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Abstract: 

Emergence of distinct viral clades has been observed in SARS-CoV2 variants across 

the world and India. Identification of the genomic diversity and the phylodynamic profiles 

of the prevalent strains of the country are critical to understand the evolution and spread 

of the variants. We performed whole-genome sequencing of 54 SARS-CoV2 strains 

collected from COVID-19 patients in Kolkata, West Bengal during August to October 

2020. Phylogeographic and phylodynamic analyses were performed using these 54 and 

other sequences from India and abroad available in GISAID database. Spatio-temporal 

evolutionary dynamics of the pathogen across various regions and states of India over 

three different time periods in the year 2020 were analyzed. We estimated the clade 

dynamics of the Indian strains and compared the clade specific mutations and the co-

mutation patterns across states and union territories of India over the time course. We 

observed that GR, GH and G (GISAID) or 20B and 20A (Nextstrain) clades were the 

prevalent clades in India during middle and later half of the year 2020. However, 

frequent mutations and co-mutations observed within the major clades across time 

periods do not show much overlap, indicating emergence of newer mutations in the viral 

population prevailing in the country. Further, we explored the possible association of 

specific mutations and co-mutations with the infection outcomes manifested within the 

Indian patients. 
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Introduction: 

The corona virus disease or COVID-19 pandemic caused by the SARS-CoV2 virus has 

created an unprecedented health and financial crisis throughout the world (1,2). Since 

the emergence of the outbreak in the Chinese city of Wuhan in late 2019, the novel 

corona virus disease has spread widely and has caused millions of infections and 

thousands of death throughout the year 2020 and active infections are still continuing at 

an alarming rate in parts of the globe, especially in Americas and Europe. As of March 

2021, the total number of infections reported in India surpasses 11 million while active 

infections are still more than 180,000 causing overall death toll more than 158,000 (3). 

Similar to global efforts to combat the deadly disease, various measures have been 

taken by the Indian clinical and biomedical research community including vaccine 

development (4), clinical trials with repurposed drugs (5), convalescent plasma therapy 

(6), and genetic surveillance via genome sequencing of the viral strains extracted from 

the infected individuals (7-15).  

Several thousands of whole-genome sequences of the SARS-CoV2 from various parts 

of the country have been sequenced and subsequently deposited in global databases 

such as GISAID (16). Multiple works from India have highlighted the genomic diversity 

and the phylogenetic profiles of the prevalent strains in the country (7,17). However, 

more than 75% of the SARS-CoV2 sequences (2521 out of 3277 complete genomes 

from India) were deposited in the latter half of the year 2020. It is understandable for the 

lower number (146) of the deposited sequences during December 2019 to March 2020 
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as the active cases only started to appear in India in March 2020 only. In order to enrich 

the viral genome sequence data for the latter half of the year, we decided to sequence 

54 SARS-CoV2 sequences collected from the state of West Bengal during August 2020 

to December 2020 making it only the third Indian state apart from Telangana and 

Maharashtra to deposit more than fifty sequences in that time period. With these 

sequences we decided to analyze and understand the spatio-temporal evolutionary 

dynamics of the pathogen across various states and union territories (UT) of India in the 

year 2020. We estimated the clade dynamics of the Indian strains and compared the 

clade specific mutations, speculated their positive selection and calculated the co-

mutations patterns across states and UTs of India. Further, we explored the possible 

association of specific mutations/co-occurred mutations with the infection outcome 

manifested within the patients.  

We found that for Indian sequences GR, GH and G (GISAID) or 20B and 20A 

(Nextstrain) (18) clades were primarily the major prevalent clades in middle and later 

half of the year 2020. However, frequent mutations observed within each of the major 

clades do not show much overlap, especially for the last half of the year 2020, indicating 

the emergence of new mutations in the viral population prevailing in the country. 

Interestingly, only 10% of the mutations within the GISAID clades across various Indian 

states are found to be common. Co-mutations or co-occurrence of mutations within a 

specific viral strain were investigated and frequent co-mutation patterns for different 

Indian states were identified. Finally, associations between specific mutation and co-

mutation pattern with respect to patient status (deceased, symptomatic, asymptomatic, 

etc) have been explored. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 25, 2021. ; https://doi.org/10.1101/2021.03.25.436930doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.25.436930
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 

 

Materials and Methods: 

Sample collection 

Ethical clearances were taken from the Institutional (CSIR-Indian Indian Institute of 

Chemical Biology) and hospital (MEDICA Superspecialty Hospital) ethical committees 

for the present study. Nasopharyngeal/ oropharyngeal swabs of COVID-19 patients 

were collected from August to October 2020. Samples were anonymized by removing 

patient identifiers except gender, age, and collection date. SARS-CoV-2 nucleic acids 

were isolated using the MagMax Viral Pathogen Isolation kit from Themo Fisher in 

KingFisher Flex automated extractor.  standard protocol. The RT-PCR assay was 

performed using SD Biosensor COVID 19 kit based on taqman probe chemistry for the 

detection of SARS-CoV2 RDRP gene and E gene using reverse transcription in Rotor 

Gene Q 5 plex HRM system. Samples with Ct values <= 25 were considered for 

sequencing.  

