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ABSTRACT

We introduce a simple mechanism by which a CNN trained
to perform semantic segmentation of individual images can
be re-trained - with no additional annotations - to improve
its performance for segmentation of videos. We put the
segmentation CNN in a Siamese setup with shared weights
and train both for segmentation accuracy on annotated im-
ages and for segmentation similarity on unlabelled consecu-
tive video frames. Our main application is live microscopy
imaging of membrane-less organelles where the fluores-
cent groundtruth for virtual staining can only be acquired
for individual frames. The method is directly applicable
to other microscopy modalities, as we demonstrate by ex-
periments on the Cell Segmentation Benchmark. Our code
is available at https://github.com/kreshuklab/
learning-temporal-consistency.

1. INTRODUCTION

Live imaging is a cornerstone microscopy technique of
molecular biology, with applications ranging from analy-
sis of sub-cellular processes to morphodynamics of tissues
and organisms. Automatic processing of live imaging videos
usually includes segmentation and tracking tasks, which for
many cutting-edge biology problems turn out to be quite
challenging due to low contrast and signal-to-noise ratios as
low fluorophore excitation level is necessary to avoid photo-
bleaching and phototoxicity. Furthermore, for many delicate
processes the addition of fluorescent proteins is known to
change the cell phenotype. The imaging thus needs to be
performed label-free, relying on the difference of compart-
ment refractive index to produce contrast. Recently, several
methods have been proposed to address this problem by the
so called ”virtual staining”: training of a convolutional neural
network (CNN) to either generate a staining from label-free
images or to segment label-free images based on groundtruth
images with staining [1, 2, 3]. These methods turned out to be
so successful that the ability to generate labeled groundtruth
is now built into several commercial microscopes.

However, some cellular processes are so sensitive to light

that for those the fluorescent labeled groundtruth cannot be
acquired as video. Common examples include the studies of
membrane-less organelles - dynamic phase-separated struc-
tures that are maintained through multiple weak and multiva-
lent interactions [4]. To avoid alteration of phase separation
dynamics by light or the fluorescent tag [5], the training data
needs to be acquired as still frames and the segmentation algo-
rithms - which will later be applied to live imaging recordings
- cannot directly exploit temporal context. A similar concern
arises for the general microscopy video segmentation task in
the frequent setting where little manually labeled groundtruth
is available. For example, thanks to the Data Science Bowl
Kaggle challenge [6] ample groundtruth is now available for
the 2D nuclei segmentation task. However, a network trained
on this groundtruth has no notion of temporal consistency and
cannot in any way exploit the temporal nature of the data
when it is applied to videos.

The aim of our contribution is to close this gap by an un-
supervised extension to the training of the segmentation net-
work. A Siamese network is used to connect video segmen-
tation trained to maximize temporal consistency between un-
labeled frames and regular image segmentation trained on la-
beled snapshots (Fig. 1). We demonstrate how our setup can
be used to improve the segmentation of nuclei and nucleoli in
long or fast time-lapse holotomographic movies where par-
allel fluorescent imaging is not possible due to photobleach-
ing or is avoided as to not alter the properties of the cellular
structures. Building on this result, we demonstrate how our
approach can be used to improve a general-purpose segmen-
tation network for prediction on videos. To that end, we re-
train the popular StarDist method [7] with annotations from
the Data Science Bowl to segment fluorescent videos from the
Cell Tracking Challenge [8], obtaining a significant improve-
ment in average precision score.

2. METHOD

We identify our task as segmentation of completely unlabeled
videos using independent individual labeled images as train-
ing data. While multiple methods have recently been intro-
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Fig. 1. Architecture of our setup as applied to the holotomographic imaging task with training labels from parallel imaging with
fluorescent markers for individual frames.

duced for segmenting videos with a few or just one labeled
frame [9, 10, 11, 12], none of them are directly applicable to
our use case. We have therefore developed a new approach,
the core of which lies in training on both labeled and unla-
beled data through the Siamese duplication of the segmenta-
tion network.

