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Abstract

Growing cells adopt common basic strategies to achieve optimal resource allocation under
limited resource availability. Our current understanding of such “growth laws” neglects
degradation, assuming that it occurs slowly compared to the cell cycle duration. Here
we argue that this assumption cannot hold at slow growth, leading to strong qualitative
consequences. We propose a simple framework showing that at slow growth protein
degradation is balanced by a fraction of “maintenance” ribosomes. Through a detailed
analysis of compiled data, we show how this model is predictive with E. coli data and
agrees with S. cerevisiae measurements. Intriguingly, model and data show an increased
protein degradation at slow growth, which we interpret as a consequence of active waste
management and/or recycling. Our results highlight protein turnover as an underrated
factor for our understanding of growth laws across kingdoms.

Introduction

“Growth laws” (Scott and Hwa, 2011; Kafri et al., 2016) are quantitative relationships
between cell composition and growth rate. They uncover simple underlying physiological
design principles that can be used to predict and manipulate cell behavior. One of
these laws, sometimes called the “first growth law”, relates steady-state growth rate to
ribosome allocation and reflects the fact that the biosynthetic rate is set by the fraction
of ribosomes that translate other ribosomes (Scott et al., 2010; Metzl-Raz et al., 2017).
Specifically, the mass fraction φR of ribosomal proteins in the proteome increases linearly
with growth rate λ, independently of nutrient source.

Fig. 1 provides a visual summary of the relation φR(λ). Importantly, there is an
empirical offset in this law φR(λ = 0) 6= 0, i.e., the relationship extrapolates to a nonzero
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fraction of ribosomes at zero growth. The presence of an offset seems to be widespread
across species (Fig. 1 - Supplement 1). This offset is commonly interpreted using the
assumption that only a fraction of the total number of ribosomes (sometimes called
“active ribosomes”) is translating and thus producing mass (Scott et al., 2010; Dai et al.,
2016). However, no currently available experimental method is able to quantify active
ribosomes, and the origin and nature of the inactive ribosomal pool is under debate (Dai
and Zhu, 2020). In E. coli, deviations from this law at slow growth were explained by
a growth-rate dependent fraction of active ribosomes (Klumpp et al., 2013; Dai et al.,
2016).
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Fig 1. Sketch of the growth law relating ribosome mass fraction φR to growth rate λ.
The fraction of ribosomal and ribosome-affiliated proteins (R) increases with increasing
nutrient quality at the expense of the sector of metabolic proteins (P), while a fraction
of the proteome (Q) including for instance negatively autoregulated housekeeping genes,
is growth rate-independent. Available data for most organisms show a nonzero intercept
φminR > 0 (see Fig. 1 - Supplement 1). In E. coli (Dai et al., 2016), the law deviates from
linearity at slow growth (λ ≤ 1 h−1), making the intercept φminR larger.

Protein degradation and turnover are typically neglected in the frameworks describing
growth laws (Scott et al., 2010). Clearly if degradation time scales fall in the range
of 10-100 h (Goldberg and Dice, 1974; Maurizi, 1992), they are negligible compared
to protein dilution by cell growth when nutrients are abundant. However, when the
population doubling time overlaps with the typical time scale of protein degradation,
the balance between protein production and protein degradation must clearly impact
growth (Maitra and Dill, 2015; Kempes et al., 2016; Santra et al., 2017). Importantly,
prolonged slow- or null-growth regimes are of paramount importance in the lifestyle
of most bacteria (Kempes et al., 2017; DeLong et al., 2010; Long et al., 2021; Gray
et al., 2019; Schink et al., 2019; Biselli et al., 2020), as well as in synthetic biology
applications (Borkowski et al., 2016). Notably, the smallest bacterial species not only
grow slowly but have a small number of macromolecules (e.g. ≈ 40 ribosomes) suggesting
that protein turnover matters in slow growth contexts (Kempes et al., 2016).

Here, we propose and explore a generic framework to describe the first growth law
including the role of protein degradation and turnover (Kempes et al., 2016; Santra et al.,
2017). We first derive the law from basic flux-balance principles. We then falsify on
general grounds a scenario where degradation is not accounted for. Finally, we use our
framework on E. coli and S. cerevisiae data, finding that data and model converge on a
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scenario of accelerated protein turnover at slow growth.