 

Viral whole genome sequencing 

Virus genomes were sequenced using ARTIC COVID-19 multiplex PCR primers version 

3 by via combination of nanopore sequencing based on MinION sequencer, Oxford 

Nanopore Technology (ONT) and Illumina HiSeqX (19). To generate PCR amplicons for 

nanopore sequencing Native Barcode Expansion 1-12, protocols (Kits EXP-NBD104) 

(ONT) were used. RNA extracted from the clinical specimens were converted to cDNA 

using reverse transcriptase enzyme (Super Script IV First Strand Synthesis Kit, Thermo 
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Fisher Scientific, Waltham, MA) and then purified by using AMPure XP beads. Purified 

cDNA was then amplified by each of the two ARTIC v3 primer pools which tile the 

SARS-CoV2 genome. The amplified product was further subjected to end-repair, and 

barcoded by Native Barcode Expansion kits (1-12) and purified by 0.4X of concentration 

of AmpureXP. All samples were then pooled together and ligated with sequencing 

adapters, purified samples were finally quantified using Qubit 4.0 Fluorometer 

(Invitrogen), followed by loading of 15ng of pooled barcoded material and sequencing 

on MinION flow cells. 

For Illumina sequencing, samples were sequenced through 2x150bp paired end 

Illumina's HiSeqX sequencing system following standard protocol. QIAseq SARS-CoV-2 

Primer Panel (Qiagen, cat. no. 333895) and QIAseq FX DNA Library Kit were used in 

order to prepare amplicon libraries for viral genome sequencing. Prepared libraries were 

then pooled and sequenced using Illumina HiSeqX instrument to generate 150bp paired 

end reads. 

 

Genome assembly and sequence submission in GISAID  

Two different methods were implemented for the assembly of long and short reads as 

obtained from ONT and Illumina sequencing platforms, respectively. All reads from both 

the platforms were checked for their quality using FastQC (20). In case of long reads, 

reference based assembly was performed using the first SARS-CoV2 strain identified 

from China, Wuhan (NCBI Accession Number NC-045512.2 (21) which is identical to 

the GISAID reference sequence EPI_ISL_402124 (16)) as reference, and Minimap2 

(22) with ONT specific parameters. In case of short reads, they were first filtered using 
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kneaddata (23) and then assembled by SPAdes (24) using default parameters. Pilon 

(25) was used for polishing and generation of final consensus sequences. The 

assembled SARS-CoV2 genome sequences were checked for frameshifts using 

Genome Detective online tool (26) and their depths were calculated using Mosdepth 

(27). All the 54 genome sequences with their associated metadata were uploaded to 

GISAID database (Table S1). 

 

Sequence and mutation data collection 

We have accessed the protein sequences of SARS-CoV2 virus collected from different 

continents from the EpiCoV database of GISAID (16). The database was searched on 

1st January 2021 up to sample collection date 31st December 2020 using the primary 

key-words ‘hCoV-19’ and ‘Human’. Only complete and high coverage sequences were 

considered. Sequences with genomes >29,000 bp were considered complete. 

Sequences with <1% Ns (undefined bases) were considered as high coverage 

sequences. Sequences collected from India were analyzed separately. Sequences from 

different states of India were also accessed and analyzed separately. Additional 

metadata for the sequences which include location of sample collection, age and sex of 

the patients, clade, lineage, patient status were also downloaded.  

We found only 23 sequences collected in 2019, all from Wuhan, China from where the 

disease spread. To analyze the evolution of viral clades with time, we divided all 

sequences in three terms, depending on the date of collection of sample. ‘Term1’ 

includes sequences collected till March 2020. ‘Term2’ defines April 2020 to July 2020 

and ‘Term3’ includes sequences collected from August 2020 to December 2020. Table 
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1 shows the number of sequences collected from different continents and India in 

different terms.  

For identifying the mutations, GISAID reference sequence EPI_ISL_402124, collected 

from human sample in Wuhan, China, in December 2019, was considered as reference 

(28).  

Alignment and mutation frequency analysis 

To extract the unique representative sequences and exclude redundant sequences CD-

HIT (29) server was used. The number of CD-HIT runs was kept as 1 with sequence 

identity cut-off 1.0 (100% identity). It provided clusters of sequences which are 100% 

identical. The cluster representative sequences along with the reference sequence were 

aligned using Kalign protein sequence alignment tool (30). Python (version 3.4) codes 

were used for extracting mutations and further analysis. Mutation was considered as 

frequent when frequency was calculated with at least 50 sequences (N) and the 

frequency was ≥ 2.5% for N ≥ 200 and mutation count was at least 5 when N < 200. 

