) and the influence of valence on prediction certainty (difference between negative and 
positive predictions), prediction error magnitude (averaged over trials with positive and negative prediction errors) and the 
influence of valence on prediction error magnitude (difference between negative and positive prediction errors). The images 
consist of a colour-rendered statistical map superimposed on a standard (MNI 1x1x1mm) brain. The bright grey region 
represents the coverage of the coronal-oblique functional scan. Significant regions are displayed with a cluster threshold of 
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p<0.05, FWE corrected for multiple comparisons across all voxels included in the functional volume. Abbreviations: PAG, 
periaqueductal gray. 
 
 
Table 1. Behavioural and model-based group comparison results from the ‘Breathing Learning Task’ (BLT). All parameters are 
presented as median±inter-quartile range, and include the model parameter estimates (learning rate, a; inverse decision 
temperature 𝜁), the subjective ratings of breathing difficulty (average of the ratings provided following each resistance stimulus) 
and anxiety (rating provided immediately following the end of the task), and the response times for the predictions made during 
the task. Abbreviations: Wxn, Wilcoxon rank sum test. **Significant difference between groups at p<0.05 with multiple 
comparison correction for the number of behavioural parameters. 

 Total Low Moderate P-value Test 
Learning rate (a) 0.25 (0.19) 0.24 (0.15) 0.25 (0.22) 0.58 Wxn 
Inverse decision temp. (𝜁) 2.66 (3.35) 2.71 (3.15) 2.37 (3.65) 0.88 Wxn 
Breathing difficulty rating (%) 82.6 (18.4) 80.5 (19.9) 83.8 (15.8) 0.61 Wxn 
Breathing anxiety rating (%) 10.0 (42.0) 0.0 (10.0) 34.0 (48.0) < 0.001** Wxn 
Response time (ms) 1.28 (0.33) 1.23 (0.36) 1.29 (0.30) 0.73 Wxn 

 
 

 
Figure 5. An interaction effect was observed between valence (i.e. trials with positive vs. negative predictions) and anxiety group 
(low vs. moderate) for activity in the anterior insula related to prediction certainty. The images consist of a colour-rendered 
statistical map superimposed on a standard (MNI 1x1x1mm) brain. Voxel-wise statistics were performed using non-parametric 
permutation testing within a mask of the anterior insula and periaqueductal gray, with significant results determined by p<0.05 
(corrected for multiple comparisons within the mask). 
 
 
Multi-modal analysis results 
First, the key measures from each of the different modalities were combined into a multi-modal correlation matrix. 
This analysis allowed us to assess the relationships both within and across task modalities and across levels of 
breathing-related interoceptive processing. The full correlation matrix of all 16 included measures is displayed in 
Figure 6A and Supplementary Table 7. To briefly summarise, the strongest across-task modality correlations were 
found between all affective and interoceptive questionnaires (Figure 6A). Concerning affective and the FDT 
measures, state anxiety was weakly correlated with the FDT perceptual threshold, decision bias and metacognitive 
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bias, while anxiety sensitivity was additionally weakly related to metacognitive bias. Depression scores were also 
weakly related to the FDT perceptual threshold. Between the interoceptive and the FDT measures, breathing-related 
catastrophising was weakly related to the FDT metacognitive performance. Lastly, between the FDT and aIns 
activity, metacognitive performance was strongly related to the peak aIns associated with negative (i.e. resistance-
related) prediction errors, while metacognitive bias was weakly related to aIns associated with negative (i.e. 
resistance-related) prediction certainty. 
 
Principal component analysis: Finally, to assess the extent of shared variance across interoceptive measures, the 
multimodal data matrix was then subjected to a PCA. This analysis allowed us to delineate how many underlying 
dimensions may exist within the data, as well as which measures were most strongly associated with trait anxiety. 
Two principal components (PC) were found to be significant, where the variance explained with each component 
was above the 95% confidence interval of its null distribution (Supplementary Figure 14). The properties of each of 
these significant components are displayed in Figure 6B and 6C. The first PC demonstrated a highly significant 
(p<1x10-11) difference in scores between the anxiety groups. Correspondingly, the greatest coefficients within the 
first PC were from the affective measures of depression scores, state anxiety, anxiety sensitivity and anxiety disorder 
scores. Additionally, breathing-related catastrophising and negative interoceptive awareness also had strong 
coefficient values, followed by negative metacognitive bias (i.e. lower confidence scores), body perception scores 
(from the BPQ) and negative metacognitive performance (i.e. lower metacognitive performance). In contrast, the 
second PC demonstrated a weak difference (p=0.05) in scores between the anxiety groups. This component had the 
highest coefficient scores from the peak aIns activity related to positive and negative prediction certainty, as well as 
negative coefficients for negative prediction errors, metacognitive performance and positive prediction errors. 
 
 

 
Figure 6. A) Correlation matrix results for the 16 included measures in the multi-modal analysis. Black dots represent significant 
values at p<0.05, while white dots denote significance with correction for multiple comparisons. B) The weights and group 
scores of the first significant principal component, where a strong anxiety group difference in component scores is observed. C) 
The weights and group scores of the second significant principal component, where a weak anxiety group difference in principal 
component scores is observed. *Significant difference between groups at p<0.05. **Significant difference between groups at 
p<0.05 with multiple comparison correction for the two significant components. Bar plots (rightmost panels) represent 
mean±standard error values, with the distribution of values overlaid in grey. Bar plot code adapted from the CANLAB Toolbox 
(https://github.com/canlab). 
 