Results

Degradation sets an offset in the first growth law

We start by formulating a simple theory for the first growth law that includes degradation.
The law can be derived from the following total protein mass (M) flux balance relation,
valid for steady exponential growth,

λM = Jtl − Jdeg . (1)

Here, λ is the cellular growth rate, Jtl is the flux of protein mass synthesized by translation,
and we explicitly considered the flux of protein degradation Jdeg. The term Jtl is
proportional to the ribosome current vρ on a transcript, given by the product between
the ribosome speed v and its linear density ρ on an mRNA. This quantity corresponds to
the protein synthesis rate if the ribosomal current along a transcript is conserved, i.e. if
ribosome drop-off is negligible. We assume that ribosome traffic is negligible, therefore
the speed v is independent of ρ and can be identified with the codon elongation rate
k (Li, 2015). In this model, free ribosomal subunits are recruited to mRNAs and become
translationally active via a first-order reaction that depends on the concentration of free
ribosomes (Fig. 2a).

A simple estimate (see Box 1) shows that Jtl = maakR, where maa is the typical mass
of an amino-acid and R the total number of ribosomes. The flux of protein degradation
is determined by the degradation rate η. We first assume that η is a constant that does
not depend on the growth rate and it is identical for all proteins, which gives Jdeg = ηM .

Fig 2. Protein degradation determines an offset in the first growth law. (a) Sketch of
the model proposed here, including degradation. (b) The law φR(λ) predicted by Eq.(1)
shows an offset φmin

R = η/γ. The offset increases linearly with degradation rate η at a
constant ribosome production rate γ. (c) Varying γ also changes φmin

R but it also affects
the slope of φR(λ). Panel (b) reports φR(λ) for γ = 7.2 h−1 and η = 0, 0.25, 0.5 h−1.
Panel (c) fixes η = 0.25 h−1 and varies γ = 2, 3.6, 7.2 h−1.
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This assumption can be relaxed to study the role of protein-specific degradation rates (see
Methods and Materials), but in this work we limit our investigation to the average values
of these quantities. Using the expressions for Jtl and Jdeg into Eq. (1) and introducing
the parameter γ := k/LR (where LR is the number of amino acids in a ribosome), we
find a simple relation between the ribosomal protein mass fraction φR and the growth
rate λ that involves the degradation rate,

λ = γφR − η . (2)

Note that γ can be interpreted as the inverse of the time needed to translate all the amino-
acids needed to build a ribosome. If ribosome speed is growth-rate dependent (Klumpp
et al., 2013), γ is itself a function of λ. We will come back to this point in the following.

Equation (2) gives an alternative formulation of the first growth law. Crucially, this
equation predicts an offset φminR = φR(λ = 0) = η/γ in the law, which we can compare
to the experimental range of observed offsets, φminR ∼ 0.02 − 0.1 (Scott et al., 2010;
Metzl-Raz et al., 2017). Taking γ ≈ 3.6− 7.2 h−1, this simple estimate returns values for
the degradation rate η that correspond to a range of (mean) protein half-lives ∼ 1− 10
h. Hence, protein turnover should become relevant for slowly growing cells, when their
doubling time falls in the same range of time scales (or is longer). Figure 2 summarizes
this result and shows how different degradation rates set different offsets in the predicted
linear relationship φR(λ). In this framework, the offset φminR = η/γ can be interpreted
as the ratio between the time needed for a ribosome to synthesize a new ribosome and
the time scale of protein degradation (or decay), which fixes the size of the ribosome
pool in steady growth. In other words, the offset φminR can be interpreted as the mass
fraction of ”maintenance ribosomes”, which are needed to sustain protein synthesis in
resource-limited conditions.

Box 1. The first growth law in the degradation model.

At steady growth, mass balance imposes that the fluxes of mass production Jtl and
degradation Jdeg should be equal

dM

dt
= λM = Jtl − Jdeg. (3)

The biosynthesis flux is proportional to jm, the overall translation rate of the
typical transcript, Jtl = mpNmjm, where mp is the mass of the typical protein, and
Nm is the number of transcripts. Assuming a small translation initiation rate, and
thus a low ribosome density on each transcript (Ciandrini et al., 2013), the overall
translation rate is kρ, and following (Shaw et al., 2003) the density of ribosomes is

ρ =
α
k

1 + (`− 1)αk
, (4)

where ` is the size of the ribosome in units of codons (i.e. ` ≈ 10) and α is the
translation initiation rate. Since initiation is about two order of magnitudes slower
compared to elongation, (0.1 vs 10 s−1) (Ciandrini et al., 2013), the density can be
approximated as ρ ≈ α/k. Describing initiation as a first-order chemical reaction,
α = α0cf , with cf being the concentration of free ribosomes in solution. Considering
that the total number of ribosomes is given by R = Rb +Rf , we obtain the following
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relation between Rf and R (Greulich et al., 2012)