Siamese networks have originally been introduced for
the object tracking task, where the object bounding box was
identified in the first frame of the video [13]. The architec-
ture allowed to train the network offline to predict similarity
between image patches. This approach has later been ex-
tended to simultaneous object segmentation and tracking[14]
by adding another branch that was trained to segment, while
the similarity loss was applied to patches as before. The net-
work was trained on millions of annotated video frames and
implicitly learned temporal dynamics and expected temporal
consistency in natural videos. No annotated datasets of such
size exist for live microscopy imaging, but as the imaging ex-
periments are targeted and highly controlled, prior biological
knowledge can be exploited to estimate and then impose tem-
poral consistency rules. In our approach, this step is realized
through an additional loss on the similarity of the segmenta-
tions of consecutive frames of unlabeled videos. We assume
that the captured biological processes have a certain degree of
temporal consistency and segmentations of consecutive time
frames are are not completely dissimilar.

Our full setup is shown in Fig. 1. As the backbone, we
take the standard U-net [15] trained to segment 2D images
and make a Siamese network of 2 U-nets with shared weights.

The training proceeds as follows in alternating steps:

1. Draw a batch of annotated 2D images, predict their seg-
mentation.

2. Compute the DICE loss [16] (or any other semantic
segmentation loss) wrt the labels and back-propagate
through one of the Siamese sub-networks

3. Draw a batch of unlabeled consecutive video frame
pairs, predict their segmentations

4. Compute the difference between the segmentations
(for example, the same DICE loss) and back-propagate
through both Siamese sub-networks

The consistency loss is only intended to correct the segmen-
tation and should not overpower the existing labels. There-
fore, we begin by training with the segmentation loss only and
once the network is sufficiently advanced, we add the consis-
tency branch and perform 2 epochs of segmentation training
for each epoch of consistency training. In our experiments, al-
ternating training was essential for good performance: catas-
trophic forgetting occurred when the network was first trained
with segmentation loss and then fine-tuned with consistency
loss only.

Note that our approach is not limited to the U-net as a
backbone. We use it as it is very popular and easy to train,
but generally speaking, any segmentation network can be ex-
tended in this fashion.

3. DATA

We demonstrate our method on two very different datasets.
The first is label-free and has been obtained by holotomo-
graphic imaging of live cells on a 3D Cell Explorer-fluo
microscope (Nanolive). We use the HeLa ’Kyoto’ cell line
[17]. For quantitative evaluation a human expert labeled
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Fig. 2. Nucleoli segmentation. (a) Raw data, single video
frame, (b) expert annotations as a dot in nucleoli centers, (c)
consistent model predictions, (d) baseline predictions. Cor-
rect predictions are shown in green, false negative and false
positive errors in red.

nucleoli in 15 movie frames (see Fig.2(a) for a snapshot
of expert annotations). For the acquisition of training data
we used cells with fluorescently tagged nucleoli or histone
proteins and imaged them at single time points, with the
marker proteins for the different structures imaged in par-
allel as a single z-slice using FITC or TRITC filters. This
z-slice was segmented by the Pixel Classification workflow in
ilastik [18] to obtain nucleoli segmentation groundtruth. For
nuclei groundtruth we used a pre-trained StarDist network
provided by the authors and merged the segmented instances
into a foreground/background mask. 98 still frames with
corresponding fluorescent markers were used for the nucleoli
segmentation task, while 83 were used for the nuclei. Addi-
tionally, we acquired two label-free movies with 85 and 260
frames, showing both nuclei and nucleoli.

Improvement of the label-free live imaging segmenta-
tion has been the main objective in the development of our
method. Nevertheless, as the resulting approach turned out
not to be specific for this use case, we performed a second
set of experiments on public data from the 2018 Data Science
Bowl ([6], still frames) and the Cell Segmentation Benchmark
([8], Fluo-N2DL-HeLa videos).

4. EXPERIMENTS AND RESULTS

A holotomographic image consists of 96 2D planes, the ma-
jority of which are out of focus. For training data, the in-focus
plane is known as it corresponds to the acquired fluorescent

Fig. 3. Nuclei segmentation. (a) Change of the predicted
total foreground area across time for a movie segmented with
both networks (slow biological process, no substantial change
expected), (b) a characteristic error of the baseline model, (c)
consistent model segmentation of the same frame.

groundtruth. For validation and test, we train a simple CNN
to find the in-focus plane based on 40 image stacks where the
in-focus plane was labeled manually. The CNN consists of 4
residual blocks with a sigmoid activation at the end, trained
to predict the probability of each frame to be in focus with a
binary cross entropy loss.

