1 RESEARCH ARTICLE

2

Gene conversion facilitates the adaptive evolution of self-resistance in highly toxic newts

5 Kerry L Gendreau^{1*}, Angela D Hornsby^{1,2}, Michael TJ Hague³, Joel W McGlothlin¹

⁷ ¹ Department of Biological Sciences, Virginia Tech, Blacksburg, United States; ² Philip

8 L. Wright Zoological Museum, Division of Biological Sciences, University of Montana,

9 Missoula, United States; ³ Division of Biological Sciences, University of Montana,

- 10 Missoula, MT, United States
- 11

12 * For correspondence: kerryg@vt.edu

13 14

15 **Abstract** *Taricha* newts contain high concentrations of the deadly toxin TTX as an

16 antipredator defense, requiring them to be physiologically resistant to their own toxin. Here, we

17 reconstruct the origins of TTX self-resistance by sequencing the voltage-gated sodium channel

18 (SCNA) gene family, the target of TTX, in newts and related salamanders. We show that extreme

19 resistance in newts consists of a mixture of ancient changes and lineage-specific substitutions

20 and that the nonsynonymous substitution rate is elevated in newts, suggesting positive selection.

21 We also identify a novel exon duplication within *SCN4A* encoding an expressed TTX-binding

site. Two resistance-conferring changes within newts appear to have spread via nonallelic gene

23 conversion: in one case, one codon was copied between paralogs, and in the second, multiple

24 substitutions were homogenized between the duplicate exons of SCN4A. Our results demonstrate

25 that gene conversion can accelerate the coordinated evolution of gene families in response to

26 selection.

27 Introduction

28 Reconstructing the histories of complex adaptations and identifying their molecular 29 underpinnings are two of the primary goals of evolutionary biology. Fitting evolutionary models 30 to molecular sequences in a phylogenetic context can help piece together the key steps in 31 adaptive evolution and uncover the relative contributions of selection and other evolutionary 32 mechanisms to adaptive phenotypic evolution (Smith et al. 2020). Comparative studies of 33 convergence, or the repeated evolution of characters within different lineages undergoing the 34 same environmental challenges, provide powerful evidence of both adaptation and connections 35 between genetic and phenotypic change (Losos 2011). Investigations into the molecular basis of 36 convergence have revealed multiple occurrences of parallelism, where different lineages have 37 evolved changes within the same proteins, and occasionally at the same amino acid sites, in 38 response to shared selective pressures, such as insects that have evolved the ability to feed on 39 toxic plants (Zhen et al. 2012) and populations of ducks and humans living at high elevations 40 (Graham and McCracken 2019). Such patterns support important roles for both positive selection 41 and constraint in the origin of complex adaptations (reviewed by Storz 2016).

42 Resistance to tetrodotoxin (TTX), a potent neurotoxin, has evolved convergently in 43 several distantly related organisms, including pufferfish, snakes, and newts (reviewed by Soong 44 and Venkatesh 2006; Toledo et al. 2016), and therefore offers an ideal system to investigate the 45 molecular basis of adaptive evolution (Arbuckle et al. 2017). The genetic basis of TTX 46 resistance, which is well established in tetrodotoxic puffer fish (Jost et al. 2008) and in snakes 47 that consume TTX-bearing prey (Feldman et al. 2012; Geffeney et al. 2002; McGlothlin et al. 48 2014; McGlothlin et al. 2016), involves amino acid substitutions in the toxin's target, voltage-49 gated sodium channels (SCNA genes or Nav proteins). Nav channels are responsible for the 50 initiation and propagation of action potentials in excitable cells and are composed of four 51 homologous domains (DI–DIV), each comprising six transmembrane helices and an extracellular 52 pore-loop region (the P-loop; Fux et al. 2018). The four homologous P-loops, one in each 53 domain, form a pore within the membranes of excitable cells to selectively allow sodium ions to cross when the channel is open. TTX exerts its effects by binding to the P-loops of sensitive 54 55 channels and preventing sodium entry into cells, thus blocking action potentials. Gene

Table 1. Nomenclature for voltage-gated sodium channel genes. Patterns of tissue expression areinferred from studies of gene orthologs in mammals (reviewed in Yu and Catterall 2003)

Protein name	Tissue expression
Na _v 1.1	Brain
Na _V 1.2	Brain
Na _v 1.3	Brain
Na _v 1.4	Muscle
Na _v 1.5	Heart
Na _v 1.6	Brain / peripheral nervous system
	Nav1.1 Nav1.2 Nav1.3 Nav1.4 Nav1.5

duplication events have resulted in six *SCNA* paralogs, each with tissue-specific expression, that are shared across all tetrapods (Table 1), with additional lineage-specific duplications occurring in amniotes (Widmark et al. 2011; Zakon 2012). Because the structure of these paralogs is highly conserved, each has the potential to be blocked by TTX if it lacks resistance-conferring substitutions.

61 Species that possess or consume TTX must either have a full complement of resistant 62 paralogs or otherwise shield sodium channels from contact with the toxin. Indeed, resistant 63 substitutions are present in all eight of the SCNA genes within the genomes of multiple species of 64 TTX-bearing pufferfish (from the family Tetraodontidae; Jost et al. 2008) and in six of the nine 65 SCNA genes in Thamnophis sirtalis snakes that consume TTX-bearing Taricha newts (McGlothlin et al. 2014; Perry et al. 2018). The three brain channels SCN1A, SCN2A, and 66 67 SCN3A of snakes remain TTX sensitive, but presumably are protected from TTX by the blood-68 brain barrier (McGlothlin et al. 2014). In snakes, the evolution of extreme TTX resistance 69 appears to follow a predictable, stepwise substitution pattern across TTX-exposed members of 70 the SCNA gene family, with substitutions in heart and peripheral nerve channels preceding those 71 in the muscle channel gene, SCN4A, which evolves resistance only in snakes locked in 72 coevolutionary arms races with highly tetrodotoxic amphibian prey (Feldman et al. 2012; 73 McGlothlin et al. 2016; Perry et al. 2018). 74 Less is known about the evolutionary history of TTX resistance in Taricha newts, the

highly toxic coevolutionary partner of *Thamnophis* (Brodie and Brodie 1990; Brodie et al. 2002;

76 Hague et al. 2020; Williams et al. 2010). The extreme toxicity of *Taricha*, which has been

4

77 elaborated by the ongoing coevolutionary arms race with garter snakes, builds upon lower levels 78 of toxicity that evolved ~40 million years ago (mya) within "modern" newts (tribe Molgini; 79 Hanifin and Gilly 2015; divergence date estimated by Hime et al. 2021). The evolution of 80 toxicity necessitates the evolution of toxin autoresistance so that a prey species is not 81 incapacitated by its own antipredator defense (Jost et al. 2008; Márquez et al. 2019; Tarvin et al. 82 2017; Toledo et al. 2016). Understanding the timing and details of this autoresistance can shed 83 light on the genetic processes underlying the predator-prey arms race. Hanifin and Gilly (2015) 84 compared the sequences of one sodium channel gene, the muscle paralog SCN4A, across several 85 salamander species and identified substitutions in the P-loops of DIII and DIV that provide 86 extreme TTX resistance to the muscles of TTX-bearing newts. Importantly, the sister group of 87 toxic newts had substitutions in the same gene providing more moderate resistance, indicating 88 that the evolution of autoresistance in a common ancestor paved the way for the evolution of 89 extreme toxicity. More recently, Vaelli et al. (2020) used transcriptome sequencing to 90 characterize the genetic basis of physiological resistance to TTX in Taricha granulosa and 91 identified substitutions within TTX-binding regions in the other five SCNA paralogs, many of which occur in within the P-loop of DI. However, because it is unknown whether other 92 93 salamander species possess TTX resistance in these paralogs, the order and timing of the 94 evolutionary events leading to autoresistance in toxic newts is still unknown. Furthermore, no 95 studies to date have applied evolutionary models to test for the relative importance of 96 mechanisms such as positive selection, relaxed constraint, and interlocus gene conversion in the 97 evolution of newt TTX resistance.

98 Here, we trace the evolutionary history of the entire SCNA gene family across the 99 salamander phylogeny to show the order in which resistant substitutions appeared. Using 100 published genome sequences and newly generated sequence data, we characterize the genomic 101 structure of SCNA genes in newts and their relatives, inferring the timing of resistant 102 substitutions leading to the extreme TTX resistance observed across all SCNA paralogs in 103 Taricha newts (Vaelli et al. 2020). We estimate rates of synonymous and nonsynonymous 104 substitution to identify positive selection. In addition, we assess the potential of nonallelic gene 105 conversion, a process by which sequence is copied from one paralog to another (Chen et al. 106 2007), to act as a source of adaptive variation. Combining these data provides insight into the 107 evolutionary mechanisms underlying the origin of a uniquely potent chemical defense.