Rf =
kR

k + Lcmα0
, (5)

where we have introduced the concentration of transcript cm. In this theory, the
quantity fb = Rb/R describes the fraction of bound and translating ribosomes. If
the total expected time to elongate a typical protein τe = L/k is large compared
the time that a ribosome remains unused in the cytoplasm τi = 1/α0cm, then
jm ' kρ = α0cf ' kR/(LNm), and the mass production term reads

Jtl = maakR . (6)

The contribution of protein turnover to the mass balance is Jdeg = ηM . Thus,
by using the relations for Jtl and Jdeg in Eq. (1) we obtain λ = γφR − η - Eq. (2)
in the text. We remind that φR = MR/M where MR = mRR is the total mass of
ribosomal proteins and mR the protein mass of a single ribosome, and that γ = k/LR
where LR = mR/maa is the number of amino acids in a ribosome. The quantity γ−1

can hence be interpreted as the typical time needed for a ribosome to duplicate its
protein content.

The standard framework for the first growth law neglects protein turnover

To illustrate how the framework involving protein degradation provides an alternative
(but possibly complementary, see below) interpretation of the players generating the first
growth law, we now discuss the more standard derivation of the relationship φR(λ). The
standard framework neglects protein turnover in all regimes and assumes that only a
fraction fa of ribosomes actively translates the transcriptome, while the remaining subset
of ribosomes does not contribute to protein synthesis. Thus, among the total number R
of ribosomes, Ri are considered as inactive, and only Ra = faR active ribosomes elongate
the newly synthesized proteins with rate k per codon and generating a mass flux Jtl. It is
yet experimentally unfeasible to distinguish between active and inactive ribosomes (Zhu
et al., 2020), and growth laws are typically formulated in terms of the total ribosome to
total protein mass fraction φR. After a few rearrangements (see Box 2), we write

λ = γ(φR − φiR) = γφRfa , (7)

where φiR is the mass protein fraction of inactive ribosomes and fa = (1 − Ri/R) is
the fraction of actively translating ribosomes, which is in principle a function of the
growth state λ. Note that all inactive ribosomes are considered as they were sequestered
in this model, differently from the pool of cytoplasmic ribosomes introduced in the
previous section, which are not translating but follow an equilibrium binding kinetics
with transcripts, see Fig 2(a).

The active ribosomes framework predicts an offset in the linear relation φR(λ), which
originates from the fraction of inactive ribosomes φiR at zero growth. When mass is not
produced (λ = 0), in this model there are no ribosomes that are actively translating
proteins, but there exists a non-vanishing fraction of inactive ribosomes. Note that
Eq.(2) from the “degradation” model, and Eq.(7) from the “active ribosomes” model are
mathematically equivalent if we identify the degradation rate η in the first model with
the product γφiR in the second. Hence, the two frameworks give a different interpretation
of the mechanisms generating the offset in the ribosomal fraction at vanishing growth.
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Box 2. Active ribosomes model

Assuming balanced exponential growth, all cellular components accumulate at the
same rate λ. Neglecting protein turnover, the exponential increase of the total
protein mass M is

dM

dt
= λM . (8)

The mass production term is usually expressed as the product between the number
of actively translating ribosomes Ra, the codon elongation rate k and the mass of an
amino acid maa (Dai et al., 2016):

dM

dt
= maakRa . (9)

Equations (8) and (9) lead to a relation between the growth rate λ and the mass
fraction of Ra. However, the number of actively translating ribosomes Ra is not
easily accessible experimentally. Instead, one can express it in terms of the total
number of ribosomes, R = Ri +Ra, where Ri is the number of inactive ribosomes.
This gives

λ = γ(φR − φiR) = γφRfa(λ) , (10)

which gives an offset in the first growth law, related to the fraction of active ribosomes
fa(λ).

Analysis of the slow-growth regime supports a scenario where protein
degradation cannot be neglected

We now argue on general grounds that protein turnover must be included in a description
of growth laws of slowly-growing cells. To this aim, we compare more closely the two
models (Fig. 3 and 3 - Supplement 1). The active ribosomes model (Box 2 and Fig. 3 -
Supplement 1) predicts that the fraction fa is always less than 1 and it adapts to the
growth state. Assuming that the fraction of active ribosomes fa is also a function of λ,
one obtains the relationship

fa(λ) =
λ

γ(λ)φR(λ)
. (11)

Since φR(λ) must be finite for vanishing growth rates, Eq. (11) implies that the fraction
of active ribosomes must disappear, unless the protein synthesis rate γ(λ) falls linearly
to zero. This prediction appears contradictory, as it suggests the existence of a pool of
residual actively translating ribosomes at arrested protein production. Conversely, it
seems reasonable to expect that for maintenance purposes the translation elongation rate
γ could be nonzero for growth rates comparable to the time scales of protein degradation.
In the case of E. coli, for example, the measured elongation rate k is different from zero
at vanishing growth rate (Dai et al., 2016); given the observed nonzero φmin

R , the theory
would predict the complete absence of active ribosomes, in contrast with the experimental
measure of a finite translation elongation rate.

