Summary
Oxytocin is a neuropeptide important for maternal physiology and childcare, including parturition and milk ejection during nursing. Suckling triggers oxytocin release, but other sensory cues- specifically infant cries- can elevate oxytocin levels in new human mothers, indicating that cries can activate hypothalamic oxytocin neurons. Here we describe a neural circuit routing auditory information about infant vocalizations to the oxytocin system of the mouse brain. We performed in vivo electrophysiological recordings and photometry from identified oxytocin neurons in awake maternal mice presented with pup calls. We found that oxytocin neurons responded to pup vocalizations via input from the posterior intralaminar thalamus, and repetitive thalamic stimulation induced lasting disinhibition of oxytocin neurons. Suppression of this pathway impaired maternal behavior and playing pup calls led to central oxytocin release in vivo. This circuit provides a mechanism for transforming acoustic input into hormonal output to ensure modulation of brain state required for successful parenting.
Competing Interest Statement
The authors have declared no competing interest.