5

108 **Results**

109 Genomic structure and phylogenetics of voltage-gated sodium channels

110 We used targeted sequence capture to characterize *SCNA* sequences from the genomes of five

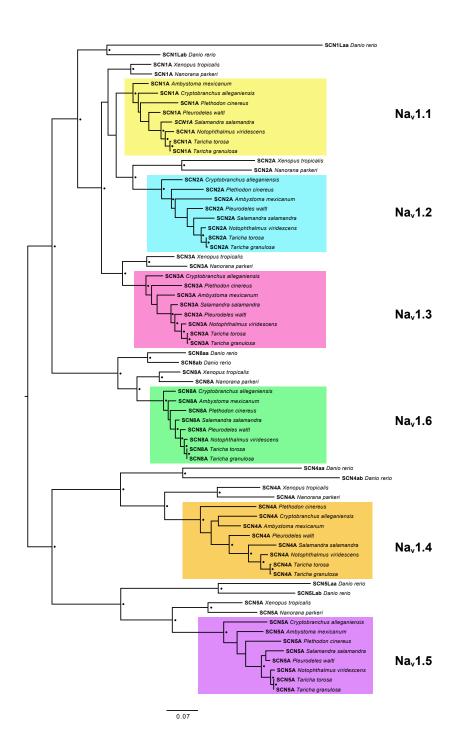
- 111 salamander species (order Urodela), including three TTX-bearing newts (family Salamandridae,
- 112 subfamily Pleurodelinae, tribe Molgini), Notophthalmus viridescens, Taricha torosa, and
- 113 *Taricha granulosa* (*n* = 3 diploid individuals of each species), and two less toxic salamanders,
- 114 Cryptobranchus alleganiensis (Crypotobranchidae) and Plethodon cinereus (Plethodontidae, n =
- 115 2 each). We also identified *SCNA* sequences within two publicly available salamander genome
- 116 sequences: *Ambystoma mexicanum* (Ambystomatidae; Smith et al. 2019; AmexG.v6 assembly)
- and *Pleurodeles waltl* (Salamandridae; Elewa et al. 2017) and a full-body transcriptome from the
- 118 fire salamander *Salamandra salamandra* (Salamandridae; Goedbloed et al. 2017; BioProject
- accession PRJNA607429). The split between Cryptobranchus (suborder Cryptobranchoidea) and
- 120 all the other salamanders in our study (members of suborder Salamandroidea) represents the
- 121 most ancient division in the phylogeny of extant salamanders (~160 mya; Hime et al. 2021).
- 122 We identified six SCNA genes in the genomes of all salamander species, which is 123 consistent with observations in other amphibians (Zakon et al. 2011). We obtained near full-124 length assemblies for all paralogs (Table S1); however, a few exons containing TTX-binding 125 sites, including exon 15 (encoding the DII P-loop) of SCN2A from N. viridescens and exon 22 126 (encoding part of the DIII P-loop) of SCN2A for several newt species, were missing from our 127 assemblies. Polymorphism was rare in our assemblies and we observed few nonsynonymous 128 mutations within the newt genomes, but we found slightly elevated polymorphism in N. 129 viridescens relative to other species (Table S2). No nonsynonymous polymorphisms were 130 observed within any of the known TTX-binding P-loop regions within any of the species 131 sequenced for this study.

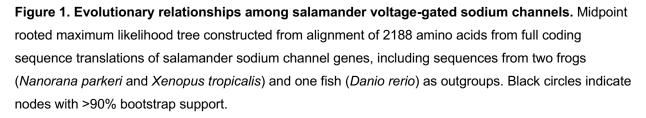
132 Synteny of *SCNA* genes in *A. mexicanum* is conserved relative to other tetrapods (Fig. 133 S1), which allowed us to use the *A. mexicanum* sequences as a baseline to confidently identify 134 *SCNA* paralogs in all species. Three of the paralogs, *SCN1A*, *SCN2A*, and *SCN3A* are arrayed in 135 tandem on *A. mexicanum* chromosome 9, with *SCN2A* inverted relative to its neighboring 136 paralogs (Table 2, Fig. S1). The additional three paralogs, *SCN4A*, *SCN5A*, and *SCN8A*, are each 137 located on separate chromosomes (Table 2). In the gene family tree built from amino acid 138 sequences, all salamander Na_v1 proteins formed a monophyletic clade with the corresponding

6

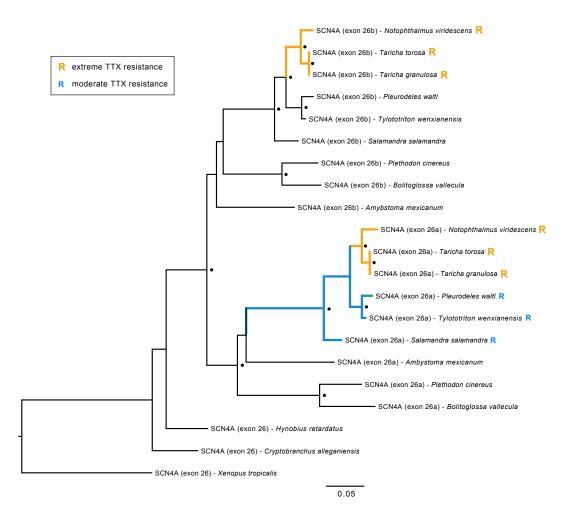
- 139 orthologs from the genomes of the frogs *Xenopus tropicalis* and *Nanorana parkeri*, which we
- 140 included as outgroups (Fig. 1). The gene family tree constructed from the nucleotide coding
- sequences of these genes yielded a similar topology, with each salamander SCNA ortholog
- 142 forming a monophyletic clade. However, in the nucleotide gene family tree, the three *X*.
- 143 *tropicalis* nerve channels Na_v1.1, Na_v1.2, and Na_v1.3 formed a monophyletic clade that is
- 144 distinct from the salamander sequences (Fig. S2).

Table 2. Locations of voltage-gated sodium channel genes in the Ambystoma mexicanum AmexG.v6
 genome assembly


Gene	Chromosome	Start	End	Strand	Length (bp)
SCN1A	9q	503,107,904	503,797,933	+	690,029
SCN2A	9q	507,685,503	508,688,108	-	1,002,605
SCN3A	9q	509,830,827	510,576,927	+	746,100
SCN4A	13q	113,343,821	115,707,581	+	2,363,760
SCN4A exon 26b	13q	115,891,071	115,892,251	+	1,180
SCN5A	2p	562,159,042	563,030,267	-	871,225
SCN8A	3q	465,212,114	466,692,047	-	1,479,933


145 Partial duplication of SCN4A and evolution of TTX resistance in duplicated

146 domains


- 147 Our search of the *A. mexicanum* genome revealed a partial tandem duplication of the 3' end of
- 148 the SCN4A gene, including the full coding region of exon 26, located ~180,000 base pairs
- 149 downstream of the full-length *SCN4A* gene on the same DNA strand (Table 2). Both exon 26
- 150 copies are similar in length to each other and to exon 26 of other paralogs, encoding open
- reading frames of approximately 390 base pairs without introduced stop codons. Exon 26 is the
- 152 3'-terminal exon of the *SCN4A* gene and encodes the TTX-binding P-loop region of DIV.
- 153 Hereafter, we refer to the duplicate exons as 26a (more proximal to exon 25) and 26b (more
- distal to exon 25) and duplicate P-loop regions as DIVa (more proximal to exon 25) and DIVb
- 155 (more distal to exon 25). We also found this duplicated exon in *SCN4A* orthologs within the
- 156 genomes of salamanders P. cinereus, P. waltl, N. viridescens, T. torosa, and T. granulosa and in
- 157 published transcriptomes of *Tylototriton wenxianensis* and *Bolitoglossa vallecula*, but not in the
- 158 transcriptome of *Hynobius retardatus* or in the genomes of *C. alleganiensis* or the frogs *X.*
- 159 *tropicalis* or *N. parkeri*. This pattern suggests that the duplication event likely took place after

7

8

Figure 2. Ancestral duplication and convergent evolution of TTX resistance in *SCN4A* terminal exon 26. Maximum likelihood tree constructed from 1050 bp nucleotide alignment of *SCN4A* exon 26 identified in salamander genomes and transcriptomes. "Exon 26a" and "exon 26b" in tip labels refer to the exon copy more proximal and more distal to exon 25, respectively. Black circles indicate node bootstrap support >95%. "R" at tips indicates the presence of substitutions conferring extreme (orange) and moderate (blue) TTX resistance.

160 the split of Cryptobranchoidea and Salamandroidea (Fig. 2). Within the S. salamandra

transcriptome, we found four unique RNA sequences transcribed from the SCN4A locus, with

162 alternative splicing of exon 17 and alternative encoding of either exon 26a or 26b. Genome-

163 mapped reads of multi-tissue transcriptomes of A. mexicanum (Bryant et al. 2017; Caballero-

164 Pérez et al. 2018; Nowoshilow et al. 2018) indicate that these alternative transcripts have similar

165 expression profiles across various tissues. Taken together, these observations provide evidence

166 that the duplication of exon 26 led to the creation of functional splice variants in these

167 salamanders.

168 While numerous nonsynonymous substitutions differentiated the duplicated SCN4A exon 169 26 sequences relative to the original sequences within each genome, we found that identical 170 substitutions conferring extreme TTX-resistance to toxic newts (Hanifin and Gilly 2015) were 171 present in both exons from the genomes of all three TTX-bearing newts but not in other, less 172 toxic salamander species (Fig. 2). Also consistent with the results of Hanifin and Gilly (2015), 173 we found resistant substitutions conferring moderate TTX resistance in exon 26a of P. waltl, T. 174 wenxianensis, and S. salamandra; however, we observed no resistant substitutions in exon 26b 175 outside of the toxic newt clade.

176

177 Evolution of TTX resistance in salamanders

178 We characterized levels of TTX resistance in each Nav paralog as extreme, moderate, and TTX-179 sensitive based on previous site-directed mutagenesis experiments in which substitutions were 180 introduced to TTX-sensitive Nav channels and cross-membrane Na⁺ current was measured in 181 vitro in the presence and absence of TTX (Table 3). Our results confirm that T. granulosa has six 182 paralogs with extreme TTX resistance (Table 3, Fig. 3). Our findings are consistent with those 183 reported by Vaelli et al. (2020) with one exception: we associate DIV (encoded by exon 26) 184 substitutions A1529G and G1533V with Nav1.1 and Q1524E and G1533R with Nav1.2 based on 185 synteny mapping (Fig. S1), gene trees (Figs. 1, S2), and alignments of exon 26 (Fig. S3), 186 whereas the previous study reversed these assignments. We also show that substitutions with 187 extreme TTX resistance are present in all six Na_v paralogs in two other species of highly toxic 188 newt, T. torosa and N. viridescens, indicating that the common ancestor of these three species 189 possessed extreme TTX resistance. Many of the substitutions in toxic newts parallel those found 190 in TTX-bearing fish and in snakes that consume tetrodotoxic amphibians (Table 3).