 

Mutational and Co-mutational analysis 

For mutational analysis within India, we have chosen states and UTs, which had at least 

50 sequences in a given term. For Term2, we found 8 states and UTs. Among them, only 

3 states had more than 50 sequences in Term3. Hence, temporal analysis was done for 

those 3 states only. We also analyzed how different mutations co-occurred in different 

states and terms. Network was constructed for each state and UT showing co-
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occurrence between frequent mutations of that state/UT. Cytoscape.js (31) was used to 

construct the network.   

 

Patient status association analysis 

To correlate disease severity with mutation and co-mutation pattern, available metadata 

was analyzed. Based on the available ‘patient status’, patients were classified broadly in 

four categories, ‘deceased’, ‘symptomatic’, ‘mild’, and ‘asymptomatic’. Patient status 

was associated with frequent mutations, co-occurring mutations, and clades. Fisher’s 

Exact test was performed using the following contingency table (32) for deceased 

samples, 

 Mutated Not-mutated Total 

Not deceased a b a+b 

Deceased c d c+d 

Total a+c b+d a+b+c+d = N 

 

where N is the total number of sequences. Similar tables were used for other types of 

patients’ categories (‘symptomatic’, ‘mild’, and ‘asymptomatic’). The probability of 

obtaining a given set of result, p-value, is provided by a hypergeometric distribution, 

 

� � ����� ������ �

� �
����

      (1) 
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where ���� denotes binomial coefficient of any given variable i and j.  

 

 

Results  

Demographic and phylogenic distribution 

54 SARS-CoV2 samples taken from patients residing in Kolkata and West Bengal were 

sequenced using whole genome sequencing approach. The age of the patients ranges 

from 6 to 88 years with a maximum peak (24.07%) in the range of 51-60 years (Figure 

S1A) with an overall male to female ratio of 1.7 against the national ratio of 1.99. For 

comparison we have also plotted the age distribution of the Indian patients for which the 

extracted SARS-CoV2 sequences were deposited in GISAID database (Figure S1A). 

The quality of the sequencing data represented in the form of depth shows a mean 

depth of approximately 26035X and 455X for short reads and long reads respectively 

(Figure S1B) while the coverage for all the assembled genomes was above 99%. The 

GISAID clade distribution of the 54 sequences is slightly different from the national 

distribution with majority of O clade representation and same is true for Nextstrain 

clades with prevalence of 20A clade (Figure S1C-D). 

 

Dynamics of clade distribution  

In order to explore the evolutionary and mutational dynamics represented in terms of 

phylogenetic clades we compared the clade distribution of all the complete and high-
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quality SARS-CoV2 sequences (3277) deposited in GISAID from India until December 

31, 2020. The sequences were categorized into three time points (‘Term’) based on the 

date of the collection/submission of the sequences. Figure 1 shows the distribution of 

different GISAID and Nextstrain clades in three time points. It is evident that GR clade is 

prevalent in Term2 and Term3 followed by GH and G clades (33). Similarly, Nextstrain 

clades 20B and 20A are found to be more prevalent in the latter half of the year 2020. 

To compare the clade dynamics with respect to SARS-CoV2 sequences from 

elsewhere, we have performed the similar analysis with sequences deposited from 

North America, South America, Europe, Africa, Oceania and Asia (without Indian 

sequences) (Figure S2). Interestingly, except North America and Europe, all the other 

continents show prevalence of GR clade in the second and third term of the year. North 

America shows a consistent prevalence of GH clade throughout the year where a 

massive increase in the numbers of GV clade sequences was observed in Europe 

during the latter part of the 2020. However, it is interesting to investigate whether 

sequences belonging to the major clades observed in India through various time ‘Terms’ 

harbor similar mutations or not. Hence we compared the non-clade defining and 

‘frequent’ (frequency >=2.5% or >5 when N <= 200) mutations observed within the 

same clade across the time terms (Figure S3). Interestingly, we observed that a 

significant fraction of the mutations turned out be unique in ‘Term2’ and ‘Term3’ 

indicating accumulation of novel mutations. 

 

Dynamics of clade variation across Indian states and union territories  
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Curious to see the previous observation, we wanted to investigate whether the 

mutational variability within clades is more specific to certain geographical location 

delineated by the states and UTs of India. ‘Term1’ contains only 146 sequences from 

India, hence, we compared state specific mutations taking SARS-CoV2 sequences from 

only ‘Term2’ and Term3’, respectively. Only seven states and one union territory, 

Karnataka (KA), Telangana (TG), Maharashtra (MH), Gujarat (GJ), Delhi (DL), 

Uttarakhand (UT), West Bengal (WB) and Odisha (OR) contained more than 50 

deposited good quality sequences in GISAID. Figure 2A shows fraction of various 

GISAID clade sequences within these states and union territory. MH, GJ and WB are 

the top three states representing G clade sequences in ‘Term2’ whereas GJ produces a 

significantly higher number of GH clade sequences compared to other states. MH and 