 
 
 

A

B

C

**
R

*

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 26, 2021. ; https://doi.org/10.1101/2021.03.24.436881doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.24.436881
http://creativecommons.org/licenses/by-nd/4.0/


Discussion 
 
Main findings 
Interoceptive abilities are thought to be tightly linked to affective properties such as anxiety. Here we have 
characterised this relationship across multiple domains, including novel findings of altered brain activity within the 
aIns when processing dynamic interoceptive predictions. Furthermore, our multi-modal approach revealed that not 
only is the relationship between interoception and trait anxiety broad, it is largest (i.e. greatest PCA weights: Figure 
6) at the higher levels of interoceptive processing, which includes specific subjective measures of interoceptive 
beliefs (often termed ‘interoceptive sensibility’43) followed by metacognitive aspects of breathing perceptions. 
Notably, interoceptive sensibility differences with greater levels of anxiety included reduced ‘positively-minded’ 
interoceptive awareness, greater reports of overall body awareness and elevated levels of breathing-related 
catastrophising (as measured using interoceptive questionnaires). Additionally, those with greater trait anxiety 
demonstrated differences in metacognitive bias (i.e. reduced confidence in perceptual decisions), as well as decreased 
metacognitive performance. 
 This study is one of the first to simultaneously tackle multiple levels of interoceptive processing, using 
breathing as a salient and accessible channel of body perception. The tasks employed reflected the broad range of 
targeted processes; not only were questionnaires employed that spanned affect and body perceptions, but behavioural 
data from two different tasks were assessed by separate computational models. These analyses allowed for formal 
assessments of both interoceptive learning and metacognition, including the first computational assessment of trial-
by-trial learning in the interoceptive domain as well as applying state-of-the-art models of metacognition to 
interoception of breathing. Finally, the learning task was paired with high-field (7 Tesla) to maximise signal-to-noise 
ratio for a detailed investigation of key brain areas thought to be vital for dynamic interoceptive processing. 
 
Affect and levels of interoception 
Beyond consequences at single levels of interoceptive processing, here we aimed to assess how the relationship with 
trait anxiety may cross multiple interoceptive levels related to breathing. Employing PCA (with permutation testing) 
allowed us to identify any components that share common variance within our multi-modal dataset, and additionally 
assess the relative contribution of our measures to each dimension (Figure 6B). Here we found all affective qualities 
loaded strongly onto the first principal component, with the greatest additional contributions from subjective 
measures of negative interoceptive awareness and breathing-related catastrophising. General body awareness and the 
metacognitive measures (bias and performance) were the next largest contributors to this shared variance, followed 
by the perceptual sensitivity and decision bias parameters, and lastly peak aIns activity from the BLT. These results 
suggest that the relationship with anxiety is potentially largest at the level of subjective interoceptive beliefs, thought 
to exist in the higher levels of interoceptive space35, followed by metacognitive insight into breathing perception. In 
comparison, the relationship of trait anxiety to lower-level properties such as interoceptive sensitivity35,43–45 appear 
to be present but less prominent in the breathing domain. 
 Although strong relationships were observed between affective qualities and many of our interoceptive 
measures, a sparse number of correlations were found between interoceptive measures themselves, and in particular 
across task modalities (Figure 6A). These findings support the idea that there are potentially separable levels of 
interoception as proposed35. The only notably strong cross-modal relationship was found between metacognitive 
performance and aIns activity, where greater insight into interoceptive sensitivity correlated with greater aIns activity 
during negative interoceptive prediction errors. This relationship may reflect a previously proposed contribution of 
error-processing towards metacognitive awareness, where deviations between actual and predicted bodily inputs are 
propagated to metacognitive areas via interoceptive brain structures such as the aIns6. 
 
Novel measures of dynamic interoceptive predictions and prediction errors 
Many theories surrounding anxiety have hypothesised an important role of altered predictions regarding upcoming 
threat97–99, and in particular interoceptive threat13,80 in the anterior insula100–104. While numerous studies have 
employed inspiratory resistive loads to evoke threatening interoceptive stimuli15,16,18–21,93,105–108, the BLT approach 
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presented here is, to the authors’ knowledge, the first investigation of dynamic (trial-by-trial) brain activity associated 
with model-based interoceptive predictions and prediction errors in the respiratory domain. By fitting an associative 
learning model to each participant’s behavioural responses, we could quantify both the certainty of predictions and 
magnitude of prediction errors on each trial. We could then compare both the parameter estimates and the brain 
activity associated with these computational quantities, with a particular focus on the aIns and PAG94,95,100,104,109 
(Figure 4). Here we observed evidence for a relationship between anxiety and aIns reactivity to threat valence in the 
prediction domain (Figure 5). Specifically, while individuals with low trait anxiety demonstrated greater aIns 
deactivation that scaled with predictions of breathing resistance compared to no resistance, the opposite was true in 
individuals with moderate trait anxiety (creating an interaction effect). This demonstrates a shift in the aIns processing 
of threat valence with different levels of anxiety, in line with hypothesised differences in brain prediction 
processing13,80,100. In comparison, no anxiety group differences or interactions were found in the prediction error 
domain. 

Beyond the anterior insula and independent of anxiety, multiple (and largely consistent) proposals have been 
made, inspired by predictive coding and related theories of brain function, regarding which brain networks might be 
involved in processing interoceptive predictions and prediction errors2,3,5,6,11,26,80,104,110–117. These proposed networks 
are loosely hierarchical in structure and typically assign metacognitive processes to higher cortical areas (e.g. in 
prefrontal cortex; PFC) while interoceptive predictions are thought to originate from regions that may serve as 
interface between interoceptive and visceromotor function (e.g. aIns and anterior cingulate cortex; ACC). In these 
concepts, prediction errors have two different roles: on the one hand, they are thought to be sent up the cortical 
hierarchy of interoceptive regions in order to update predictions in aIns and ACC3,5,51; on the other hand, they are 
thought to determine regulatory signals, sent from visceromotor regions and brainstem structures like the PAG to the 
autonomic nervous system and bodily organs6,40.  