10

Table 3. List of TTX resistance-conferring substitutions observed in salamanders. Listed are all substitutions observed in salamander Na_v channels that are known to confer TTX resistance. Parallel substitutions in observed in Na_v channels of TTX-bearing pufferfish and in snakes that consume TTX-bearing prey are also shown. Resistance categories for all substitutions except those in muscle channel Na_v1.4 (marked with asterisks) are based on fold-change in TTX sensitivity, which was determined by calculating the ratio of IC₅₀ values (the TTX concentration at which 50% of Na_v channels are blocked by TTX in *vitro*) of the mutated and wild-type channels. Resistance categorization for Na_v1.4 substitutions was inferred from Hanifin and Gilly (2015), who measured the direct impact of TTX exposure on the action potentials of salamander muscle fibers. Amino acid sites are in reference to rat Na_v1.4 (accession number AAA41682).

Substitution	Tetrodotoxic newts	Non-tetrodotoxic salamanders	Pufferfish and snakes	Fold-change in TTX sensitivity	Resistance category	Citation
Y401C (DI)	Na _v 1.1 Na _v 1.2	Na _v 1.5	Pufferfish: Na _v 1.4a Na _v 1.5La Na _v 1.5Lb	~2500×	Extreme	Jost et al. (2008); Venkatesh et al. (2005)
Y401A (DI)	Na _v 1.1 Na _v 1.3 Na _v 1.6	Na _v 1.1	Pufferfish: Na _v 1.1La Na _v 1.6b	>600×	Extreme	Jost et al. (2008); Vaelli et al. (2020)
Y401S (DI)	Na _v 1.5	Na _v 1.5	-	~7000×	Extreme	Leffler et al. (2005)
D1532S (DIV) G1533D (DIV)	Na _v 1.4		Snake: Na _v 1.4	-	Extreme*	Feldman et al. (2012); Hanifin and Gilly (2015)
E758D (DII)	-	Na _v 1.5	Pufferfish: Na _v 1.4b	~3000×	Extreme	Bricelj et al. (2005)
M1240T (DIII)	Na _v 1.1 Na _v 1.4	Na _v 1.1 Na _v 1.5	Pufferfish: Na _v 1.1La Na _v 1.1Lb Na _v 1.4a Na _v 1.4b	~15×	Moderate	Jost et al. (2008)
V1233I (DIII)	Na _v 1.6	Na _v 1.6	Snake: Na _v 1.6	~2×	Moderate	McGlothlin et al. (2014); Vaelli et al. (2020)
11525V (DIV)	Na _v 1.6	Na√1.5 Na√1.6	Snake: Na _v 1.6	~2×	Moderate	Geffeney et al. (2005); McGlothlin et al. (2014); Vaelli et al. (2020)
11525S (DIV)	Na _v 1.4	Na _v 1.4		-	Moderate*	Hanifin and Gilly (2015)
11525T (DIV)	-	Na _v 1.4 Na _v 1.5		~7.7×	Moderate	Du et al. (2009)

		Na _v 1.1	Na _v 1.2	Na _v 1.3	Na _v 1.4	Na _v 1.5	Na _v 1.6	
	X. tropicalis	DYWEN EWIET QVATFKGWMD QITTSAGWDG	DCWEN EWIET QVATFKGWMP QITTSAGWDL	D FWEN E WIET QVATF K GWME QITTS A GWDG	DFWEN EWIET QVATFKGWMD QITTSAGWDG	DYWEN EWIET QVATFKGWMD QITTSAGWDG	DFWEN EWIET QVATFKGWMD QITTSAGWDG	DI (400-404) DII (755-759) DIII (1232-1241) DIV (1524-1533)
	C. alleganiensis	 	.Y ????? D G	Y	.¥	.CN	. ¥ 	
	P. cinereus		D	 M	.Y E EITTSAGWDG	.F D. .T	.¥ .¥	
★ DIV P-loop duplication	———— A. mexicanum	 	D	.ч м	. ¥ Q	 T. SE	. Y . I . V	
l	S. salamandra	 	????? D EG	 M	.Y .T E	.≌⊤ .⊻	.¥ .∐ .⊻	
	P.walti	 	.Y D EG	. У М	.Y .S E		 .Щ .⊻	
	N. viridescens	ĒA	.C ????? ????????? EQ		.Y .Y .SSD QSSD		 .¥	
	T. torosa		.C S ???????? ER	.A S D M	.Y .V .SSD QSSD		.⊉ .⊻	
	T. granulosa		S ???????? ER	B B M	.Y .SSD QSSD		 .I .V	
	High TTX exposure			Moderate	TTX resistance	Extrem	ne TTX resistance	e

Figure 3. Distribution of TTX-resistance conferring substitutions in salamander voltage-gated

sodium channels. Toxic newt species are indicated with orange branches ("High TTX exposure"). Amino acids associated with Na+ selectivity (400D, 755E, 1237K, 1529A) are shown in bold. Dots indicate identity with consensus sequences. Blue boxes indicate paralogs inferred to have moderate (~2-15-fold) resistance, orange boxes indicate paralogs with extreme (>300-fold) resistance, and grey boxes indicate paralogs without resistance or with insufficient sequence data. Substitutions known to confer TTX resistance are highlighted with respective colors. Extreme resistance in a paralog can result from the presence of one highly resistant substitution or the combination of multiple moderately resistant substitutions. Exon duplication has led to an additional TTX-binding domain (DIVb) in Na_v1.4 of all salamanders except *C. alleganiensis*. We did not identify the sequence encoding DIII of *SCN2A* for any of the newts, however Vaelli et al. (2020) report that, in *T. granulosa*, this domain is identical in amino acid sequence to other salamanders. Amino acid sites are in reference to rat Na_v1.4 (accession number AAA41682).

12

191 No salamander species outside the clade of highly toxic newts possessed a full 192 complement of TTX-resistant Nav paralogs, indicating the evolution of full physiological 193 resistance coincided with the origin of extreme toxicity. However, we found at least three 194 paralogs with moderate or extreme TTX resistance in all salamander species we examined, 195 indicating that the evolution of TTX resistance in newts built upon more ancient changes that 196 first appeared in their non-newt relatives. Substitutions conferring moderate or extreme 197 resistance were observed within the heart channel Nav1.5 and brain/nerve channels Nav1.1 and 198 Na_v1.6 of all salamander species, with additional resistance-conferring substitutions evolving 199 within TTX-bearing newts. As first shown by Hanifin and Gilly (2015), moderate resistance was 200 present in the skeletal muscle channel Nav1.4 of S. salamandra and P. waltl, but not in the three 201 other salamander species we examined. Although our outgroup, the frog X. tropicalis, also 202 contained a highly resistant substitution in Nav1.2, we found no evidence for resistance in this 203 paralog in any salamanders outside of tetrodotoxic newts. Based on our ancestral sequence reconstructions, the most recent common ancestor of all 204 205 salamanders had three TTX resistant sodium channels: Nav1.1 (brain, moderately resistant), 206 Nav1.5 (heart, highly resistant), and Nav1.6 (brain/peripheral nerves, moderately resistant; Fig. 207 3). Moderate resistance in the muscle channel Nav1.4 appeared between 75–130 mya, after the 208 divergence of Ambystomatidae and Salamandridae (the family consisting of true salamanders 209 and newts; Hanifin and Gilly 2015). This gain in muscle resistance coincided with the

- $210 \qquad \text{appearance of two highly resistant substitutions in DI of Nav1.5, which are present in all}$
- 211 Salamandridae. Extreme TTX resistance across all SCNA paralogs evolved more recently,
- 212 occurring approximately 37–50 mya, after the split between primitive newts which include
- 213 *Pleurodeles* and modern newts, which include all TTX-bearing species. Over this time period,
- 214 TTX resistance evolved in Na_v1.2 and Na_v1.3, and multiple additional resistant mutations
- appeared and became fixed in Nav1.1, Nav1.4, and Nav1.6.
- 216

217 Selective regimes and evolutionary rates

218 In order to characterize the selective regimes acting on SCNA genes, we used the codeml

219 program in PAML (Yang 2007) to fit models of selection to SCNA codon alignments and

- 220 compared nested models using likelihood ratio tests (LRTs). We tested for site-specific positive
- selection within all amphibians by comparing two sets of nested models: one set using a discrete

13

distribution of ω values either with or without positive selection (M1a vs. M2a; Yang et al. 2005); and another set fitting a continuous distribution of ω values under purifying selection only, or adding categories of unconstrained evolution and positive selection (M7 vs. M8 and M8a vs. M8; Yang et al. 2000). Parameter estimates and LRT results for site models are summarized in Table S3. To test for selection within toxic newts, we fit branch (Yang 1998) and branch-site models (Zhang et al. 2005) to our datasets, which allowed ω to vary both among codon sites and between toxic newts and other amphibians (summarized in Table S4).

229 All models estimated relatively low ratios of nonsynonymous to synonymous substitution 230 $(d_N/d_S, or \omega ratios)$ for all Na_v paralogs (average ω ratios from branch models ranged from 0.05 231 to 0.25), indicating pervasive purifying selection. Based on LRTs comparing one ω -value models 232 (which allow only for one ω value across the entire phylogeny) to branch models (allowing for a 233 different ω ratio in the toxic newt clade relative to other amphibians), we found that ω ratios 234 were significantly higher in toxic newts for $Na_v 1.1$, $Na_v 1.3$, and $Na_v 1.4$, borderline significant for 235 Nav1.6, and non-significant for Nav1.2 and Nav1.5 (Fig. 4A; Table S4). The largest difference in 236 ω ratios in the branch test was observed for the muscle channel Na_v1.4 (newt $\omega = 0.25$; all 237 salamanders $\omega = 0.10$), which appears to be due to both an increase in the proportion of unconstrained sites as well as a larger number of estimated sites undergoing positive selection 238 239 (Fig. 4B). However, the posterior probability support for positive selection at many of these sites 240 was low, and LRTs from branch-site models indicated significant evidence for a shift in positive 241 selection only in paralog Nav1.3 (Tables S3, S4).