Instead, the degradation model implicitly assumes that all bound ribosomes are active
and contributing to mass production. In this case, the theory predicts that for vanishing
growth rate a pool of ”maintenance ribosomes” φmin

R = η/γ counterbalances protein
degradation. We also note that in bacteria maintenance protein synthesis is reported
to be active even in stationary phase (Gefen et al., 2014). These considerations suggest
that, while combined scenarios are possible (see below), and inactive ribosomes might
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also play a role, protein turnover should not be neglected in a theoretical description of
the determinants of the first growth law and the origin of the offset φminR .

In E. coli, the scenario including protein turnover correctly predicts an
increase of degradation rate in slow-growth conditions

In the case of E. coli, it is possible to perform a more detailed analysis. The data present
a further complication, as direct measurements of protein elongation rate show that
this parameter decreases with decreasing growth rate (Dai et al., 2016). Specifically,
the elongation rate k shows a plateau (k = 16− 17 aa s−1, γ ∼ 8 h−1) in nutrient-rich
growth conditions (λ > 1 h−1), but elongation slows down in poor nutrient conditions,
and reaches a value of ∼ 8 aa s−1 (γ ∼ 4 h−1) at vanishing growth (stationary phase).
Thus, γ in Eq. (2) and (7) should be considered as functions of λ. Consequently, at slow
growth, the first growth law φR(λ) deviates from linearity (Dai et al., 2016), as also
shown in the sketch in figure 1.

Using this observation, and using the active ribosomes model, Dai and coworkers
predicted the fraction of inactive ribosomes. Specifically, Equation (7), informed by
the experimental values of φR, γ and λ, determines fa from Eq. (11). As discussed
above, however, this theory predicts that active ribosomes become vanishing as growth
rate decreases. Indeed, the estimated active ribosome fraction fa obtained following
this procedure drops to zero for vanishing λ (red circles in Figure 3 - Supplement 1).
Unfortunately, a direct experimental validation of fa(λ) is currently unavailable (Zhu
et al., 2020).

When introducing the degradation model, we previously assumed that the degradation
rate was a constant. However, η can in principle be a function of the growth state.
Assuming the degradation model -Equation (2)- and paralleling the analysis by Dai and
coworkers, we derived from the data a protein turnover rate η that depends on λ, as it
follows

η(λ) = γ(λ)φR(λ)− λ . (12)

The estimated degradation rate, assuming this model, is plotted in Fig. 3. In order to
validate this prediction, we searched the literature for datasets of protein degradation
rates under different nutrient conditions. Despite of the burst of recent quantitative
experiments connected to the discovery of growth laws, there are no recent systematic and
quantitative measurements of protein degradation in E. coli, but many such measurements
are available from classic studies (Goldberg and Dice, 1974; Maurizi, 1992; Pine, 1970;
Nath and Koch, 1971; Pine, 1973; Mosteller et al., 1980; Larrabee et al., 1980; Schroer
and St. John, 1981). The most comprehensive summary is found in ref. (Pine, 1973),
therefore we mined these data for average degradation rates (there are variations in
protein-specific degradation rates (Mosteller et al., 1980; Larrabee et al., 1980; Schroer
and St. John, 1981), which we did not consider here).

Figure 3 shows that experimentally the protein degradation rate varies with the
growth rate of the medium in all the E. coli strains considered by (Pine, 1973) (see also
Fig. 3 - Supplement 2 for other data we compiled). The model prediction shows a good
quantitative agreement with the direct measurements on two main levels. First, the
degradation rate η increases with decreasing growth rate, and second, the time scales of
protein turnover become comparable to dilution at slow growth. This analysis confirms
the idea that protein turnover is the driver of the deviation from the linear growth laws
at slow growth.
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Fig 3. In E. coli, the degradation framework correctly captures the trend of measured
degradation rates. In the model proposed here (the sketch in the top panel is the same
as in Fig. 2a, repeated to facilitate reading) ribosomes follow a first-order kinetics to
bind the transcripts, and all bound ribosomes contribute to protein synthesis (mass
production). Mass can be lost by protein degradation or diluted by cell growth. The plot
reports the estimated E. coli degradaton rate η assuming this model (cobalt blue circles)
and using data from (Dai et al., 2016), compared to experimental data on degradation
rate from (Pine, 1973) (other symbols).