While these theories have received considerable attention, there has been little empirical evidence thus far. 
In particular, we are not aware of any studies that have demonstrated, using a concrete computational model, trial-
by-trial prediction and prediction error activity in interoceptive areas. Here, we report evidence of relevant 
computational quantities being reflected by activity within several areas of a putative interoceptive network. While 
activity related to trial-wise prediction certainty was found in higher structures such as dorsolateral PFC, ACC and 
aIns, prominent prediction error responses were not only found in aIns and ACC, but also in the midbrain PAG 
(Figure 4). Importantly, concerning predictions, widespread brain activity was found to be mainly related to 
prediction uncertainty, where BOLD activity was decreased in proportion to increases in the certainty of 
predictions47,48. Furthermore, it is notable that the anterior insula displayed both deactivation for more certain 
predictions and activation for greater prediction errors. This might reflect the proposed critical role of aIns in the 
representation and updating of models of bodily states2,6,80,93,100,104,110,118, given that greater certainty (precision of 
beliefs) reduces and greater prediction errors increase belief (model) updating40. 

Our PAG findings are of particular interest. While the PAG has been previously noted during anticipation of 
certain breathing resistance stimuli20,21 and has been related to the precision of prior beliefs about placebo-induced 
reductions in pain intensity95, here we observed that PAG activity did not appear to be related to the extent of 
prediction certainty towards upcoming breathing stimuli (Figure 4). Concerning prediction error activity in the PAG, 
this has previously been demonstrated in relation to pain94; here, we found PAG activity in relation to the magnitudes 
of trial-wise interoceptive prediction errors (Figure 4B), consistent with a role of PAG in homeostatic control6. 
 
Conclusions 
The relationship between anxiety and breathing crosses multiple levels of the interoceptive hierarchy. In particular, 
anxiety and associated affective dimensions appear to be most strongly related to subjective negative body awareness 
and catastrophising about breathing symptoms, followed by metacognitive measures related to breathing perception. 
Furthermore, a novel interaction between trait anxiety group and valence was found within the aIns associated with 
dynamic prediction certainty (but not prediction errors) of interoceptive processing. These results provide new and 
comprehensive insights how anxiety is related to levels of interoceptive processing, and provide first evidence of 
brain activity associated with trial-wise predictions and prediction errors about bodily states in interoceptive 
networks. 
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Supplementary Methods: Breathing Learning Task equipment 
 
 
 

 
Supplementary Figure 1. Schematic of the inspiratory resistance circuit that allows remote administrations of inspiratory 
resistance. Medical air is supplied to the subject, with a reservoir of 2 L. Excess flow and expiration escapes through a one-way 
valve (labelled H), close to the mouth to minimise rebreathing. Chest movements are measured using respiratory bellows (non-
metallic pneumographic belt; Lafayette Instrument Company, Lafayette, USA) connected to a pressure transducer (Blood 
Pressure Transducer; ADInstruments Ltd, Oxford, United Kingdom) and amplifier (Bridge Amp; ADInstruments Ltd). Heart 
rate is measured using a pulse oximeter (Philips Healthcare, Amsterdam, The Netherlands). A diving mouthpiece (labelled A) is 
connected to a bacterial and viral filter (labelled C), and sampling lines connect to a pressure transducer (labelled U) and 
amplifier (Pressure transducer indicator, PK Morgan Ltd, Kent, UK) for inspiratory pressure readings, and to a gas analyser 
(via sampling line labelled V) (Gas Analyser; ADInstruments Ltd, Oxford, United Kingdom) for respiratory gases. All 
physiological measurement devices were connected to a data acquisition device (Powerlab; ADInstruments Ltd) coupled to a 
computer with recording software (Labchart 7; ADInstruments Ltd). Inspiratory resistive loading is automatically achieved via 
the stimulus computer, whereby signals are sent through the parallel port to control valve 1 (labelled W) to redirect the supply 
of medical air to vent to the environment, forcing the subject to draw air through the POWERbreathe device (labelled Y). 
Periodically throughout scanning, small boluses of additional carbon dioxide (CO2) can be administered through computer 
control via valve 2 (labelled X), to raise the partial pressure of end-tidal CO2 (PETCO2) to match the PETCO2 rise induced by 
inspiratory loading periods. A final flowmeter (labelled T) is available for manual input of additional oxygen (O2) to the system. 
Figure is adapted from Rieger et al. (2020). 
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1Wilson, R. C., & Collins, A. G. (2019). Ten simple rules for the computational modeling of behavioral data. Elife, 8, 
e49547. 

Supplementary Methods: Computational modelling of Breathing Learning Task 
 
 
For the computational modelling of the BLT behavioural data, we a priori performed a set of simulation analyses as 
outlined by Wilson and Collins1. Each of the three perceptual models in our model space was used in a configuration 
where one parameter was kept free (𝛼 in RW, 𝜔2 in HGF2, 𝜅2 in HGF3). The perceptual model was in all three cases 
combined with a unit-square sigmoid response model, which had another free parameter 𝜁 (inverse decision 
temperature) to be estimated. To analyse the experimental data set, maximising the likelihood on a holdout data set 
(consisting of 8 pilot participants) enabled us to estimate prior densities for each of the models in our model space. 
Individual fits and estimated prior densities of the free parameters are displayed in Supplementary Figure 2, and prior 
values for all parameters of the three models are listed in Supplementary Table 1. By adopting this procedure, prior 
densities were in a regime of the parameter space that is representative of the actual behavioural responses observed 
when participants performed the task. At the same time, the arbitrariness inherent to the specification of prior 
densities in non-hierarchical inference is reduced to a minimum. 