242 Our site and branch-site models identified a number of TTX-binding sites with elevated 243 ω ratios (Table 4; Tables S5, S6). Because of the small number of species in our study, we had 244 low power to detect statistically significant positive selection (Anisimova et al. 2001; 245 Kosakovsky Pond and Frost 2005; Yang et al. 2000), and the posterior probabilities provided 246 low-to-moderate support for positive selection at most sites. We also note that the false positive 247 rates of site selection models can be inflated due to gene conversion events (Casola and Hahn 248 2009), among-site variation in d_s (Kosakovsky Pond and Frost 2005), and multinucleotide 249 mutations (Venkat et al. 2018). However, results were consistent between the M2a and M8 250 models, and the codons that were identified suggest that positive selection may have been 251 important for observed substitutions in TTX-binding regions.

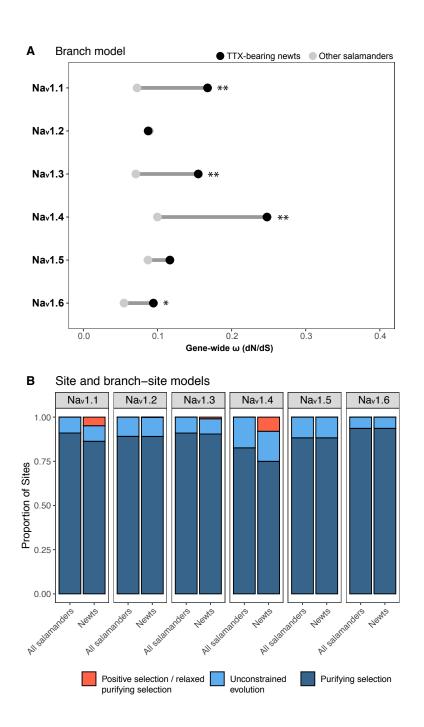


Figure 4. Tests for shifts in selective pressure on salamander voltage-gated sodium channels. (A) PAML branch models comparing estimates of gene-wide ω (d_N/d_S) within TTX-bearing newts (black circles) and other salamanders (grey circles). Significant differences based on likelihood ratio tests are indicated with * (p < 0.05) and ** (p < 0.01). (B) PAML site and branch-site model estimates of proportions of sites under purifying selection (0 < ω < 0.05 in both lineages), unconstrained evolution (ω =1 in both lineages), and positive selection or relaxed purifying selection (0 < ω < 0.05 in salamanders and $\omega \ge 1$ in TTX-bearing newts). Although likelihood-ratio tests were non-significant for Nav1.1 and Nav1.4 (Tables S3, S4), PAML identified a large proportion of amino acid coding sites within these paralogs with elevated d_N/d_S ratios in toxic newts.

15

Table 4. P-loop sites with elevated ω values in all salamanders and in toxic newts. Sites were detected as putatively affected by positively selection within salamanders and within toxic newts using the empirical Bayes method based on site models and branch-site models respectively. Because we had low power to detect positive selection at specific sites due to the small number of species in our study, these results should be interpreted with caution. Included are all P-loop sites identified as putatively positively selected with posterior probability > 0.50. Sites with posterior probability > 0.95 are indicated with asterisks, but we note that the likelihood ration test for the Na_v1.4 branch-site model was non-significant. Bolded sites have non-conservative amino acid substitutions associated with TTX resistance in toxic newts.

	Na _v 1.1	Nav1.2	Nav1.3	Nav1.4	Nav1.5	Na∨1.6
Tissue expression	Brain	Brain	Brain	Muscle	Heart	Brain / PNS
P-loop sites under positive selection in all salamanders	Y401A/C (DI) G1533V (DIV)	G1533R (DIV)	Y401A (DI)	-	739 (DII)	Y401A (DI)
P-loop sites under positive selection in toxic newts	1224 (DIII) A1529G (DIV)	-	T759S (DII)	W756Y (DII)* M1240T (DIII) 1517 (DIV) 1519 (DIV) D1532S (DIV) *	-	-

252 Within the brain channels Na_v1.1, Na_v1.3, and Na_v1.6, putative positive selection was 253 detected by site models at site 401 within the DI P-loop, indicating selection acting across all 254 salamanders rather than specifically within toxic newts (Table 4). Replacement of the aromatic 255 amino acid at site 401 with a non-aromatic amino acid can substantially impact TTX binding 256 capacity (Leffler et al. 2005; Vaelli et al. 2020; Venkatesh et al. 2005), and we observed non-257 aromatic substitutions at this site within all brain channels of highly toxic newts (Fig. 3, Table 3). 258 The codon sequence for site 401 was variable across many salamanders lacking TTX; however, 259 almost all of the nonsynonymous changes observed outside of TTX-bearing newts were 260 biochemically conservative (both phenylalanine and tyrosine are aromatic and do not affect TTX 261 binding; Sunami et al. 2000), with the exception of the 401A observed in *P. cinereus* Na_v1.1. 262 This conservative variation likely contributes to the signal of diversifying selection acting on this codon in less toxic salamander lineages. Site models also suggested positive selection acting on 263 264 site 1533 in DIV of Nav1.1 and Nav1.2 (Table 4). Although the substitutions present at site 1533 in these newt paralogs have not been tested experimentally for their effects on TTX binding, 265

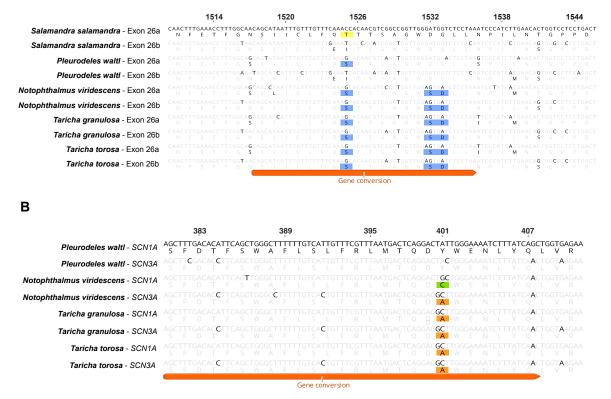
16

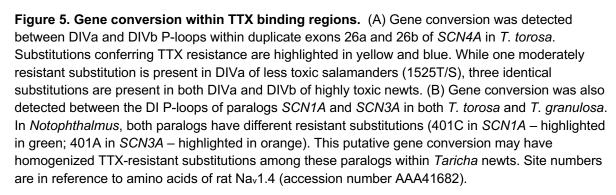
266 Maruta et al. (2008) showed that a G1533T substitution at this site led to a moderate (\sim 2-3-fold) 267 decrease in TTX binding affinity, and substitutions at this site are common in TTX-resistant 268 channels (Feldman et al. 2012; Geffeney et al. 2005; Jost et al. 2008; McGlothlin et al. 2016), 269 suggesting that these non-synonymous changes likely also reduce TTX binding affinity in newts. 270 Within the toxic newt lineage, we identified putative positive selection acting on three 271 known TTX-binding sites: 1240 and 1532 in DIII and DIV of muscle channel Nav1.4 and 1529 272 in DIV of brain channel Na $_v$ 1.1 (Table 4). In Na $_v$ 1.4, sites 1240 and 1532 contain resistanceconferring substitutions exclusively within toxic newts and these substitutions have been 273 274 associated with extreme TTX resistance in Taricha muscle fibers (Hanifin and Gilly 2015). In 275 $Na_v 1.1$, site 1529 encodes part of the Na⁺ selectivity filter (comprised of interacting amino acids 276 DEKA – sites 400, 755, 1237, and 1529), which is highly conserved across Nav paralogs. An 277 A1529G substitution (resulting in a DEKG filter) is present in Nav1.1 of A. mexicanum and all 278 members of the toxic newt clade. While this substitution does not appear to affect Na+ selectivity 279 or to be sufficient in preventing TTX from binding (Jost et al. 2008), it can alter channel firing 280 properties, producing substantially higher Na⁺ currents in comparison to the DEKA filter (Jost et 281 al. 2008). The same alanine to glycine substitution has been observed in Nav channels of TTX-282 bearing flatworms (Jeziorski et al. 1997) and pufferfish (Jost et al. 2008), which suggests that it 283 may play a role in TTX resistance in these organisms. 284 Outside of TTX-binding regions, we found evidence for putative positive selection in

285 similar regions across multiple SCNA paralogs (Tables S5, S6). For Nav1.4, the majority of sites 286 under positive selection reside in terminal exon 26a that encodes the DIVa P-loop (exon 26b was 287 excluded from this analysis due to its absence in some species). For most other paralogs, the 288 largest clusters of sites with elevated d_N/d_S ratios occurred within the DI L5 turret (the 289 extracellular loop upstream of the DI P-loop, encoded by exons 6 and 7) and/or within the DIII 290 L5 turret upstream of the DIII P-loop encoded by exon 21. These sites may facilitate interaction 291 with other proteins, or alternatively, some of these sites identified by the branch-site model may 292 be selected to compensate for biochemical changes produced by TTX-resistant mutations.