In S. cerevisiae, ribosome allocation data are compatible with the pre-
dictions of the protein turnover model

The available data on yeast do not allow a stringent analysis comparable to the one we
performed for E. coli. Firstly, they lack data points at slow growth rates for ribosome
allocation (Metzl-Raz et al., 2017), as well as precise measurements of translation rates
–comparable to the analysis of (Dai et al., 2016). Secondly, degradation data are not as
abundant.

However, by taking degradation rate data from (J M Gancedo, 1982), and a range of
translation rates from (Boehlke and Friesen, 1975) it was possible for us to show that the
observed data for the first growth law are fully in line with the prediction of the model
(Fig. 3 - Supplement 3).

A combined model accounting for both active ribosomes and protein
turnover predicts at most 20% of inactive ribosomes at slow growth

While the data converge on a role of degradation in determining ribosomal fractions at
slow growth, this does not by itself exclude that inactive ribosomes may also play a role.
The measured degradation rates are generally slightly smaller than model predictions,
which could suggest that inactive ribosomes are also present, but their fraction must be
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Fig 4. In a picture including degradation, inactive ribosomes are at most a small
fraction. (a) Sketch of the combined model where degradation is included and ribosomes
can become inactive. (b) Estimated fraction of bound/active ribosome fb (orange circles)
assuming the combined model and using E. coli data from (Dai et al., 2016) and
degradation data from (Pine, 1973) (shown in the inset). (c) Comparison of estimated
fraction of active ribosomes from the standard active ribosomes model (x axis) and the
combined model (y axis) using data data from (Dai et al., 2016) (orange circles).

much lower than expected by a framework neglecting protein turnover. To explore this
idea, we developed a combined framework considering both features (Fig. 4a).

We now repeat the procedure followed in the degradation model splitting the unbound
ribosome pool into free and inactive fractions, as sketched in Fig. 4a. Free ribosomes can
bound mRNA (and thus become translationally active). The growth law can be written
as:

λ = γ(φR − φiR)− η = γφRfb − η , (13)

where both the fraction fb of bound/active ribosomes and the role of protein turnover
are taken into account. It is possible once again to use Equation (13) to infer the fraction
of bound/active ribosomes as a function of the growth rate (Fig. 4b) when η(λ) is known.
This reasoning suggests that an increasing fraction of inactive and free ribosomes might
still exist at slow growth, but they would be no more than 20% of the total (Fig. 4c).

Finally, we note that in the combined model it is possible to write φR as a function
of the dimensionless parameter Λ := (λ+ η)/γ,

φR =
Λ

fb
, (14)

which highlights the relevance of the relative role of the time scales of ribosome production
(γ) and dilution/degradation (λ+η) in determining φR. An ideal experimental setup would
be capable of informing on ribosomal mass fraction, protein degradation and elongation
rate as functions of the growth rate. This would then give access to the experimental
(still indirect) quantification of the bound/active ribosome fraction fb. Since Eq. (14) is
linear in Λ, deviations from linearity would indicate a growth dependence of the fraction
of active ribosomes.

Discussion and Conclusions

The concepts of maintenance and turnover are central in biosynthesis, and become
particularly relevant for slow-growing cells. It seems natural that they would play a
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role in growth laws. While some recent studies on E. coli have focused on biomass
recycling from dead cells (Schink et al., 2019; Biselli et al., 2020), here we provide a
complementary interpretation for the determinants of the “first” growth law relating
ribosome fraction to growth rate in different nutrient conditions. The idea that protein
degradation would make the relationship between ribosomal sector and growth rate linear
but not proportional was first suggested by (Bosdriesz et al., 2015), but this study only
commented briefly on this possibility, and did not explore its implications. The concepts
introduced here clarify some important aspects on the behavior of slowly-growing E. coli.
Specifically, data and models converge on a scenario where protein degradation sets a
maintenance level of ribosomes at vanishing growth. Inactive ribosomes might play a role,
but their relative fraction must be smaller than previously expected, even at vanishing
growth. Here, in contrast with the widespread notion that at slow growth the fraction of
active ribosome tends to disappear, we suggest that ribosome turnover sets a reservoir of
maintenance ribosomes at vanishing growth.

A further question highlighted by our analysis concerns the causes and the mechanistic
determinants of the increase in degradation rates observed at slow growth. While
classic studies have observed this effect (Goldberg and Dice, 1974; Maurizi, 1992; Pine,
1973), there is no convergence about the biological mechanisms underlying this change.
Misfolding and protein aggregation occur when translation is slow (Maurizi, 1992), and
one could speculate that enhanced protein degradation contributes to the removal of
waste products. Other hypotheses regard protein degradation as a strategy to strengthen
the recycling of amino-acids under limited nutrient conditions, or as a post-translational
control mechanism that would tune the level of specific proteins (Goldberg and Dice,
1974; Maurizi, 1992; Pine, 1973).