TG possess maximum number of GR sequences followed by KA and OR. Interestingly, 

DL and TG provides maximum number of O clade sequences which are generally less 

clearly defined (34). Distribution of clade S is underrepresented in these eight states 

and union territories. Comparison of the frequent mutations across states for the same 

clade also revealed much more specific mutation than common ones (Figure 2) where 

overall only 10% of the mutations within the GISAID clades across various Indian states 

are found to be common (Table 2). In ‘Term3’ only from three states (MH, TG and WB) 

more than fifty sequences were deposited and similar to observation from ‘Term2’, very 

few overlap of mutations were found to be common across these three states (Figure 

S4 and Table 2). 
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Variation in the co-occurrence of mutations (co-mutations) across Indian states 

and union territories 

Combined impact of co-occurrence of mutations within a specific viral strain could be 

crucial to elicit infectivity and sustenance of viral load within the host. Hence, co-

mutation patterns within SARS-CoV2 variants were investigated and specific/common 

co-mutations for different Indian states were identified irrespective of clade. Figure 3A-

3H shows network representation of co-mutations patterns amongst the most frequent 

mutations where each node represents a mutation site and the edge denotes co-

occurrence between a pair of mutant sites. Edge thickness is proportional to the number 

of co-occurrence while node size is to the frequency of mutation. Any two nodes (sites) 

were considered to be co-mutated if the co-mutation pair is represented in >=2.5% of 

the population size or >5 when the total number of sequences in the particular category 

is less than 200. Figure 3I-3J show the frequency distribution of the number of co-

mutating sites for viral strains from different states and union territories. It is evident that 

for most of these states and UT a large fraction of the sequences harbor five or more 

co-mutations. Although the mutations include the clade defining mutations [e.g., G: 

Spike(D614G), GH: Spike(D614G) and NS3(Q57H), GR: Spike(D614G) and N(G204R), 

GV: Spike(D614G) and Spike(A222V), S: NS8(L84S)] a large number non-clade 

defining mutations are found to co-occur within SARS-CoV2 strains from these states 

and UT during the ‘Term2’. In ‘MH’ more than 50% sequences had 7 co-mutations. ‘KA’ 

also has similar trend. However, for states like WB and GJ, maximum percentage of 

sequences contains less than 5 co-mutations per sequence (Figure 3I-3J). Interestingly, 

in ‘Term3’ higher number of co-mutations are observed in sequences retrieved from 
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both MH and TG (Figure 4D), maintaining the trend observed in ‘Term2’. For example, 

in TG more than 70% sequences harbored 8 and above mutations within single viral 

strain whereas in MH close to 45% sequences possessed 7 co-mutations. WB 

continued to harbor lower number of co-mutations even in ‘Term3’ with almost 60% 

sequences having 2 and 3 co-mutations per viral sequence. 

 

Dynamics of co-mutation patterns in Indian states across ‘Term2’ and ‘Term3’ 

Similar to the comparison of frequent mutations across time scale, we decided to check 

whether the co-mutation patterns of SARS-CoV2 variant also varies over time within the 

states and union territories of India. However, as only three states possessed more than 

50 sequences we could compare the changes in co-mutation patterns/motifs for these 

three states only along with overall Indian sequences. Panel A of Figure 5 compares the 

frequent mutations across three or two terms for sequences retrieved from India, 

Maharashtra (MH), Telangana (TG) and West Bengal (WB), respectively. As indicated 

before, significant fraction of novel mutations were evolved during ‘Term3’ compared to 

‘Term2’ in India as well as in these three states. Comparison between the co-mutation 

networks consisting three to five (>=3 & <=5; Figure 5B upper panels) and more than 

five mutations (>5; Figure 5B lower panels) again shows emergence large number of 

unique co-mutation patterns and combinations for overall Indian sequences as well as 

sequences retrieved from MH, TG, and WB, respectively. This observation is further 

corroborated when we compared the co-mutation pattern within the major clades (G, 

GH, and GR, respectively) (Figure S5). GR clade has large number of co-occurred 

mutations of size (n) >5 in ‘Term3’ (Figure S5H) which is consistent with large number 
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of co-occurred mutations of size (n) > 5 in MH and TG states (Figure 4D) where GR is 

the dominant clade (Figure S4A).  

 

Association of specific mutations and co-mutations with patient status 

Association of prevalent mutations with the status of the infected patients is a key 

aspect to explore the connection between genetic variability and the patho-physiology of 

the COVID-19 disease. Hence, we calculated the fraction of mutations that are 

predominantly found in a subset of Indian COVID-19 patients for which disease 

outcome information is available at the GISAID database. Out of the 3277 sequences 

deposited during 2020, patient status was reported for only 806 sequences where 95 

were marked as deceased, and 631, 49, 31 were marked as symptomatic, mild, and 

asymptomatic, respectively. Figure 6 provides a matrix representation of the percentage 

of frequent mutations observed within the Indian patients marked as deceased (D), 

symptomatic (S), mild symptomatic (M), and asymptomatic (A), respectively. Statistical 

significance of the association of these mutations with respective categories was 

evaluated using Fisher’s Exact test (see Methods for details) and the list of mutations 

that are found to be significant (p-value ≤ 0.05) are listed in Table S2.  It is evident that 

there is certainly some mutations [NS3(Q57H), N(S194L), Spike(L54F)] which are 

specifically associated with symptomatic and deceased status apart from the usual 