293

294 Gene conversion events


We also tested for evidence of nonallelic gene conversion as a mechanism of sequence evolutioncontributing to adaptive evolution in *SCNAs* using the program GENECONV. Nonallelic or


17

297 ectopic gene conversion results from an interlocus exchange of DNA that can occur between 298 closely related sequences during double-stranded break repair (Hansen et al. 2000). 299 GENECONV uses the information in a multiple sequence alignment to identify regions of 300 similarity shared between two sequences that is higher than expected by chance based on 301 comparisons to permuted alignments (Sawyer 1999). We selected this program to detect gene 302 conversion because of its low false positive rates and robustness to shifts in selective pressure 303 (Bay and Bielawski 2011; Posada and Crandall 2001). Because nonallelic gene conversion is more likely to occur between paralogs residing on the same chromosome (Benovoy and Drouin 304 305 2009; Drouin 2002; Semple and Wolfe 1999), we limited our search to events between the 306 tandem duplicates SCN1A, SCN2A, and SCN3A and between exons 26a and 26b of SCN4A 307 within each salamander genome. While few gene conversion events were detected within each 308 species by GENECONV, all of the regions that were detected within Taricha newts contain 309 TTX-binding sites with substitutions associated with TTX resistance, including the DIVa and 310 DIVb P-loops of SCN4A (Fig. 5; Table 5). We observed three TTX resistant amino acids 311 (11525S, D1532S, G1533D) within the DIVa and DIVb P-loops of SCN4A in toxic newt 312 genomes. In contrast, P. waltl, a closely related but non-tetrodotoxic newt, contains one 313 moderately TTX-resistant amino acid (I1525S) in the DIVa P-loop and no resistant amino acids 314 in the DIVb P-loop (Fig. 5A). These differences involve four identical nucleotide changes at 315 homologous sites in both exon duplicates. Our short reads from the genomes of N. viridescens 316 and Taricha newts mapped onto each of these exon assemblies across putative recombination 317 break points with high (> 50-fold) coverage, lending support for sequence convergence rather 318 than an assembly error. We did not detect gene conversion between these exons within the 319 genomes of T. granulosa or N. viridescens; however, this may be due to the low power of 320 GENECONV to detect conversion (Bay and Bielawski 2011), particularly in the presence of low 321 sequence diversity and when the conversion tract is shorter than ~100 bp (McGrath et al. 2009; 322 Posada and Crandall 2001). Together, these results suggest that the three resistant amino acids 323 accumulated together in one exon copy followed by conversion of the other exon ~40 mya in a 324 toxic newt ancestor.

18

Α

19

325 We also detected gene conversion between the DI P-loops of paralogs SCN1A and SCN3A within the genomes of both Taricha species (Fig. 5B, Table 5). TTX-resistant 326 327 substitutions are identical in the DI P-loops of SCN1A and SCN3A in both Taricha species 328 (401A, encoded by a GCT codon), while SCN1A of N. viridescens contains a different codon at 329 this position (TGC, encoding 401C), consistent with gene conversion occurring at this locus in 330 Taricha. Both SCN1A and SCN3A of non-tetrodotoxic P. waltl newts encode a TTX-sensitive 331 tyrosine at this locus. It is unclear whether putative gene conversion event(s) occurred before or 332 after resistance evolved in both paralogs. Gene conversion may have converted a non-resistant 333 channel to a resistant channel in an ancestral *Taricha*, while *N. viridescens* independently 334 acquired a Y401A substitution, or it may have homogenized substitutions within two channels 335 that had previously evolved resistance in an ancestor of all toxic newts. In *Taricha* newts, the 336 transition from either tyrosine or cysteine to alanine required multiple nucleotide substitutions in 337 both paralogs, making gene conversion a likely explanation for the observed substitution 338 patterns. 339 We detected additional gene conversion events that may have involved a non-resistant 340 paralog acting as a donor to a resistant paralog, leading to the loss of TTX resistance in A. 341 mexicanum and C. alleganiensis paralogs. A resistant substitution is present in the DIII P-loop of 342 SCN1A in most salamanders but is absent in SCN1A of A. mexicanum (Fig. 3), and we detected 343 gene conversion in an adjacent region between SCN1A and the non-resistant SCN2A paralog 344 within the A. mexicanum genome (Table 5). Similarly, C. alleganiensis SCN2A contains a non-345 resistant 1533G within DIV of all six paralogs, while SCN2A of X. tropicalis frogs encodes a 346 putatively TTX-resistant 1533L, and gene conversion between paralogs SCN2A and SCN3A may

347 have facilitated the loss of this substitution in salamanders

20

Table 5. Gene conversion events between adjacent salamander voltage-gated sodium channel paralogs detected with GENECONV. Bolded rows indicate putative gene conversion events associated with the gain (*) or loss (†) of TTX resistance substitutions within a lineage. Global Bonferroni-corrected (BC) p-values from 10,000 simulations are reported. Protein begin and end sites reference the rat Na_v1.4 channel (accession number AAA41682). Total poly – polymorphism within the converted region across all species; num diffs – pairwise differences between the two paralogs within the converted region; total diffs – total pairwise differences across the entire length of the two paralogs.

Species	Gene 1 – Gene 2	BC p-value	Protein begin	Protein end	P-loop	Exon	Length (bp)	Total poly (bp)	Num diffs (bp)	Total diffs (bp)
A. mexicanum	SCN1A - SCN2A	0.01	12	42	-	1	93	48	5	794
	SCN1A - SCN3A	0.01	45	84	-	1	128	54	5	722
	SCN2A - SCN3A	0.00	203	405	DI	5; 6; 7; 8 19; 20;	>626	74	2	902
	SCN1A - SCN2A	0.00	1059	1193	-	21	>407	134	25	794
	SCN1A - SCN3A	0.02	1104	1144	-	20	127	37	1	722
	SCN1A - SCN2A†	0.02	1208	1232	DIII	21	84	35	2	794
C. alleganiensis	SCN1A - SCN2A	0.00	1111	1232	DIII	20;21	>376	153	23	621
	SCN2A - SCN3A†	0.02	1478	1611	DIV	26	406	164	32	693
	SCN1A - SCN2A	0.00	1531	1652	DIV	26	371	177	27	621
N. viridescens	SCN1A - SCN3A	0.00	500	512	-	10	89	41	1	733
	SCN1A - SCN2A	0.01	1104	1199	-	16	292	109	20	796
P. cinereus	SCN1A - SCN2A	0.00	12	32	-	1	64	31	0	838
	SCN1A - SCN3A	0.00	362	499	DI	8; 9; 10	>576	88	13	786
	SCN2A - SCN3A	0.02	573	599	-	13	83	29	2	897
	SCN1A - SCN3A	0.00	610	667	-	14	177	68	8	786
						20; 21; 22; 23;				
	SCN1A - SCN2A	0.00	1135	1305	DIII	24	>524	138	9	838
	SCN1A - SCN3A	0.03	1430	1473	-	26	134	46	5	786
P. waltl	SCN1A - SCN3A	0.03	1369	1386	-	25	56	30	0	738
T. granulosa	SCN1A - SCN3A*	0.01	374	408	DI	8	105	41	2	725
T. torosa	SCN1A - SCN3A*	0.01	374	408	DI	8	105	41	2	725

SCN1A–SCN2A–SCN3A coding sequences

SCN4A exon 26

Species	Gene	BC p-value	Protein begin	Protein end	P- loop	Exon	Length (bp)	Tota I poly (bp)	Num diffs (bp)	Total diffs (bp)
P. cinereus	SCN4A	0.01	1509	1534	DIV	26a-26b	77	26	0	154
T. torosa	SCN4A*	0.02	1518	1536	DIV	26a-26b	56	22	1	178

21

348 **Discussion**

349 Here we show that TTX-bearing newts have evolved resistance to their own toxicity through 350 multiple parallel changes in their SCNA genes and that, similar to snakes that consume TTX-351 containing prey (McGlothlin et al. 2016; Perry et al. 2018), some of the resistance in this taxon is 352 ancient, first appearing in an early salamander. However, while substitutions conferring 353 moderate TTX resistance are present in some non-toxic salamander genomes, only the TTX-354 bearing newts have substitutions conferring high resistance across all six of their SCNA paralogs, 355 and several of these channels harbor multiple resistant substitutions in more than one domain. 356 Many of the substitutions conferring resistance to toxic newts are also present in SCNA paralogs 357 of TTX-resistant pufferfish (Jost et al. 2008) and snakes (McGlothlin et al. 2016). Similar to 358 pufferfish, newts appear to require resistance within all of their brain/nerve channels in addition 359 to their hearts and muscles. This feature apparently distinguishes toxic prey from their predators, 360 whose brain channels lack resistant substitutions (McGlothlin et al. 2014). This molecular 361 parallelism emphasizes the strong structural and functional constraints on this gene family, 362 which appear to limit the evolution of TTX resistance to a small number of predictable pathways, 363 leading to convergent and parallel changes across multiple taxa (Feldman et al. 2012). We show 364 that the evolution of extreme TTX resistance is accompanied by a shift in signatures of selection 365 in four out of six paralogs, with suggestive evidence of positive selection acting directly on TTX-366 binding sites. Finally, the evolution of physiological resistance appears to have been facilitated 367 by at least two instances of non-allelic gene conversion, which acted to introduce TTX-resistance 368 substitutions from one paralog (or exon duplicate) to another.

369 Our reconstruction of the history of TTX resistance in salamanders reveals the ancient 370 origins of moderate resistance in nerve channels Nav1.1 and Nav1.6 and high resistance in the 371 heart channel Nav1.5, which arose ~160 mya. Resistant substitutions in the muscle channel 372 Na_v1.4 evolved later, becoming fixed in the clade including all newts and S. salamandra between 373 75–130 mya. This was followed by the accumulation of additional substitutions in DIII, DIVa, 374 and DIVb of Nav1.4 within members of the highly toxic newt clade, providing their muscles with 375 resistance to much higher concentrations of TTX relative to salamanders lacking these mutations 376 (Hanifin and Gilly 2015). Substitutions in DI conferring extreme TTX resistance to the 377 brain/nerve channels Nav1.1, Nav1.2, Nav1.3, and Nav1.6 also evolved more recently (~37-50 378 mya) and they are limited to the toxic newt clade with only one exception, Nav1.1 of P. cinereus,

22

379 which may have arisen independently in this lineage. Toxic newts also have unique substitutions 380 in DIV of Nav1.1 and Nav1.2, which may provide additional resistance to their brain channels or 381 may compensate for structural or functional changes resulting from resistant substitutions in DI 382 or in other regions of the protein. The widespread presence of TTX in modern newts suggests 383 that possession of TTX evolved in the common ancestor this clade (Hanifin 2010). This is 384 supported by our observation of shared TTX-resistance substitutions across all SCNA paralogs in 385 highly toxic newts. However, the highly toxic newts included in this study are limited to North 386 American species and do not include Asian or European newts (e.g. Cynops and Triturus spp.) 387 known to have TTX (Hanifin 2010). Sequencing the SCNAs of these species will reveal if 388 extreme resistance in the nerve channels is specific to North American newts or arose earlier in 389 an ancestral newt species.