We also remark that the observed increased of the average degradation rate may also
result from the variability of the protein mass fractions in different growth regimes. Here,
we did not consider protein-specific degradation rates. However, we can establish a mini-
mal framework with degradation rates ηR and ηP that are specific to two corresponding
protein sectors φR and φP (typically representing a ribosomal and a metabolic sector).
Eq.(2) still holds redefining η as

η := ηRφR + ηPφP = ηP (1− e φR) , (15)

i.e. as the weighted average of the degradation rates of the corresponding sectors, with
e := 1 − ηR/ηP and assuming φR + φP = 1 for simplicity. Eq. (15) indicates that the
growth-dependence of η might also emerge from the variability of the mass fractions φ at
different physiological states. Unfortunately no experimental data currently allow us to
validate this scenario, hence we stuck to the most parsimonious assumption of a common
rate. However, we do note that interspecific predictions of the ribosome abundance
based on protein abundance and growth rate use this modification and can describe data
for diverse species (Kempes et al., 2016). This connection highlights the importance of
future work that considers the interplay of shifts in protein abundance, degradation rates,
and transcript partitioning across species. We also note that selective degradation of
nonribosomal proteins under slow growth has been proposed to play an important role in
determining optimal energy efficiency in slow-growing bacteria (Maitra and Dill, 2015).

Beyond E. coli, we expect that the concepts developed here should be even more
important for our understanding of growth laws in slow-growing bacteria and eukaryotes.
In yeast, protein turnover has been quantified precisely (Christiano et al., 2014), and
protein-specific and regulatory aspects of protein degradation and turnover are well
known. In particular, selective degradation rates for ribosomal and different kinds of
metabolic proteins in different regimes have been reported (Martin-Perez and Villén,
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2017; Christiano et al., 2014; Belle et al., 2006; Helbig et al., 2011), which should
affect the first growth law (Metzl-Raz et al., 2017). Finally, eukaryotic cells have been
reported to activate the expression of autophagy proteins at slow growth, also targeting
ribosomes (Beese et al., 2020). However, these aspects remain unexplored from the
quantitative standpoint. We expect protein turnover to be relevant in other eukaryotic
cells, as post-translation control becomes more common in setting protein concentrations;
for instance, fibroblasts increase degradation rates of long-lived proteins as they transition
from a proliferating to a quiescent state (Zhang et al., 2017).

In conclusion, our results lead us to conclude that protein turnover is needed to
explain important features of cellular resource allocation underlying the growth laws, in
particular at slow growth, when the time scales of mass loss for protein degradation and
dilution become comparable. In such conditions, differential degradation of proteins with
different functions and expression levels will likely play a role in determining physiological
responses that yet escape our knowledge. A new generation of large-scale studies of
protein-specific degradation, starting from E. coli, may help us building a condensed and
quantitative picture of global cell physiology that includes protein turnover.

Methods and Materials

Models

We discuss three different models throughout this study. The “degradation model” (Box
1) provides the relation φR(λ) by considering the contribution of protein degradation
- Eq.(2). The “active ribosome” model, leading to Eq.(7), is our formulation of the
standard theory that neglects protein turnover (Dai et al., 2016) (Box 2). The third
model that we develop in the last section comprises both aspects of the previous theories
(protein degradation and existence of a pool of inactive ribosomes) and is obtained
by the procedure explained in Box 1 and considering a total number of ribosomes
R = Rf −Ri −Rb. Thus, Eq.(5) becomes Rf = k(R−Ri)/(k + Lcmα0) and, upon the
same hypotheses explained in Box 1, it leads to Eq. (13).

Data sets

Growth rate and protein mass fraction

We used data from Metzl-Raz et al. (2017) (S. cerevisiae), Dai et al. (2016) (E. coli), Fraenkel
and Neidhardt (1961) (A. aerogenes), Alberghina et al. (1975) (N. crassa), Brown and
Rose (1969) (C. utilis), Cook (1963) (E. gracilis) in Figures 3, 1 - Supplement 1 and
3 - Supplement 3.

Experimental data

We compiled two data sets from the literature relative to degradation rates in E. coli and
S. cerevisiae. These data are available as a Mendeley Data repository at the following
address http://dx.doi.org/10.17632/85pxpdsx38.1.