Spike(D614G) and NSP12(P323L) mutations (Figure 6). Among them NS3(Q57H), 

marker for GH clade is associated with deceased and symptomatic patients in North 

America also where GH is the dominant clade (Figure S2). NSP2(T85I) is also 

associated with deceased and symptomatic patients in North America but not in India. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 25, 2021. ; https://doi.org/10.1101/2021.03.25.436930doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.25.436930
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 

However, there are certainly some mutations that [NS9b(P10S), N(P13L), 

NSP12(A97V), and NSP3(T1198K), respectively) are relatively more specifically 

associated with asymptomatic patients in India. However, very few such asymptomatic 

specific mutations apart from N(S194L) was observed in North American frequent 

mutations (Figure 6). 15.54% of the deceased population and 3.91% of the symptomatic 

population of the N. American patients showed NSP7(S25L) mutation while missing in 

mild and asymptomatic populations. In Europe, a few frequent mutations like 

Spike(A222V), N(A220V), and NS9c(L67F) were observed relatively more within 

asymptomatic patients (Figure 6). Examination of association of clade specific frequent 

mutations with the disease/patient status does not reveal much specific association. 

However, relatively higher (>=10%) association was observed for a G clade (Indian 

population) mutation, N(S194L), which was exclusively found in 16% symptomatic 

patients only (Figure S6A). In case of GH clade, N(S194L) is observed in more than 

70% samples of deceased and symptomatic patients. Similarly, NSP14(T372I), a GH 

clade specific mutation (Indian population) exclusively observed in symptomatic patients 

with higher frequency (10%) but not in deceased population. NSP2(T85I) does not show 

any specific association with any patient status in overall European patients (Figure 6), 

however within GH clade, it is reported in 50% mild patients (Figure S6B). European GR 

clade specific NSP3(K945N), Spike(L5F), Spike(S549Y), Spike(M1229I), and 

NS9b(R13L) mutations show more than 10% abundance in mild patients only (Figure 

S6B).  NSP13(S485L), NSP14(T250I) and NS3(S74F) from GH clade, NSP3(P340S), 

NSP3(I414V), NSP13(A505V), NS3(W131C), N(D377Y) from GR clade, and 

NSP3(T1456I), NSP4(T492I), NSP14(T113I), Spike(A262S), Spike(P272L), 
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Spike(G639S), NS7a(Q94L), NS8(I121L), N(P365S) from GV clades seem to be 

associated with asymptomatic patients only (Figure S6B). In N. American GH clade 

specific frequent mutation NSP14(A320V) was found exclusively only in deceased 

(16%) whereas NSP5(L89F) and NS8(S24L) were observed in 14% and 32% 

symptomatic patients, respectively (Figure S6C). 

Impact of the single point mutation could be essential but may not be sufficient to elicit 

pathological response and or variation in disease phenotype. Hence, we thought of 

exploring the association of evolutionary selected multiple mutations within a viral strain 

with respect to the disease status of the patient from whom the strain was isolated. 

Figure 7 presents the frequency of patients infected with SARS-CoV2 strains that 

harbors the co-mutation combinations. Combination of five co-mutations 

[NSP3(T1198K)-NSP6(L37F)-NSP12(A97V)-NS9b(P10S)] were found to be significantly 

higher (>50%) in asymptomatic patients whereas co-mutations of NSP3(A994D)-

NSP6(L37F)-NSP12(P323L)-Spike(D614G)-N(G204R)-N(R203K)-NS9c(G50N) and 

NSP6(L37F)-NSP12(P323L)-Spike(D614G)-NS3(Q57H)-N(S194L) were observed in 

higher frequencies in mild patients (Figure 7). However, it is evident that co-mutations of 

NSP6(L37F)-NSP12(P323L)-Spike(D614G) is present as either triad or part of larger 

co-mutation network in most of the symptomatic patients along with mild, symptomatic 

and deceased populations. However, quite different co-mutation patterns are observed 

with patients from Europe and N. America where absence of NSP6(L37F) mutation was 

along with Spike(D614G) and NSP12(P323L) mutations (Figure S7). 

  

Discussion 
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Whole-genome sequencing of SARS-CoV2 strains throughout the world has provided 

enormous amount of knowledge about the evolutionary diversity of this deadly virus and 

also contributed significantly in understanding the nature of the pandemic (35,36). 