To demonstrate face validity of the models considered in our model space, we assessed both parameter 
recovery and model identifiability for each of them. Data for 60 synthetic subjects were generated for each of the 
candidate models by randomly sampling values from the prior densities that were placed over the parameters of the 
perceptual model. This synthetic data was generated for different noise levels (𝜁)+, = 1,5,10). Subsequently, MAP 
estimation as implemented in the HGF Toolbox was used to fit the synthetic data sets. This allowed us to quantify 
parameter recovery and model identifiability across three different noise levels for each of the candidate models. 
Parameter recovery of the perceptual parameters was assessed using Pearson's correlation coefficient (PCC) and by 
visual inspection of simulated and recovered parameter values (Supplementary Figure 3). Mean and standard 
deviation of estimated 𝜁 values (from the response model) were computed for every noise level. Model identifiability 
was quantified by calculating the proportion of correctly identified models using approximate LME scores and 
assessing whether the former was greater than the upper bound of the 90% confidence interval when assuming every 
model is equally likely a priori. For the resulting confusion matrices (Supplementary Figure 4), we additionally 
computed the mean proportion of correctly identified models (balanced accuracy scores). 

The outlined procedure for assessing parameter recovery and model identifiability was repeated over 10 
iterations with different seed values, to ensure robustness against any particular setting of the random number 
generator. The final results (PCCs for the perceptual parameters and 𝜁0)* values) for every given level of noise were 
calculated as the average over all iterations, and are presented in Supplementary Table 2. 
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Supplementary Figure 2. Summary distributions of model parameters estimated from 8 pilot participants for each of the three 
candidate perceptual models (3-level Hierarchical Gaussian Filter, HGF3; 2-level Hierarchical Gaussian Filter, HGF2; and 
Rescorla-Wagner, RW) paired with the unit-square sigmoid response model. The fitted distributions were then used as the prior 
distributions for the remaining empirical data fits. 
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Supplementary Table 1. Parameter configurations and priors for each of the candidate models. If the prior variance is set to 0 
for a parameter then it is not estimated, and the prior mean and variance for the estimated parameters (in bold) were taken from 
the maximum likelihood fits of the pilot participant data. Prior means are given in native space, prior variances in estimation 
(transformed) space. 

Rescorla Wagner 
Parameter Prior mean Prior variance Transformation 
𝑣(") 0.5 0 logit 
𝜶 0.29 2.54 logit 

Observation model 𝜻 2.14 3.33 log 
Hierarchical Gaussian Filter (2-level) 

Parameter Prior mean Prior variance Transformation 
𝜇$
(") 0 0 none 

𝜇%
(") 1 0 none 

𝜎$
(") 0.1 0 log 

𝜎%
(") 1 0 log 
𝜌$ 0 0 none 
𝜌% 0 0 none 
𝜅& 1 0 log 
𝜅$ 0 0 log 
𝝎𝟐 -0.70 1.61 none 
𝜔% −∞ 0 none 

Observation model 𝜻 2.14 1.17 log 
Hierarchical Gaussian Filter (3-level) 

Parameter Prior mean Prior variance Transformation 
𝜇$
(") 0 0 none 

𝜇%
(") 1 0 none 

𝜎$
(") 0.1 0 log 

𝜎%
(") 1 0 log 
𝜌$ 0 0 none 
𝜌% 0 0 none 
𝜅& 1 0 log 
𝜿𝟐 2.39 0.30 log 
𝜔$ -3 0 none 
𝜔% -6 0 none 

Observation model 𝜻 2.14 1.21 log 
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Supplementary Figure 3. Demonstration of parameter recovery using simulated participants from the prior distributions 
presented in Supplementary Figure 2. Three noise levels were used for the simulations, with an inverse decision temperature (𝜁) 
of 1 (Panel A), 5 (Panel B) and 10 (Panel C), representing very noisy (𝜁 = 1) to very deterministic (𝜁 = 10) settings. 60 
simulated participant responses were generated using 10 different seed values, totalling n=600 simulations plotted here.
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Supplementary Figure 4. Demonstration of model identifiability using simulated participants from the prior distributions 
presented in Supplementary Figure 2. Three noise levels were used for the simulations, with an inverse decision temperature (𝜁) 
of 1 (Panel A), 5 (Panel B) and 10 (Panel C), representing very noisy (𝜁 = 1) to very deterministic (𝜁 = 10) settings. 60 
simulated participant responses were generated using 10 different seed values, and the confusion matrices, balanced 
accuracy and zeta estimates are the average values across the 10 simulation runs.
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Supplementary Table 2. Parameter configurations and priors for each of the candidate models. If the prior variance is 
set to 0 for a parameter then it is not estimated, and the prior mean and variance for the estimated parameters (in bold) 
were taken from the maximum likelihood fits of the pilot participant data. Prior means are given in native space, prior 
variances in estimation space. R values are Pearson Correlation Coefficients that have been Fisher’s Z-transformed prior 
to averaging, and then back-transformed into R values. 

Rescorla Wagner 
 𝜁 = 1 𝜁 = 5 𝜁 = 10 

Mean Std Mean Std Mean Std 
𝛼 R 0.88 0.07 0.96 0.14 0.97 0.11 
𝜁()* 1.08 1.70 5.82 1.56 10.62 1.61 

Hierarchical Gaussian Filter (2-level) 
 𝜁 = 1 𝜁 = 5 𝜁 = 10 

Mean Std Mean Std Mean Std 
𝜔$ R 0.83 0.10 0.95 0.14 0.96 0.15 
𝜁()* 1.11 1.47 5.05 1.36 7.89 1.57 

Hierarchical Gaussian Filter (3-level) 
 𝜁 = 1 𝜁 = 5 𝜁 = 10 

Mean Std Mean Std Mean Std 
𝜅$ R 0.32 0.31 0.49 0.49 0.56 0.59 
𝜁()* 1.01 1.35 4.92 1.50 8.52 1.75 
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Supplementary Methods: Computational model trajectory conversion to 

stimulus space 
 
 
 
 
 