For E. coli, we considered data of the average protein degradation rate from (Pine,
1970; Nath and Koch, 1970; Pine, 1973; Mosteller et al., 1980; Larrabee et al., 1980;
J M Gancedo, 1982). For S. cerevisiae, we considered data from (J M Gancedo, 1982;
Helbig et al., 2011; Christiano et al., 2014; Martin-Perez and Villén, 2017). These studies
can be divided into two categories according to their experimental design:
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1. studies that provide a distribution of degradation rates by measuring the half-life
of hundreds or thousands of proteins. Out of these studies, we estimated the
mean degradation rate as the average of this distribution. In E. coli, (Mosteller
et al., 1980; Larrabee et al., 1980) provide a distribution of degradation rates by
combining pulse-chase experiments with 2-D gel electrophoresis. We note that
these authors measure u 100 degradation rates, but there are more than 4000
E. coli proteins. In S. cerevisiae, (Helbig et al., 2011; Christiano et al., 2014;
Martin-Perez and Villén, 2017) measure the half-lives of thousands of protein by
combining metabolic labelling and mass spectrometry. (Christiano et al., 2014;
Martin-Perez and Villén, 2017) perform SILAC experiments, which are based on
amino acid labelling, while (Helbig et al., 2011) use stable heavy nitrogen isotopes
for labelling. We note that in figure 3 - Supplement 3 we have excluded the estimate
of the mean degradation rate obtained from (Christiano et al., 2014) since it is an
order of magnitude higher than other studies. This discrepancy is also pointed out
by (Martin-Perez and Villén, 2017) who partially ascribe it to protocol differences.
Finally, we also note that in figure 3 - Supplement 3 we show only one data
point from (Martin-Perez and Villén, 2017), but these authors actually perform
two further degradomics experiments in different growth conditions. We did not
include such data points because they find a mean degradation rate 4-8 times
greater than other studies at similar growth rates. We believe that this discrepancy
may be due to sampling bias: while the main experiment of (Martin-Perez and
Villén, 2017) (shown in figure 3 - Supplement 3) measures degradation rates for
u 3000 proteins, , in these two experiments they measure u 1800 proteins. As a
consequence there may be sub-sampling of long-lived proteins that increases the
observed mean degradation rate.

2. studies that measure total protein content breakdown and use data analysis to infer
the mean degradation rate. All such studies never measure directly the degradation
dynamics of specific proteins, but only the dynamics of total protein content. In
E. coli, (Pine, 1970; Nath and Koch, 1970; Pine, 1973) provide a single mean
degradation rate. Nath and Koch (1970) also attempts to estimate the rate of
two distinct protein classes, respectively fast-degrading and slow-degrading types.
In S. cerevisiae, (J M Gancedo, 1982) uses the same type of set-up. All these
studies perform pulse-chase experiments by labelling completely the proteome of
the cell by incorporation of radioactively-labelled amino acids. After switching
to incorporation of unlabelled amino acids, the total amount of labelled protein
can either stay constant or decrease due to degradation. For all these studies, we
performed our own data analysis on the the provided raw data and estimated the
mean degradation rate from the rate of decrease of the labelled total cell protein.
We describe below the methods of our data analysis.

Data analysis

We begin this section by considering the work of Pine (1973), our main source in the main
text for degradation rates across growth conditions. In this case, we have followed the
author’s estimates since the raw data are provided only for few conditions, but we have
re-examined critically their assumption. The authors estimate the mean degradation
rate by assuming that the labelled cell protein decreases with a single degradation rate.
Mathematically, this means that

PL(t) = P 0
L · exp(−η · t) , (16)
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with PL(t) being the amount of labelled protein at time t after the pulse period. This
allows to estimate η as

η = −1

t
log

(
PL(t)

P 0
L

)
, (17)

or any equivalent combination. We note that this method provides a good estimate even
if the degradation rate differs from protein to protein. To see this, we re-write equation
(16):

PL(t) =
∑
i

P 0
Li · exp (−ηit) (18)

where the sum runs over all the proteins in the cell. By considering the initial fraction of
proteins having degradation rate η, we can write this in terms of the distribution P (η).

log

(
PL(t)

P 0
L

)
=

∫
P (η) exp (−ηt) dη = 〈exp (−ηt)〉 , (19)

where the sign 〈·〉 indicates performing an average.
Since approximately

〈exp (−ηt)〉 ≈ exp (−〈η〉t) , (20)

the previous equation still holds in the mean,

〈η〉 ≈ − log

(
PL(t)

P 0
L

)
1

t
. (21)

Jensen’s inequality implies that this estimate always underestimates the true mean
degradation rate, hence, the experimental data points shown in Fig. 3 could be considered
as lower bounds.