390 Whether the TTX-resistance substitutions observed in newt relatives are adaptive and 391 what selective pressures act to retain them remains to be determined. In ancestral salamandrids, 392 resistance in three or four of the six SCNAs may have provided tolerance to low levels of TTX, 393 facilitating the evolution of extreme toxicity in the modern newts, although it is unclear whether 394 these substitutions arose in response to TTX exposure or as a side effect of selection for another 395 aspect of channel function. Environmental exposure to TTX could potentially occur from TTX-396 bearing prey, such as terrestrial Bipalium flatworms (Stokes et al. 2014) or from TTX-producing 397 bacteria (Vaelli et al. 2020). In a feeding study on *B. adventitium* flatworms, Ducey et al. (1999) 398 demonstrated that while all salamanders rejected the flatworms when they were first presented, 399 some habituated *Ambystoma* and *Plethodon* individuals were able to consume them with only 400 minor symptoms of TTX poisoning, including apparent mucus production and numbing of the 401 mouth. Although the amount of TTX present in the worms was not measured, this observation 402 supports the conjecture that these substitutions play a protective role against consuming toxic 403 prey.

Our power to detect sites undergoing positive selection was low due to the small number
of species available for our analyses and the high sequence conservation among orthologs
(Anisimova et al. 2001; Yang et al. 2000). However, our analyses provided evidence consistent
with positive selection acting on TTX-binding sites, including sites implicated in the extreme
TTX resistance of salamander muscle fibers. Our branch models indicate that several Nav
paralogs have higher ω ratios within the tetrodotoxic newt clade relative to other salamanders.

23

410 This increase in ω ratio appears to be mainly the result of relaxed purifying selection rather than 411 positive selection, as few sites were estimated to have $\omega > 1$ by branch-site models. Muscle 412 channel Na_v1.4 had the highest ω ratio in toxic newts, coinciding with a relatively high 413 proportion (~ 0.06) of sites detected as undergoing positive selection in toxic newts and purifying 414 selection in other salamanders, although the likelihood ratio test was non-significant (Table S4). 415 This pattern may derive from ongoing positive selection on SCN4A resulting from the 416 coevolutionary arms race between newts and snakes. Increased ω ratios in toxic newts coincide 417 with the appearance of highly TTX-resistant substitutions within the DI P-loops of Na_v1.1, 418 Nav1.3, and Nav1.6, DIV of Nav1.1, and the DIII, DIVa, and DIVb P-loops in Nav1.4. While the 419 pattern of these substitutions suggests that they are adaptive changes that occurred specifically 420 within the tetrodotoxic newt clade, our branch-site models detected positive selection on TTX-421 binding sites only within the DIV P-loop of Na_v1.1 and the DIII and DIVa P-loops of Na_v1.4, 422 while our site models detected positive selection on site 401 within paralogs Na_v1.1, Na_v1.3, and 423 Nav1.6 of all salamanders. This may be due to the statistically conservative nature of the branch-424 site model and the tendency of PAML to detect ongoing diversifying selection rather than rare 425 positive selection events (Yang and dos Reis 2010). Furthermore, the site and branch-site models do not distinguish between biochemically conservative and non-conservative amino acid 426 427 changes. Nevertheless, the detection of relatively high ω ratios within the toxic newt clade along 428 with site-specific positive selection at known TTX-binding sites provides strong evidence that 429 these substitutions are adaptive. 430 In addition to the six SCNA paralogs described in amphibians (Zakon 2012), our

431 sequence data revealed the presence of a partial duplication of the SCN4A gene in salamanders 432 that includes the entirety of exon 26, encoding the DIV P-loop, which likely occurred in an 433 ancestor of Salamandroidea. The maintained open reading frame and shared expression patterns 434 of transcripts encoding exons 26a and 26b in A. mexicanum tissues suggests that this duplicate 435 region is functional in salamander muscles. In some insects that feed on toxic plants, the appearance of resistance-conferring substitutions is accompanied by one or more duplications of 436 437 the genes that the toxin targets (Petschenka et al. 2017; Zhen et al. 2012). Petschenka et al. 438 (2017) show that in at least one species, such gene duplication precedes resistance, and they 439 suggest that gene duplication may help to alleviate the potential decrease in fitness incurred by 440 the insects due to the negative pleiotropic effects of toxin-resistant mutations. Similarly,

24

resistance in DIV of salamander *SCN4A* appears after the duplication of this domain, and only
the TTX-bearing newts have resistant substitutions in both exon copies, lending support to this
hypothesis and raising the possibility that the evolution of physiological resistance in
salamanders may have been mediated in part by this genomic novelty.

445 We observed a rare case of the generation of adaptive variants via non-allelic gene 446 conversion, which occurred both between the duplicated exons of SCN4A and between paralogs 447 SCN1A and SCN3A. Gene conversion is often thought to play a role in constraint, preserving the 448 core functions of gene families (Chapman et al. 2006) and reducing deleterious mutation loads 449 (Khakhlova and Bock 2006; Ohta 1989), and has also been associated with the diversification of 450 major histocompatibility complex genes in mammals (Go et al. 2003; Kuhner et al. 1991) and the 451 introduction of deleterious nonsynonymous mutations into different parts of the genome (Casola 452 et al. 2012; Galtier et al. 2009). However, the potential for gene conversion to facilitate 453 adaptation is less widely appreciated. Theory suggests that gene duplication and subsequent gene 454 conversion may allow for movement between adaptive peaks via the accumulation of beneficial 455 mutations in one gene copy that can be transferred to a favorable genetic background (Hansen et 456 al. 2000). This process has been implicated in the adaptive evolution of hypoxia tolerance in 457 high-altitude Tibetan wolves (Signore et al. 2019) and in heavy metal tolerance in Arabidopsis 458 (Hanikenne et al. 2013). Here, we provide evidence that gene conversion contributed to the 459 spread of TTX-resistant amino acid substitutions. In the brain channel genes SCN1A and SCN3A, 460 this likely occurred between two genes that had previously evolved resistance, homogenizing the 461 substitutions between the two paralogs in *Taricha* newts. In the muscle channel gene SCN4A, 462 three identical amino acids were present within both duplicated DIV TTX-binding domains in 463 toxic newts, while only one resistant amino acid was present in a single DIV domain in their 464 non-tetrodotoxic salamander relatives, suggesting that resistant substitutions accumulated in one 465 exon copy in a toxic newt ancestor and subsequently spread to the other exon copy via gene 466 conversion. Both Hanifin and Gilly (2015) and Du et al. (2009) have shown that the single 467 resistant amino acid observed in less toxic salamanders confers only low levels of TTX 468 resistance, while the combination of the three amino acids found in highly toxic newts confers 469 extreme resistance. As splice variants encoding the alternative exons appear to share similar 470 expression patterns in salamanders, both exon copies should require extreme resistance in 471 species exposed to high TTX concentrations. The concerted evolution of TTX resistance among

25

homologous P-loop domains of *SCN4A* may have expedited the evolution of extreme resistance
in newt muscles, requiring new resistant mutations to appear in only one of these domains before
being transferred to the other copy.

475 The degree of parallel molecular evolution among members of the SCNA gene family and 476 across lineages provides insight into the constraints on SCNA nucleotide sequence as well as the 477 evolvability of the TTX-resistance phenotype. Our results reveal that similar to their 478 coevolutionary partners, *Thamnophis* garter snakes, *Taricha* newts evolved extreme TTX 479 resistance through a stepwise process that built upon ancient changes that were in place millions 480 of years before the arms race began. However, the pattern of TTX resistance evolution in newts 481 also displays important differences from that of their predators. First, perhaps because of the 482 constitutive presence of TTX, newts display extreme levels of resistance even in channels that 483 are expressed in the central nervous system, which are protected by the blood-brain barrier in 484 species that encounter TTX in their diet. Second, our analysis indicates that many substitutions 485 may have become fixed relatively close to one another in evolutionary time within the clade of 486 modern newts. This is in contrast to snakes, where key changes were separated by millions of 487 years. Due to our lack of sampling of newt species outside of North America, however, further 488 work is necessary to understand the timing of these changes on a finer scale. We also show that 489 while positive selection appears to be a strong driving force of the evolution of TTX auto-490 resistance in newts, gene conversion may have sped up the process of adaptive evolution in some 491 SCNA paralogs, and constraints have limited the possible locations and types of resistant 492 substitutions to a small subset of realized genetic changes. Taken together, our results emphasize 493 the interplay among selection, constraint, and historical contingency in the evolution of complex 494 adaptations.

26

495 Methods

496 Sequencing and annotation of voltage-gated sodium channel paralogs

- 497 We identified *SCNA* genes in the two publicly available salamander genome assemblies, *A*.
- 498 mexicanum (Smith et al. 2019; AmexG.v6 assembly) and P. waltl (Elewa et al. 2017), and in one
- full-body transcriptome from the fire salamander *S. salamandra* (Goedbloed et al. 2017;
- 500 BioProject accession PRJNA607429) using the reciprocal best BLAST hit method (Moreno-
- 501 Hagelsieb and Latimer 2007) with queries of *SCNA* sequences from *X. tropicalis* (Hellsten et al.
- 502 2010) and salamanders (Hanifin and Gilly 2015). We confirmed assignments of each amphibian
- 503 SCNA paralog based on nucleotide alignments of the coding sequences with Xenopus sequences,
- as well as synteny of the chromosomal segments containing SCNA genes (Fig. S1). These SCNA
- annotations were then used to design targeted sequencing probes and to subsequently assign
- paralog identity to our de novo salamander assemblies. We used Geneious v10.2.3 for sequence
- 507 visualization and to create DNA and protein alignments (Kearse et al. 2012).