 
Supplementary Figure 5. Transformation of the prediction (A) and prediction error (B) trajectories from contingency 
space to stimulus space. In Panel A, the fitted trajectory (in contingency space) is demonstrated by the solid grey line, 
where the value 1 is assigned when one cue (cue 1) predicts no resistance and the opposing cue (cue 2) predicts a 
resistance (the value 0 is assigned for the opposing conditions). The trajectories were then transformed into stimulus 
space, where a value of 1 was assigned when no resistance was delivered, while a value of 0 was assigned when a 
resistance was delivered. For this transformation, a mirrored trajectory was firstly generated (dashed grey line) to 
represent the second cue, as the participants were explicitly told that the cues acted as a pair that had opposite 
probabilities (20% or 80%) of predicting resistance. The solid grey trajectory thus represents the cue that started with 
an 80% probability of being followed by no resistance in stimulus space (cue 1), while the dashed grey line represents 
the cue that started with a 20% probability of being followed by no resistance (cue 2). The values at each trial were taken 
from the trajectory of the cue that was presented at that trial: either cue 1 (trials with a closed grey circle) or cue 2 (trials 
with an open grey circle). The same transformation was performed on the prediction error trajectories in Panel B, where 
the solid grey line represents the prediction error associated with cue 1, while the dashed grey line represents the 
prediction error associated with cue 2. The example trajectories were taken from the participant with the closest learning 
rate to the mean value across all participants. 
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Supplementary Methods: Example fMRI general linear model 
 
 
 

  
Supplementary Figure 6. An example general linear model from a single participant model-based fMRI analysis. Each 
of the main regressors also include a temporal and dispersion derivative, and consist of: 1) ‘cueTot’ – the time periods 
covering the presentation of all cues; 2) ‘predictPos’ – the value of the positive predictions (i.e. when the prediction value 
was closer to the no resistance condition), with an onset at the beginning of the cue and a duration of 0.5 seconds; 3) 
‘predictNeg’ – the value of the negative predictions (i.e. when the prediction value was closer to the resistance condition), 
with an onset at the beginning of the cue and a duration of 0.5 seconds; 4) ‘noResist’ – the stimulus periods when no 
resistance was applied, from the onset of the first inspiration following the presentation of the circle cue to the end of the 
circle presentation; 5) ‘resist’ – the stimulus periods when resistance was applied, from the onset of the inspiration 
against the increased inspiratory pressure following the presentation of the circle cue to the end of the circle presentation; 
6) ‘errorPos’ – the value of the positive prediction errors (i.e. when the prediction error value was closer to the no 
resistance condition), with an onset at the beginning of the corresponding stimulus period and a duration of 0.5 seconds; 
7) ‘errorNeg’ – the value of the negative prediction errors (i.e. when the prediction error value was closer to the 
resistance condition), with an onset at the beginning of the corresponding stimulus period and a duration of 0.5 seconds; 
8) ‘noiseRating’ – the periods at the end of each trial where the participant rated the intensity of the previous stimulus, 
with an onset at the beginning and duration that encompassed the length of the rating period. Noise regressors not shown: 
the convolved end-tidal carbon dioxide trace (plus temporal and dispersion derivatives), the RETROICOR and convolved 
respiratory volume per unit of time (RVT) regressors provided by the PhysIO toolbox, 6 motion regressors and 6 extended 
motion regressors (derivatives), and the timeseries of all identified noise components from the independent component 
analysis conducted during preprocessing were also included in the model. 
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Supplementary Figure 7. An example general linear model from a single participant decision-based fMRI analysis. Each 
of the main regressors also include a temporal and dispersion derivative, and consist of: 1) ‘cueYes’ – the time periods 
covering the presentation of cues where the participant predicted an upcoming resistance; 2) ‘cueNo’ – the time periods 
covering the presentation of cues where the participant predicted no upcoming resistance; 3) ‘resistanceBlock’ – the 
stimulus periods when resistance was applied, from the onset of the inspiration against the increased inspiratory pressure 
following the presentation of the circle cue to the end of the circle presentation; 4) ‘resistanceSurprise’ – resistance 
stimuli that were surprising (i.e. when participant had predicted no resistance), with an onset at the beginning of the 
corresponding stimulus period and a duration of 0.5 seconds; 5) ‘noResistanceBlock’ – the stimulus periods when no 
resistance was applied, from the onset of the first inspiration following the presentation of the circle cue to the end of the 
circle presentation; 6) ‘noResistanceSurprise’ – no-resistance stimuli that were surprising (i.e. when participant had 
predicted resistance), with an onset at the beginning of the corresponding stimulus period and a duration of 0.5 seconds; 
7) ‘noiseRating’ – the periods at the end of each trial where the participant rated the intensity of the previous stimulus, 
with an onset at the beginning and duration that encompassed the length of the rating period. 8) ‘noisePredict’ – the 
button press periods during the cue presentation, with an onset given by the response time for the button press on each 
trial and a duration of 0.5 seconds. Noise regressors not shown: the convolved end-tidal carbon dioxide trace (plus 
temporal and dispersion derivatives), the RETROICOR and convolved respiratory volume per unit of time (RVT) 
regressors provided by the PhysIO toolbox, 6 motion regressors and 6 extended motion regressors (derivatives), and the 
timeseries of all identified noise components from the independent component analysis conducted during preprocessing 
were also included in the model. 
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Supplementary Methods: Correlations within fMRI general linear models 

 
 
 

  
Supplementary Figure 8. Average correlation matrix (using Fischer’s R-to-Z transformation prior to averaging) from all 
single subject general linear models used in the fMRI analysis displayed in Supplementary Figure 6. A) Correlation 
matrix between all main regressors in the model (noise regressors not shown). B) Targeted correlation matrix to 
demonstrate the relationship between predictions and errors. 
 