During the difficult times in late 2019 and throughout 2020, sequencing of the viral 

strains was one of the primary research objectives globally in order to understand the 

specific phylogenetic variations and their connection to the spread and transmissibility 

of the virus (37). As part of this global endeavor, deposition of SARS-CoV2 genome 

data in genomic databases such as GenBank (38), NCBI (39), and GISAID (16) has 

truly facilitate the knowledge to tackle the deadly COVID-19 disease. Here, 54 SARS-

CoV2 whole genomes have been sequenced using NGS platforms with very high 

coverage and depth (Figure S1B). The viral RNA was extracted from patients from the 

city of Kolkata, capital of West Bengal (WB) state of India. These 54 RNAs were 

collected during the time period of August-October 2020 and constitute almost all the 

SARS-CoV2 (except one) genome sequences deposited from West Bengal (WB) in the 

latter half of the year 2020. However, the clade distributions of these 54 sequences 

constituting the ‘Term3’ repertoire of WB sequences are distinctively different than that 

of overall India (Figure S1 and Figure 1). WB ‘Term3’ sequences have significant higher 

fractions of ‘O’ clade (GISAID) and 20A clade (Nextstrain) sequences compared to both 

overall Indian distribution and sequences retrieved during the ‘Term3’ period as well. As 

a matter of fact the ‘Term2’ (April 2020 – July 2020) sequences from WB show 

significantly higher fraction of ‘G’ and 20A clades distribution (82% and 83%, 

respectively) compared to other states and overall India (Figure 1 and 2). This indicates 
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that the evolutionary dynamics of the WB strains are slower and therefore may be the 

usual fixation of major clades like ‘GR’ or 20B is delayed for some reason. 

Intrigued by this observation, we thought it would be helpful to undertake an analysis to 

examine the variations in evolutionary dynamics of the SARS-CoV2 virus and its 

connection to the spatio-temporal regulation. In other words, we thought it would be 

worthwhile to check the evolutionary changes in viral populations prevalent in India 

across time and geographical zones. Our analysis clearly shows gradual fixation of the 

more prevalent clades such as GR (GISAID) and 20B (Nextstrain) across time within 

the viral population extracted from Indian patients. However, the most frequent 

mutations observed within the population across three time terms were quite different 

and emergence of newer mutations were observed even at the end of the year 2020 for 

the overall Indian population as well as population categorized based on their clades. 

Similarly, sequences belonging to same clades but extracted from different states also 

show little commonality in the type of non-clade defining mutations (Figure 2, 3 and 

Table 2). 

Further, we also examined the variation in co-occurrence of mutations (co-mutation) 

across Indian states and union territories compared over the three time terms. We 

observed a large number of non-clade defining mutations to co-occur within SARS-

CoV2 strains from the states and union territories during the ‘Term2’ and ‘Term3’ which 

is consistent with earlier reports based on the sequences collected mostly in ‘Term1’ 

period (17). Consequently, a larger number of unique combinations among these co-

occurred mutations were appeared during the latter half of the year 2020. It is really 

interesting to observe that larger fractions of viral strains extracted from states like 
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Telangana, Maharashtra and Karnataka during ‘Term2’ harbored five or more co-

mutations while major fractions from West Bengal and Gujarat possessed less than five 

co-mutations. Even in ‘Term3’ far larger fractions of sequences from Telangana and 

Maharashtra showed higher co-mutating residues compared to that of West Bengal. 

Significantly higher numbers of active infection cases were reported in Maharashtra and 

Karnataka compared to West Bengal and Gujarat during ‘Term2’ and ‘Term3’ (15,40). 

Hence, the higher number co-mutations in those two states could be associated with 

higher infectivity of the strains prevalent there. In West Bengal during ‘Term3’ only 

~22% sequences harbored more than 5 co-mutations while almost 58% of the 

sequences were designated as ‘O’ clade known for harboring larger amount of other 

(34) mutations. 

Finally, we tried to associate the frequent mutations and co-mutation patterns along with 

COVID-19 patient status broadly categorized into deceased, symptomatic, mild, and 

asymptomatic groups, respectively. Although the number of patient status mapped data 

is lower (806 out of 3277 sequences) we thought it was worthwhile to investigate if 

some of the mutations and co-mutation patterns could be specifically associated with 

those four states of the COVID-19 disease. Apart from the usual Spike(D614G) and 

NSP12(P323L) mutations, specific association of mutations NS3(Q57H), N(S194L), and 

Spike(L54F) are observed with symptomatic and deceased status of Indian patients 

while NS9b(P10S), N(P13L), NSP12(A97V), and NSP3(T1198K), respectively are found 

to be relatively more in asymptomatic Indian patients. Similarly, presence and absence 

of specific mutation with respect to symptomatic or asymptomatic status were also 

examined for North American and European samples for which the disease status was 
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available at the GISAID database. Although we did not find any specific co-mutation 

pattern with severe (deceased or symptomatic) patients but few co-mutation patterns 

were observed to be significantly higher in asymptomatic and mild symptomatic patients 

(Figure 7). We have also identified presence of a co-mutation triad [NSP6(L37F)-

NSP12(P323L)-Spike(D614G)] in most of the symptomatic patients including mild, 

symptomatic and deceased populations of Indian patients. Figure 8 summarizes the 

most frequent mutations and co-mutation network motifs within overall Indian SARS-