A sub-stack of 7 planes above and below the in-focus
plane was cropped out of each holotomographic stack to serve
as input to the Siamese network (see also Fig. 1). The training
was performed alternating 7 batches with segmentation loss
and 5 batches with temporal consistency loss. ADAM opti-
mizer was used, the training was stopped after 500 epochs.
The resulting foreground/background probability maps were
binarized by Otsu thresholding, individual objects were ex-
tracted by applying opening and connected components fil-
tering.

First, we verified that the segmentation results did not de-
teriorate compared to the baseline of training with the seg-
mentation loss only. As the expert labels are object detec-
tions rather than segmentations, we evaluate the performance
at the object level, computing Average Precision for both net-
works (exactly as in [7]). On independent frames the pro-
posed Siamese network performs slightly better than the base-
line (0.720 vs 0.701 average prediction score). An exam-
ple evaluation on one of the expert-labeled video frames is
shown in Fig. 2. Overall, for video data the Siamese net-
work gives much better predictions than the baseline (0.628
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Fig. 4. Top: 4 consecutive frames of CTC Fluo-N2DL-HeLa dataset with groundtruth as yellow contours. Bottom: white objects
found by both networks, cyan objects missed by the baseline StarDist, magenta objects missed by the consistent StarDist model.

Fig. 5. Average Precision score of consistent StarDist net-
work on the DSB (individual images) and CTC (videos)
datasets. The network performance on CTC improves with
no ill effects on the performance for DSB.

vs 0.512). If the annotated part of the video is not excluded
from the unsupervised part of the training – a likely setting
for a real-world application of our approach – the average
precision score reaches 0.68. The same effect can be ob-
served for the task of nuclei segmentation. For this task we
do not have expert labels, so we evaluate the consistency di-
rectly. Fig. 3(top) plots the area change for the foreground
class in one of the videos. The consistent model exhibits a
lot less abrupt changes than the baseline, where the nuclei of-
ten ”leak out” to the surrounding cytoplasm for a few frames
(Fig. 3(b)).

Our 2nd set of experiments aims to show that the applica-
bility of our approach is not limited to holotomographic imag-

ing, as the same method can be applied to improve perfor-
mance of any fully convolutional segmentation network. To
that end, we modify the popular StarDist algorithm [7] in the
same manner, making it learn - in addition to segmentation of
2D images - to take into account temporal consistency when
segmenting unlabeled videos. We use the same annotated im-
ages from the Data Science Bowl as in [7] and fluorescent
videos from the Cell Tracking Challenge (Fluo-N2DL-HeLa).
The segmentation annotations in the CTC datasets are only
used for algorithm evaluation. The temporal consistency loss
is realized as the DICE loss on the object center probability
channel. We experimented with extending this loss to other
channels which predict the direction to object boundary, but
this extension did not improve the results compared to using
only the object center prediction. Fig. 4 shows qualitative
improvement brought by the temporal consistency loss com-
pared to ”standard” StarDist. We observe the same behavior
of reduced object ”flickering” in the consistent model as we
did for the holotomographic imaging experiments. Fig. 5(a)
shows the improvement quantitatively, while Fig. 5(b) con-
firms that the performance on the original annotated dataset
does not deteriorate.

5. DISCUSSION

We introduced an approach which allows to improve a seman-
tic segmentation CNN for prediction on videos without an-
notations. Temporal consistency is induced by an additional
loss which penalizes dissimilarity between segmentations of
consecutive frames. Segmentation and consistency losses are
combined through a Siamese duplication of the CNN. We
used DICE loss in our experiments, but other measures of seg-
mentation similarity can be used as drop-in replacement. For
example, while DICE would not be applicable to fast moving
objects, we can use a loss on the total number of foreground
pixels to maintain consistency in this case. Finally, the same
approach can be extended to other tasks where groundtruth is
only available as independent 2D images, such as segmenta-
tion of unlabeled 3D volumes.
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