 
 
 

 
Supplementary Figure 9. Average correlation matrix (using Fischer’s R-to-Z transformation prior to averaging) from all 
single subject general linear models used in the fMRI analysis displayed in Supplementary Figure 7. A) Correlation 
matrix between all main regressors in the model (noise regressors not shown). B) Targeted correlation matrix to 
demonstrate the relationship between predictions and errors. 
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Supplementary Methods: Multimodal analysis 
 
 
Principal Component Analysis (PCA): PCA is an orthogonal linear transformation that transforms the 𝑛 ×𝑚 
data matrix 𝐗 (participants × measures) into a new matrix 𝚸, where the dimensions of the variance explained 
in the data are projected onto the new ‘principal components’ in descending order. Each principal component 
consists of a vector of coefficients or weights 𝒘, corresponding to the contribution of each measure 𝑚 to each 
component. The PCA also transforms the original 𝑛 ×𝑚 data matrix 𝐗 to map each row (participant) vector 
𝒙+ of 𝐗 onto a new vector of principal component scores 𝒕+, given by: 
 

𝑡"(+) = 𝒙+ ×𝒘"  for 𝑖 = 1,… , 𝑛; 𝑘 = 1,… ,𝑚 
 

where 𝑡"(+) is the score for each participant 𝑖 within each component 𝑘. 
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Supplementary Results: Breathing Learning Task 
 
 
 
Supplementary Table 3: Physiological summaries and group comparison results from the stimulus periods of the 
‘Breathing Learning Task’ (BLT). Abbreviations: Wxn, Wilcoxon rank sum test; Ttest, students independent T-test. 

 Total Low Moderate P-value Test 
RESISTANCE      
Avg pressure (cmH2O) -4.0 (3.7) -4.2 (3.8) -3.8 (2.9) 0.72 Wxn 
Max pressure (cmH2O) -7.3 (4.9) -7.3 (6.7) -7.3 (3.9) 0.68 Wxn 
Avg breathing rate (bpm) 13.6 (6.7) 14.6 (5.6) 13.0 (10.1) 0.39 Wxn 
Avg breathing depth (%) 103.9 (25.5) 97.0 (23.7) 105.9 (26.1) 0.29 Ttest 
Heart rate (bpm) 66.3 (13.5) 66.9 (12.5) 66.0 (15.6) 0.69 Ttest 
NO RESISTANCE      
Avg pressure (cmH2O) -0.1 (0.1) -0.1 (0.1) -0.1 (0.1) 0.05 Wxn 
Max pressure (cmH2O) -0.8 (0.5) -0.8 (0.8) -0.7 (0.4) 0.59 Wxn 
Avg breathing rate (bpm) 14.8 (5.1) 14.9 (5.0) 14.7 (5.8) 0.92 Ttest 
Avg breathing depth (%) 106.6 (17.0) 105.0 (17.0) 108.8 (21.7) 0.35 Ttest 
Heart rate (bpm) 66.7 (12.3) 67.6 (12.1) 66.6 (14.0) 0.84 Wxn 

 
 
 
 
Supplementary Table 4. Behavioural group comparison results from the ‘Breathing Learning Task’ (BLT). Behavioural 
parameters include the fitted perceptual and response model parameters (learning rate, a; and inverse decision 
temperature 𝜁), with all participants included in the comparison. Abbreviations: Wxn, Wilcoxon rank sum test; Ttest, 
students independent T-test. 

Learning rate (a) 0.25 (0.18) 0.24 (0.14) 0.25 (0.21) 0.64 Wxn 
Inv. decision temp (𝜁) 2.60 (3.42) 2.70 (3.12) 2.32 (3.65) 0.88 Wxn 

 
 
 
 
Supplementary Table 5. Exploratory regression analysis conducted on the fitted model learning rate parameter and the 
subjective ratings of breathing difficulty and anxiety. Regression parameters consisted of trait anxiety scores (from the 
STAI-T questionnaire), depression scores (from the CES-D questionnaire) and gender (male=1). **Significant coefficient 
at p<0.05 with multiple comparison correction for the three exploratory regression models. 

 Trait anxiety p-value Depression 
score 

p-value Gender 
(male) 

p-value 

Learning rate < 0.01 0.99 < 0.01 0.50 -0.14 < 0.01** 
Breathing anxiety 1.44 0.02 0.16 0.85 -1.77 0.77 
Breathing 
difficulty 

0.59 0.05 -0.74 0.08 5.49 0.08 
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Supplementary Table 6. Whole and individual-group model comparison results. Abbreviations: XP, exceedance 
probability; PXP, protected exceedance probability. 

 RW HGF2 HGF3 
Whole group    
XP 0.01 0.99 0.00 
PXP 0.30 0.40 0.30 
Low anxiety    
XP 0.30 0.24 0.46 
PXP 0.33 0.33 0.34 
Moderate anxiety    
XP 0.01 0.99 0.00 
PXP 0.26 0.48 0.26 

 
 
 
 
 
 