CoV2 samples, most prevalent clades and also for the viral strains extracted from 

patients for which the disease status was documented. We observed the top 5 

mutations for deceased and symptomatic patients remain identical. Among these 5 

mutations, 3 appears in mild and only one mutation (NSP6(L37F)) appears in 

asymptomatic patients. It indicates the possibility of association of specific mutations 

with disease severity. Similar overlap is observed in the co-mutation networks of 

deceased and symptomatic patients. The co-mutation network observed in 51% of 

asymptomatic patients is also observed in 20.41% mild patients but neither in deceased 

nor in case of symptomatic patients. Similarly, Figure 9 provides an overview of the 

dynamics of co-mutation pattern/motif observed within viral strains from Indian 

population, most prevalent clades and for three states (MH, TG and WB) for which 

sufficient sequences were deposited in GISAID database in Term2 and Term3. It 

highlights emergence of new co-mutation network motifs with time across different 

states and clades. We believe that our report is one of the few studies that aim to 

provide a comprehensive picture of the evolutionary dynamics and co-mutations 
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patterns of the SARS-Cov2 strains prevalent within Indian population throughout the 

year 2020. 
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Table 1: Number of sequences deposited in the year 2020.  
 
Continent/Country/Lab December 2019 

– March 2020 
April 2020 –  
July 2020 

August 2020 – 
December 2020  

Total  

North America 10877 21895 8583 41355 

South America 433 1076 308 1817 

Europe 16198 30827 86563 133588 

Africa 180 1670 1019 2869 

Asia* 3178 9189 1249 13616 

Oceania 2001 6604 4184 12789 

India 146 2521 610 3277 

IICB# 0 0 54 54 
*Excluding India  
# Indian Institute of Chemical Biology submitted 54 out 55 total sequences deposited in GISAID 
during August 2020 – December 2020. 
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Table 2: Specific and common mutations across different states for different 
clades 
 
 
Clades Unique specific 

mutations in 
Term2 

Unique common 
mutations in 
Term2 

Unique specific 
mutations in 
Term3 

Unique common 
mutations in 
Term3 

G 68 6 0 2 

GH 179 6 5 5 

GR 59 7 21 6 

GV 0 0 0 0 

L 17 5 0 0 

O 133 24 0 0 

S 30 5 0 0 

V 1 0 0 0 
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Figure Legends: 

Figure 1: Distribution and dynamics of SARS-CoV2 clades in India for three 

different time spans in the year 2020. Distribution of GISAID (panel A) and Nextstrain 

(panel B) clades across India for three different times spans, ‘Term1’ (December 2019 

to March 2020), ‘Term2’ (April 2020 to July 2020) and ‘Term3’ (August 2020 to 

December 2020), respectively. 

 

Figure 2: Distribution of GISAID clades within Indian states and union territories 

and comparison of frequent mutations across them during Term2 (April 2020 to 

July 2020). Panel A shows the distribution of GISAID clades in seven Indian states and 

one union territory (UT) that deposited more than 50 SARS-CoV2 sequences during 

April 2020 to July 2020.  

Panels B-F plot the number of sequences and frequent mutations of the seven states 

and one UT and show the number of common mutations among them for G, GR, GH, 

O, and S clades, respectively. 

KA: Karnataka, TG: Telangana, MH: Maharashtra, GJ: Gujarat, DL: Delhi, UT: 

Uttarakhand, WB: West Bengal, OR: Odisha. 

 

Figure 3: Co-mutation patterns and networks observed within Indian states and 

union territories during Term2. The networks of co-mutations for seven states and 
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one UT, A. Karnataka (KA), B. Telangana (TG), C. Maharashtra (MH), D. Gujarat (GJ), 

E. Delhi (DL), F. Uttarakhand (UT), G. West Bengal (WB), H. Odisha (OR), where each 

mutation site is marked as a ‘node’ and the co-mutation is represented as an ‘edge’. 

Node size indicates the frequency of mutation while edge thickness represents the 

number of times (sequences) a pair of mutation is co-occurred.  

Panel I shows the bar plot distribution of the actual number of co-mutations within each 

state and UT. 

 

Figure 4: Co-mutation patterns and networks observed within Indian states and 

union territories during Term3. Panels A, B, and C show the networks of co-

mutations for Telangana, Maharashtra, and West Bengal, respectively where each 

mutation site is marked as a ‘node’ and the co-mutation is represented as an ‘edge’. 

Node size indicates the frequency of mutation while edge thickness represents the 

number of times (sequences) a pair of mutation is co-occurred.  

Panel B shows the barplot distribution of the actual number of co-mutations within each 

state. 

 

Figure 5: Dynamics of mutation and co-mutation pattern in Indian states across 

time spans. Panel A shows the overlap of frequent mutations observed in overall Indian 

samples (IND), Telangana (TG), Maharashtra (MH), and West Bengal (WB) collected 

across Term1 (green), Term2 (purple), and Term3 (cyan), respectively. 
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Panel B: overlap of co-mutation patterns in three ‘Terms’ for where upper panel 

represents overlap of co-mutations having mutations between >=3 and <=5 sequences. 