508We also performed BLASTn searches of published transcriptome assemblies of

509 Tylototriton wenxianensis (PRJNA323392), Bolitoglossa vallecula (PRJNA419601), and

510 Hynobius retardatus (Matsunami et al. 2015; PRJDB2409). However, we were unable to identify

511 the full set of *SCNA* paralogs within these three assemblies. Therefore, we used the sequences for

512 probe design and to identify exon duplications in SCN4A but excluded them from PAML

513 analyses.

514 In order to design targeted sequencing probes, we compiled partial and complete 515 amphibian SCNA sequences obtained from NCBI databases and additional published sources 516 (Table S8) into a single FASTA file. Each individual FASTA entry included a single exon and, 517 when available, up to 200 bp of intron sequence upstream and downstream of each exon to aid in 518 paralog assignment. Using RepeatMasker (Smit et al. 2013-2015), we replaced transposable 519 elements and other sequence repeats with Ns, and subsequently filtered out sequences < 120 bp 520 in length, as well as those with more than 25% missing or ambiguous characters. We submitted 521 this masked and filtered file, which was 465 kb in total length, to Agilent Technologies (Santa 522 Clara, CA, USA) for custom probe design using the SureSelect tool, resulting in 7518 unique 523 120-mer probes.

524 We obtained DNA samples from adult individuals of three TTX-bearing species (n=3 for 525 each species): *T. torosa* from Hopland, CA, *T. granulosa* from Benton, OR, and *N. viridescens*

27

526 from Mountain Lake, VA, and from two additional salamander species presumed to lack TTX (n 527 = 2 for each species): P. cinereus collected in Mountain Lake, VA and C. alleganiensis collected 528 in southwestern VA. We extracted genomic DNA using the DNeasy Blood & Tissue kit (Qiagen 529 Inc., Valencia, CA) and prepared sequencing libraries using the SureSelect^{XT} Target Enrichment 530 system for Illumina paired-end multiplexed sequencing from Agilent Technologies (Santa Clara, 531 CA, USA), following the protocol for low input (200 ng) DNA samples. We used a Covaris 532 M220 Focused-ultrasonicator to shear 200 ng of purified whole genomic DNA from each sample 533 into ~ 250 bp fragments using the following settings: duty factor 10%, peak incident power 75 w, 200 cycles per burst, and treatment time of 160 seconds. We followed the Agilent SureSelect^{XT} 534 535 Target Enrichment kit protocol for end repair, adaptor ligation, amplification, hybridization and 536 bead capture (using the custom SureSelect probes described above), indexing, and purification. 537 We quantified the resulting enriched, indexed libraries with qPCR and combined them in 538 equimolar concentrations into one final library pool, which was submitted to the Genomics 539 Sequencing Center at Virginia Tech for sequencing on an Illumina MiSeq 300-cycle v2 with 150 540 bp paired-end reads. Prior to alignment, we trimmed Illumina reads of TruSeq3 adapter 541 sequences, removed bases with a phred64 quality score less than 3, and filtered out subsequent 542 reads shorter than 100 bp using Trimmomatic version 0.33 (Bolger et al. 2014). We used SPAdes 543 3.6.0 (Bankevich et al. 2012) to create de novo assemblies of the trimmed and filtered reads. 544 Each *SCNA* paralog had > 10-fold sequence coverage, with an average of 32-fold coverage 545 across all species and paralogs (Table S1). 546 Because we designed the sequencing probes to capture only small portions of the SCNA 547 intronic regions flanking exons (regions more likely to be conserved across species), each exon

548 was assembled into a separate scaffold. For each individual from our sequencing trial, we created

549 BLAST databases from the assembled de novo scaffolds and performed BLAST searches using

single exons from the *Ambystoma SCNAs* as queries. We created 26 separate nucleotide

alignments, one for each individual SCNA exon, including sequences from Ambystoma,

552 Pleurodeles, and our de novo assemblies using MAFFT v 7.450 (Katoh and Standley 2013) and

553 created consensus neighbor-joining trees with a Tamura-Nei genetic distance model using the

554 Geneious Tree Builder (Kearse et al. 2012) with 1000 bootstrap replicates and an 80% support

threshold. The resulting tree topologies were used to assign paralog identity to each of the exons.

28

556 When necessary, we included exon and intron sequences from additional species in the 557 alignments to resolve the topology of the trees.

We concatenated all exons from each paralog into full coding sequences. Based on alignment with full-length *Xenopus* sequences, all salamander *SCNA* coding sequences collected for this study were >90% complete with the exception of two sequences from the *Salamandra salamandra* transcriptome (paralogs *SCN1A* and *SCN2A*, which were 68.8% and 70.7% complete respectively; Table S1). For each species, we used *SCNA* paralogs sequenced from the genome of a single individual for our downstream analyses, based on completeness of the assembly.

565 **Determination TTX resistance levels**

566 TTX sensitivity is commonly measured *in vitro* by using site-directed mutagenesis to introduce 567 mutations of interest into a TTX-sensitive Na_v channel, followed by expression in *Xenopus* 568 oocyte or HEK 293 cells and the application of patch-clamp whole-cell recordings to measure 569 channel current in the presence of TTX. The fold-change in TTX sensitivity is then calculated by 570 taking the ratio of the IC₅₀ values, or the TTX concentration at which 50% of the Na_v channels 571 are blocked, of mutated and wild-type channels (see Table 3 for references).

572 Another line of evidence for resistance in salamander muscle channels (Nav1.4) comes 573 from Hanifin and Gilly (2015), who estimated TTX sensitivity by recording action potentials 574 generated from salamander muscle fibers and estimating the amount of TTX required to diminish 575 the rise of the action potential, associating these relative changes with the presence and absence 576 of substitutions in TTX-binding sites. They associated moderate TTX resistance (reduced 577 sensitivity to 0.010 µM TTX) with the presence of DIII substitution M1240T and extreme 578 resistance (low sensitivity to $300 \,\mu M \, TTX$) with the presence of DIII and DIV substitutions 579 M1240T, D1532S, and G1533D. We categorize levels of TTX resistance conferred by Nav 580 substitutions as extreme or moderate based on the results of Hanifin and Gilly (2015) as well as 581 the data summarized in Table 3.

582

583 Phylogenetic analyses and identification of site-specific evolutionary rates

584 We constructed phylogenetic trees for the entire SCNA gene family using our *de novo* assembled

- 585 sequences as well as sequences from the genomes of *A. mexicanum*, *P. waltl*, the whole-body
- transcriptome of S. salamandra, two frog genomes: X. tropicalis (Hellsten et al. 2010) and

29

587 Nanorana parkeri (Sun et al. 2015), and one fish genome: Danio rerio (Howe et al. 2013). We 588 created an amino acid alignment of translated coding sequences using MAFFT v 7.450 (Katoh 589 and Standley 2013) and constructed maximum likelihood trees from these alignments with 590 RAxML v8.2.11 (Stamatakis 2014) in Geneious using a GAMMA BLOSSUM62 protein model 591 and estimated clade support with 100 bootstrap replicates. In order to improve the accuracy of 592 the nucleotide alignment, we used this amino acid alignments to guide codon alignments with 593 PAL2NAL v14 (Suyama et al. 2006). We identified the best fitting substitution models for the nucleotide alignment using jModelTest 2.1.10 v20160303 (Darriba et al. 2012) and constructed 594 595 maximum likelihood trees of the coding sequences with RAxML v8.2.11. The two models with 596 the lowest AIC scores were (1) the transition model with unequal base frequencies, a gamma 597 shape parameter, and some proportion of invariable sites (TIM2+I+G) and (2) a general time-598 reversible model with a gamma shape parameter and a proportion of invariable sites (GTR+I+G), 599 which is nearly identical to TIM2+I+G, but includes two additional rate parameters (Posada 600 2008). Because the two models are nearly equivalent and both fit our data equally well, we chose 601 the GTR+I+G model for its ease of implementation across different programs. We repeated these 602 methods for each individual SCNA paralog for downstream analyses in PAML, excluding the 603 sequences from the outgroup species N. parkeri and D. rerio.

604 We estimated synonymous (dS) and nonsynonymous (dN) substitution rates, as well as 605 the d_N/d_S ratios (ω) for each paralog using codeml in PAML v4.8 (Yang 2007). In order to test 606 for changes in selective regimes in the SCNA genes between salamanders and highly toxic newts 607 (*Notophthalmus* and *Taricha* species), we fit the following models to our *SCNA* alignments: (1) 608 one-ratio models (allowing for a single ω ratio among all sites and all branches of the 609 phylogeny), (2) branch models (allowing for separate ω ratios for the foreground [toxic newts] 610 and background [other salamanders]), (3) branch-site neutral models (allowing ω to vary both 611 between toxic newts and other salamanders and among sites, with two possible categories: $0 < \omega$ 612 < 1 and $\omega = 1$), and (4) branch-site models (allowing ω to vary both between toxic newts and 613 other salamanders and among sites, with three possible categories: $0 < \omega < 1$, $\omega = 1$, and $\omega > 1$, 614 the latter being allowed only within toxic newts). To test for site-specific positive selection 615 among all salamanders, we fit two sets of nested models: (1) discrete ω ratio models M1a vs. 616 M2a, which allowing for ω to vary among sites, with either two possible categories: $0 < \omega < 1$ 617 and $\omega = 1$ or three possible categories: $0 < \omega < 1$, $\omega = 1$, and $\omega > 1$; and (2) continuous ω ratio

30

618 models M7, M8a, and M8, which fit ω ratios of sites into a beta distribution, with neatG (the 619 number of ω values in the beta distribution) set to 5. We used F3x4 codon models, which 620 estimate individual nucleotide frequencies for each of the three codon positions, and allowed 621 codeml to estimate ω and transition-transversion rates (κ). The outputs of these models were 622 used to estimate and compare gene-wide ω between toxic newts and salamanders (one-ratio and 623 branch models), to identify sites under positive selection in all salamanders (site and neutral site 624 models), and to identify sites under positive selection or with elevated ω in toxic newts relative 625 to other salamanders (branch-site neutral and branch-site models). We also created ancestral 626 sequence reconstructions by specifying RateAncestor = 1 within codeml configuration files for 627 the neutral site models. We performed the above analyses both including and excluding the two 628 S. salamandra paralogs with a large number of gaps (SCN1A and SCN2A). Maximum likelihood 629 parameter estimates were largely congruent using these different datasets. Therefore, we present 630 results from the gene trees including S. salamandra here.