 
Supplementary Figure 10. Comparisons of fitted log model evidence (LME) values across all participants. Left and 
middle: Comparisons between each model pair, where bar plots represent mean±standard error values of the specified 
differences in LME, with the distribution of values overlaid in grey. Bar plot code adapted from the CANLAB Toolbox 
(https://github.com/canlab). Right: Proportion of highest LME values across all 60 participants. Dotted lines represent 
upper and lower 95% confidence intervals for chance, and all proportions of winner classifications lie within the chance 
range.  
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Supplementary Figure 11. A) Significant BOLD activity associated with prediction certainty, averaged over trials with 
positive and negative prediction certainty. B) Significant BOLD activity associated with prediction error magnitude, 
averaged over trials with positive and negative prediction errors. The images consist of a colour-rendered statistical map 
superimposed on a standard (MNI 1x1x1mm) brain. The bright grey region represents the coverage of the coronal-
oblique functional scan. Significant regions are displayed with a cluster threshold of p<0.05, FWE corrected for multiple 
comparisons across all voxels included in the functional volume. Images are an expanded view of those presented in 
Figure 4. 
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Supplementary Figure 12. Whole group results from inspiratory resistance (top panel) and no inspiratory resistance 
(bottom panel) stimulus periods. The images consist of a colour-rendered statistical map superimposed on a standard 
(MNI 1x1x1mm) brain. The bright grey region represents the coverage of the coronal-oblique functional scan. Significant 
regions are displayed with a cluster threshold of p<0.05, FWE corrected for multiple comparisons across all voxels 
included in the functional volume. 
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Supplementary Figure 13. Overall results from the non-computational decision-based analyses of the ‘Breathing 
Learning Task’ (BLT). The plots in both (A) and (B) demonstrate how prediction decisions (in A) and surprise (in B) 
trajectories are encoded into positive (i.e. towards no resistance) and negative (i.e. towards resistance, red) values. The 
grey lines in both plots represent the stimulus at each trial, while the blue (positive) and red (negative) lines in (A) denote 
the prediction decisions (prior to the stimulus) and in (B) the surprising events (where the prediction decision was 
incorrect). In both trajectories the dotted black line denotes the boundaries between positive and negative valence, and 
the distance from the dotted line is taken as the final value (i.e. absolute values). The brain images in (A) represent the 
influence of valence on prediction decisions (difference between negative and positive decisions), while there is no 
equivalent representation of overall predictions in a binary decision model compared to the computational model design 
(the average over positive and negative prediction decisions simply represents the cue presentation). The brain images 
in (B) represent the activity associated with average surprise (average over positive and negative surprise trajectories) 
and the influence of valence on surprise (difference between negative and positive surprise trajectories). The images 
consist of a colour-rendered statistical map superimposed on a standard (MNI 1x1x1mm) brain. The bright grey region 
represents the coverage of the coronal-oblique functional scan. Significant regions are displayed with a cluster threshold 
of p<0.05, FWE corrected for multiple comparisons across all voxels included in the functional volume. Abbreviations: 
PAG, periaqueductal gray. 
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Supplementary Figure 14. Brain activity group comparison results from the binary decision model for the ‘Breathing 
Learning Task’ (BLT). An interaction effect was observed between valence (i.e. positive vs. negative) and anxiety group 
(low vs. moderate) for the anterior insula activity related to the valence of the prediction decisions of interoceptive 
breathing stimuli. The images consist of a colour-rendered statistical map superimposed on a standard (MNI 1x1x1mm) 
brain. Voxel-wise statistics were performed using non-parametric permutation testing within a mask of the anterior insula 
and periaqueductal gray, with significant results determined by p<0.05 (corrected for multiple comparisons within the 
mask). 
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Supplementary Results: Multi-modal analysis 
 
 
Supplementary Table 7. Correlation matrix across task modalities, with Pearson’s correlation coefficients given above 
the diagonal and p values below the diagonal. Correlations with a p value<0.05 are represented in bold text, and those 
p<0.01 are shaded grey. Variables: 1) State anxiety (STAI-S); 2) Anxiety disorder (GAD-7); 3) Anxiety sensitivity (ASI); 
4) Depression (CES-D); 5) Body perception (BPQ); 6) Interoceptive awareness (MAIA); 7) Breathing-related 
catastrophising (PCS-B); 8) Breathing-related vigilance (PVQ-B); 9) Perceptual threshold (from the FDT); 10) Decision 
bias (from the FDT); 11) Metacognitive bias (average confidence, from the FDT); 12) Metacognitive performance (from 
the FDT); 13) BOLD activity associated with positive predictions (from the BLT); 14) BOLD activity associated with 
negative predictions (from the BLT); 15) BOLD activity associated with positive prediction errors(from the BLT); 63) 
BOLD activity associated with negative prediction errors (from the BLT). 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
1  0.70 0.57 0.72 0.22 -

0.57 
0.42 0.06 0.26 -

0.28 
-

0.30 
-0.23 -0.04 0.10 0.01 -

0.10 
2 <0.01  0.55 0.72 0.35 -

0.51 
0.39 0.12 0.18 -

0.16 
-

0.25 
-0.17 -0.07 0.04 0.12 -

0.15 
3 <0.01 <0.01  0.68 0.40 -

0.40 
0.62 0.20 0.20 -

0.18 
-

0.30 
-0.21 0.01 0.13 0.16 -

0.03 
4 <0.01 <0.01 <0.01  0.31 -

0.43 
0.61 0.27 0.28 -

0.14 
-

0.24 
-0.17 -0.01 0.13 0.12 -

0.10 
5 0.10 0.01 <0.01 0.02  -

0.16 
0.25 -

0.02 
0.04 0.19 -

0.03 
-0.12 0.06 0.06 0.06 -

0.08 
6 <0.01 <0.01 <0.01 <0.01 0.24  -0.34 0.02 -

0.13 
0.07 0.23 0.16 0.14 -0.01 -

0.12 
0.07 

7 <0.01 <0.01 <0.01 <0.01 0.05 0.01  0.49 -
0.01 

0.01 -
0.21 

-0.30 0.17 0.24 -
0.05 

-
0.10 

8 0.66 0.36 0.13 0.04 0.89 0.87 <0.01  -
0.10 

-
0.05 

0.10 0.06 0.16 0.13 0.09 -
0.08 

9 0.05 0.17 0.13 0.03 0.78 0.34 0.97 0.48  0.20 0.05 0.02 -0.12 -0.03 0.03 -
0.10 

10 0.04 0.23 0.18 0.29 0.16 0.62 0.95 0.69 0.13  0.35 0.02 -0.06 0.01 0.14 0.06 
11 0.02 0.06 0.02 0.07 0.85 0.08 0.12 0.46 0.70 0.01  0.35 -0.21 -0.28 -