For (Nath and Koch, 1970; Pine, 1970), we estimated the mean degradation by the
dividing the cell protein content in three classes, one of which consists of stable proteins.
The other two classes represent respectively fast and slow degrading proteins. This
approach is directly inspired by the ideas of (Nath and Koch, 1970).

The total protein content will decay in general according to the following equation:

PL(t) = P 0
fast · exp (−ηfastt) + P 0

slow · exp (−ηslowt) + P 0
stable (22)

or as a fraction of initial amount of labelled protein

PL(t)

P 0
L

= ffast · exp (−ηfastt) + fslow · exp (−ηslowt) + fstable (23)

with ffast, fslow and fstable being the probability that a protein belongs to one of the
three classes.

The mean degradation rate will be:

〈η〉 = ffastηfast + fslowηslow (24)

To estimate this, we must infer the parameters ffast,ηfast, fslow and ηslow from equation
(23). In practice, we are able to reduce the number of parameters on a case-by-case basis.

(Nath and Koch, 1970) and (J M Gancedo, 1982) perform this analysis themselves,
and assume that the slow class is indeed slow enough to approximate the exponential to
a linear function. They derive equation (23) and obtain:

− 1

P 0
L

dPL(t)

dt
= ffastηfast · exp (−ηfastt) + fslowηslow (25)
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They fit ffast, ηfast and fslow · ηslow to the experimental curve. We are able to extract
the mean degradation rate out of these parameters.

(Pine, 1970) do not perform this analysis. By performing it ourselves, we find that
using only two classes fits the data well using the following expression:

PL(t)

P 0
L

= ffast · exp (−ηfastt) + (1− ffast) (26)

We extract ffast and ηfast from the fit and use it to compute the mean degradation
rate.

Table 1. Summary of the symbols used in the text.

Symbol Definition

M total protein mass
MR total ribosomal protein mass
φR = MR/M mass fraction of ribosomal proteins
λ growth rate
Jtl mass translational flux
mp typical protein mass
mR protein mass of a ribosome
Rb number of transcript-bound ribosomes
Ra number of active ribosomes
Ri number of inactive ribosomes
Rf number of free ribosomes, available to bind the mRNA
R = Ri +Rf +Rb total number of ribosomes in our framework
R = Ri +Ra total number of ribosomes in the standard framework
k codon elongation rate
LR total number of aa in a ribosome
γ = k/LR inverse of typical time to translate all amino-acids of a ribosome
φR = MR/M = mRR/M protein mass fraction of ribosomal proteins
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Fig 1 - Supplement 1. The first growth law typically shows an offset in data. (a)
Data on ribosomal mass fraction for E. coli and S. cerevisiae. (b) Data on RNA/protein
ratios for other organisms. Data from Metzl-Raz et al. (2017) (S. cerevisiae), Dai et al.
(2016) (E. coli), Fraenkel and Neidhardt (1961) (A. aerogenes), Alberghina et al. (1975)
(N.crassa), Brown and Rose (1969) (C. utilis), Cook (1963) (E. gracilis).
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Fig 3 - Supplement 1. (a) In the standard framework ribosomes are divided in two
categories - active and inactive - and only the fraction fa of active ribosomes is
responsible for protein production. (b) The plot reports the estimated fa (circles)
assuming this model and using data from Dai et al. (2016). The red circle represents the
extrapolated point at zero growth.
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Fig 3 - Supplement 2. (a) Degradation rate across growth conditions from Pine
(1973) as used in the main text. (b) Degradation rate across different growth conditions
from other studies using different strains and techniques, Nath and Koch (1970) (E. coli
B U−1 Trp−1), Pine (1970) (E. coli B), Mosteller et al. (1980) (E. coli
RM132 ), Larrabee et al. (1980) (E. coli CHS73 ).
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Fig 3 - Supplement 3. The degradation model is in line with data for S. cerevisiae.
(a) Mean degradation rate across growth conditions from (J M Gancedo, 1982), (Helbig
et al., 2011), (Martin-Perez and Villén, 2017), respectively using strains CJM13,
CEN.PK113-7D and DBY10144. The dashed line indicates a linear fit to these data. (b)
The range of predicted ribosomal fractions of the model, plotted next to data points
from (Metzl-Raz et al., 2017) which uses strain BY4742. The model requires as input
degradation rates and translation elongation rates. We have taken the linear fit from
panel a and used it to extrapolate degradation rates to the growth rates measured
by (Metzl-Raz et al., 2017). We then considered a range of physiologically relevant
translation elongation rates (3-8 aa s−1) from ref. (Boehlke and Friesen, 1975). The
shaded area represents the prediction of the model for such range.
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