Lower panel represents overlap for >=5 co-mutations per sequence. 

 

Figure 6: Association of specific mutations with the status of the COVID-19 

patients from India, Europe and North America. A heat map of mutations and their 

frequencies that were found to be associated with four different categories of the 

COVID-19 patients’ status, Deceased (D), Symptomatic (S), Mild (M), and 

Asymptomatic (A), respectively are shown. 

 

Figure 7: Association of specific co-mutation patterns with the status of the 

COVID-19 patients from India. Frequencies of specific co-mutations are plotted with 

respect to the four COVID-19 patients’ status categories Deceased, Symptomatic, Mild, 

and Asymptomatic, respectively. G, GH, GR and S clades defining mutations are 

marked in yellow, blue, red, and purple, respectively.  

 

Figure 8: Frequent mutations, co-mutations and their association with disease 

severity in India. A. Most frequent 5 mutations and 3 co-mutation patterns in India. B. 

Most frequent 5 mutations and 3 co-mutations in major clades of India. Clade defining 

mutations are excluded in the bar plot. C. Most frequent 5 mutations and 3 co-mutations 

in different types of patients. Different color codes are used for specific co-mutation 

network motifs. Network motifs were sorted and ranked exclusively. 
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Figure 9: Spatio-temporal variation in most frequent co-mutations in India. A. Most 

frequent 3 co-mutations in Term2 and Term3 in India. B. Most frequent 3 co-mutations 

in Term2 and Term3 in major clades of India. C. Most frequent 3 co-mutations in Term2 

and Term3 in different states of India. Co-mutation network observed in at least 5 

patients are represented. Different color codes are used for specific co-mutation 

network motifs. Network motifs were sorted and ranked exclusively. 

 

 

Supplementary Figure legends: 

Figure S1: Quality, demographic and phylogenic analysis of the SARS-CoV2 

genome sequences. Panel A compares the age distribution of the patients from which 

the 54 SARS-CoV2 sequenced strains (IICB) were extracted with respect to the overall 

Indian COVID-19 patients’ (India) age distribution.  

Panel B show the depth (shown as multiplies of ‘X’) of the sequenced data for both long 

(Nanopore) and short (Illumina) read sequences. 

Panels C and D plot the GISAID (left) and Nextstrain (right) clade distribution of the 54 

genomes sequenced by CSIR-IICB and MEDICA Superspecialty Hospital and 

sequenced deposited from overall India, respectively.  

Figure S2: Distribution and dynamics of SARS-CoV2 clades in the world for three 

different time spans in the year 2020. Panels A, B, and C show distribution of GISAID 

clades across the world for three different times spans, ‘Term1’ (December 2019 to 
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March 2020), ‘Term2’ (April 2020 to July 2020) and ‘Term3’ (August 2020 to December 

2020), respectively. 

Figure S3: Overlap of frequent mutations across three terms for most prevalent 

GISAID and Nextstrain clades in India. Panel A shows the overlap of frequent 

mutations observed in the most prevalent GISAID clades like G, GH and GR collected 

across Term1 (green), Term2 (purple), and Term3 (cyan), respectively. 

Panel B shows the overlap of frequent mutations observed in the most prevalent 

Nextstrian clades like 19A, 20A and 20B collected across Term1 (green), Term2 

(purple), and Term3 (cyan), respectively. 

Figure S4: Distribution of GISAID clades within Indian states and comparison of 

frequent mutations across them during Term3 (August 2020 to December 2020). 

Panel A shows the distribution of GISAID clades in three Indian states that deposited 

more than 50 SARS-CoV2 sequences during August 2020 to December 2020.  

Panels B-D plot the number of sequences and frequent mutations of the three states 

and show the number of common mutations among them for G, GH, and GH clades, 

respectively. 

Figure S5: Dynamics of co-mutation pattern across three terms for most 

prevalent GISAID clades in India. Overlap of co-mutation patterns in three ‘Terms’ for 

co-mutations having mutations between >=3 and <=5 sequences (panel A) and for >=5 

co-mutations per sequence (panel B) are shown. 

Figure S6: Association of specific mutations with the status of the COVID-19 

patients from India, Europe and North America infected with specific clades of the 
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SRAS-CoV2 virus. A heat map of mutations and their frequencies that were found to 

be associated with four different categories of the COVID-19 patients’ status, Deceased 

(D), Symptomatic (S), Mild (M), and Asymptomatic (A), respectively are shown for most 

prevalent clades. 

Figure S7: Association of specific co-mutation patterns with the status of the 

COVID-19 patients from Europe and North America. Frequencies of specific co-

mutations are plotted with respect to the four COVID-19 patients’ status categories 

Deceased, Symptomatic, Mild, and Asymptomatic, respectively. Panel A shows data 

from Europe while panel B is for North America. Clade defining mutations are marked in 

corresponding colors. 
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