0.00 
0.07 

12 0.09 0.20 0.11 0.20 0.38 0.22 0.02 0.65 0.87 0.87 0.01  -0.23 -0.23 0.13 0.42 
13 0.75 0.60 0.91 0.96 0.64 0.29 0.19 0.22 0.36 0.68 0.12 0.08  0.79 -

0.22 
-

0.30 
14 0.44 0.76 0.31 0.34 0.68 0.97 0.07 0.32 0.83 0.94 0.03 0.08 <0.01  -

0.10 
-

0.46 
15 0.92 0.39 0.23 0.37 0.64 0.36 0.72 0.52 0.80 0.28 0.98 0.33 0.10 0.45  0.08 
16 0.45 0.26 0.84 0.46 0.53 0.58 0.46 0.57 0.45 0.63 0.60 <0.01 0.02 <0.01 0.57  

 
 
 
 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 26, 2021. ; https://doi.org/10.1101/2021.03.24.436881doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.24.436881
http://creativecommons.org/licenses/by-nd/4.0/


 

  
Supplementary Figure 15. Results of the permutation tests conducted to determine the number of significant principal 
components within the data. The variance explained for principal components 1 and 2 are considered significant (denoted 
by *; p<0.05), as the values lie above the null distribution (grey lines), created by shuffling the participant scores within 
each measure. 
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Supplementary Results: Questionnaires 
 
 
 
 
 

 
Supplementary Figure 16. Results from the additional questionnaires measured in groups of healthy individuals with 
either low levels of anxiety (score of 20-25 on the Spielberger Trait Anxiety Inventory, STAI-T) or moderate anxiety (score 
of 35+ on the STAI-T). Questionnaires: ‘Positive affect’ and ‘Negative affect’ from the Positive Affect Negative Affect 
Schedule (PANAS-T), ‘Fatigue’ from the Fatigue Severity Scale (FSS), ‘Self efficacy’ from the General Self-Efficacy 
Scale, and ‘Resilience’ from the Connor-Davidson Resilience Scale. Bar plots represent mean±standard error values, 
with the distribution of values overlaid in grey. *Significant at p<0.05; **Significant following correction for multiple 
comparisons across all questionnaire measures. Bar plots represent mean±standard error values, with the distribution 
of values overlaid in grey. Bar plot code adapted from the CANLAB Toolbox (https://github.com/canlab). 
 
 
 
 
 
 

 
Supplementary Figure 17. Results from the sub-scores of the Anxiety Sensitivity Index (ASI-3) questionnaire, measured 
in groups of healthy individuals with either low levels of anxiety (score of 20-25 on the Spielberger Trait Anxiety 
Inventory, STAI-T) or moderate anxiety (score of 35+ on the STAI-T). Bar plots represent mean±standard error values, 
with the distribution of values overlaid in grey. *Significant at p<0.05; **Significant at p<0.01, with no correction for 
multiple comparisons (exploratory results). Bar plots represent mean±standard error values, with the distribution of 
values overlaid in grey. Bar plot code adapted from the CANLAB Toolbox (https://github.com/canlab). 
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Supplementary Figure 18. Results from the sub-scores of the Multidimensional Assessment of Interoceptive Awareness 
Questionnaire (MAIA), measured in groups of healthy individuals with either low levels of anxiety (score of 20-25 on the 
Spielberger Trait Anxiety Inventory, STAI-T) or moderate anxiety (score of 35+ on the STAI-T). Bar plots represent 
mean±standard error values, with the distribution of values overlaid in grey. **Significant at p<0.01, with no correction 
for multiple comparisons (exploratory results). Bar plots represent mean±standard error values, with the distribution of 
values overlaid in grey. Bar plot code adapted from the CANLAB Toolbox (https://github.com/canlab). 
 
 
 

  
Supplementary Figure 19. Results from the sub-scores of the Body Perception Questionnaire (BPQ), measured in groups 
of healthy individuals with either low levels of anxiety (score of 20-25 on the Spielberger Trait Anxiety Inventory, STAI-
T) or moderate anxiety (score of 35+ on the STAI-T). Bar plots represent mean±standard error values, with the 
distribution of values overlaid in grey. **Significant at p<0.01, with no correction for multiple comparisons (exploratory 
results). Bar plots represent mean±standard error values, with the distribution of values overlaid in grey. Bar plot code 
adapted from the CANLAB Toolbox (https://github.com/canlab).  
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Supplementary Figure 20. Results from the sub-scores of the Pain Catastrophising Scale (with the word ‘pain’ substituted 
for ‘breathing’, PCS-B), measured in groups of healthy individuals with either low levels of anxiety (score of 20-25 on 
the Spielberger Trait Anxiety Inventory, STAI-T) or moderate anxiety (score of 35+ on the STAI-T). Bar plots represent 
mean±standard error values, with the distribution of values overlaid in grey. **Significant at p<0.01, with no correction 
for multiple comparisons (exploratory results). Bar plots represent mean±standard error values, with the distribution of 
values overlaid in grey. Bar plot code adapted from the CANLAB Toolbox (https://github.com/canlab). 
 
 
 
 
 

 
Supplementary Figure 21. Results from the sub-scores of the Pain Vigilance Awareness Questionnaire (with the word 
‘pain’ substituted for ‘breathing’, PVQ-B), measured in groups of healthy individuals with either low levels of anxiety 
(score of 20-25 on the Spielberger Trait Anxiety Inventory, STAI-T) or moderate anxiety (score of 35+ on the STAI-T). 
Bar plots represent mean±standard error values, with the distribution of values overlaid in grey. **Significant at p<0.01, 
with no correction for multiple comparisons (exploratory results). Bar plots represent mean±standard error values, with 
the distribution of values overlaid in grey. Bar plot code adapted from the CANLAB Toolbox (https://github.com/canlab). 
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