631

632 **Detection of gene conversion**

633 We used the program GENECONV to detect potential nonallelic gene conversion events 634 between SCNA paralogs. We used a full codon alignment of all six SCNA paralogs from 7 of the 635 8 salamanders included in the study (excluding S. salamandra due to missing data), but targeted 636 our search to include only genes SCN1A, SCN2A, and SCN3A within each species under the 637 assumption that gene conversion is more likely to occur between closely related sequences that 638 reside on the same chromosome. This increased the power of detecting gene conversion from 639 multiple pairwise comparisons. We also performed a separate search for gene conversion events 640 between duplicate exons 26a and 26b of SCN4A. For this analysis, we used a codon alignment of 641 SCN4A exons 26a and 26b from 10 salamander species. We assigned a mismatch penalty using 642 gscale=1 and used Bonferroni-corrected *p*-values from 10,000 permutations to determine 643 significance.

644 Acknowledgments

- 645 We thank Miguel Vences for helpful feedback on the manuscript and for providing an early draft
- 646 of the Salamandra salamandra transcriptome. We also thank Vincent Farallo, Edmund Brodie
- 647 III, William Hopkins, and Brian Case for providing DNA samples for this study, Kaitlyn
- 648 Malewicz, Mercedes Collins, and Emily Orr for assistance with lab work, John Abramyan,
- 649 Edmund Brodie III, Charles Hanifin, and Andrew Kern for helpful conversations and Matthew
- 650 Hahn for advice on analyses and comments on the manuscript. Hellbender (*Cryptobranchus*)
- 651 samples were collected by Brian Case and William Hopkins in cooperation with the Virginia
- 652 Department of Wildlife Resources (DWR) and the U.S. Forest Service, and with assistance from
- 53 J.D. Kleopfer. Hellbenders were handled under scientific collecting permit #060465 and
- approved Virginia Tech IACUC procedures (protocol #16-162). We thank the Departments of
- 655 Fish and Wildlife in Oregon and California and the Virginia DWR for scientific collecting
- 656 permits to MTJH (063-18, SC-11937 and 048104 respectively).
- 657

658 Article and author information

- 659
- 660 Author details
- 661 Kerry L Gendreau
- 662 ORCID: 0000-0001-6058-0893
- Department of Biological Sciences, Virginia Tech, Blacksburg, United States
- 664 Contribution: Performed experiments, formal analysis, investigation, visualization,
- 665 methodology, writing original draft, writing review and editing.
- 666 **Competing interests:** No competing interests declared.
- 667

668 Angela D Hornsby

- 669 ORCID: 0000-0003-0927-2101
- Department of Biological Sciences, Virginia Tech, Blacksburg, United States
- Philip L. Wright Zoological Museum, Division of Biological Sciences, University of
 Montana, Missoula, United States
- 673 **Contribution:** Performed experiments, managed data, writing review and editing.
- 674 **Competing interests:** No competing interests declared.

32

675	
676	Michael TJ Hague
677 678	 ORCID: 0000-0003-0641-2420 Division of Biological Sciences, University of Montana, Missoula, MT, United States
679	Contribution: Collected samples, extracted and purified DNA, writing – review and editing.
680	Competing interests: No competing interests declared.
681	
682	Joel W McGlothlin
683 684	 ORCID: 0000-0003-3645-6264 Department of Biological Sciences, Virginia Tech, Blacksburg, United States
685	Contribution: Conceptualization, investigation, formal analysis, writing – review and editing.
686	Competing interests: No competing interests declared.
687	
688	Funding
689	National Science Foundation (DEB-1457463)
690	• Joel W McGlothlin
691	National Science Foundation (DEB-1601296)
692	Michael TJ Hague
693	National Science Foundation (IOS-1755055)
694	• Joel W McGlothlin
695	Society for the Study of Evolution (R. C. Lewontin Award)
696	Kerry L Gendreau
697	Virginia Tech Interfaces of Global Change (Graduate Fellowship Award)
698	Kerry L Gendreau
699	
700	Data availability
701	Newly generated sequences will be submitted to NCBI. Sequence alignments and configuration
702	files for GENECONV analyses have been deposited at https://github.com/kerrygendreau/Newt-

703 TTX-Resistance.git

33

704 **References**

- Anisimova, M., J. P. Bielawski and Z. Yang. (2001). Accuracy and power of the likelihood ratio
 test in detecting adaptive molecular evolution. *Mol Biol Evol* 18 (8): 1585-1592.
 10.1093/oxfordjournals.molbev.a003945
- Arbuckle, K., R. C. Rodríguez de la Vega and N. R. Casewell. (2017). Coevolution takes the
 sting out of it: Evolutionary biology and mechanisms of toxin resistance in animals.
 Toxicon 140 118-131. 10.1016/j.toxicon.2017.10.026
- Bankevich, A., S. Nurk, D. Antipov, A. A. Gurevich, M. Dvorkin, A. S. Kulikov, *et al.* (2012).
 SPAdes: A new genome assembly algorithm and its applications to single-cell
 sequencing. *J Comput Biol* 19 (5): 455-477. 10.1089/cmb.2012.0021
- Bay, R. A. and J. P. Bielawski. (2011). Recombination detection under evolutionary scenarios
 relevant to functional divergence. *J Mol Evol* 73 (5-6): 273-286. 10.1007/s00239-0119473-0
- Benovoy, D. and G. Drouin. (2009). Ectopic gene conversions in the human genome. *Genomics*93 (1): 27-32. 10.1016/j.ygeno.2008.09.007
- Bolger, A. M., M. Lohse and B. Usadel. (2014). Trimmomatic: a flexible trimmer for Illumina
 sequence data. *Bioinformatics* 30 (15): 2114-2120. 10.1093/bioinformatics/btu170
- Bricelj, V. M., L. Connell, K. Konoki, S. P. MacQuarrie, T. Scheuer, W. A. Catterall, *et al.*(2005). Sodium channel mutation leading to saxitoxin resistance in clams increases risk
 of PSP. *Nature* 434 (7034): 763-767. 10.1038/nature03415
- Brodie, E. D., III and E. D. Brodie, Jr. (1990). Tetrodotoxin resistance in garter snakes: an
 evolutionary response of predators to dangerous prey. *Evolution* 44 (3): 651-659.
 10.1111/j.1558-5646.1990.tb05945.x
- Brodie, E. D., Jr., B. J. Ridenhour and E. D. Brodie, III. (2002). The evolutionary response of
 predators to dangerous prey: hotspots and coldspots in the geographic mosaic of
 coevolution between garter snakes and newts. *Evolution* 56 (10): 2067-2082.
 10.1111/j.0014-3820.2002.tb00132.x
- Bryant, D. M., K. Johnson, T. DiTommaso, T. Tickle, M. B. Couger, D. Payzin-Dogru, *et al.*(2017). A tissue-mapped axolotl de novo transcriptome enables identification of limb
 regeneration factors. *Cell Rep* 18 (3): 762-776. 10.1016/j.celrep.2016.12.063
- Caballero-Pérez, J., A. Espinal-Centeno, F. Falcon, L. F. García-Ortega, E. Curiel-Quesada, A.
 Cruz-Hernández, *et al.* (2018). Transcriptional landscapes of Axolotl (*Ambystoma mexicanum*). Dev Biol 433 (2): 227-239. 10.1016/j.ydbio.2017.08.022

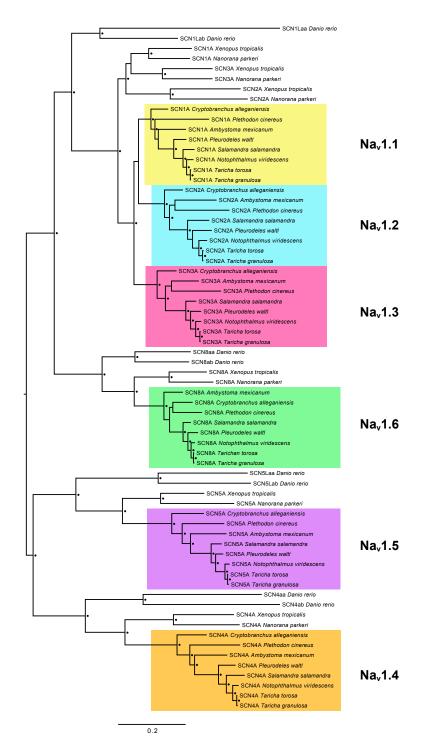
738 739 740	Casola, C. and M. W. Hahn. (2009). Gene conversion among paralogs results in moderate false detection of positive selection using likelihood methods. <i>J Mol Evol</i> 68 (6): 679-687. 10.1007/s00239-009-9241-6
741 742 743	Casola, C., U. Zekonyte, A. D. Phillips, D. N. Cooper and M. W. Hahn. (2012). Interlocus gene conversion events introduce deleterious mutations into at least 1% of human genes associated with inherited disease. <i>Genome Res</i> 22 (3): 429-435. 10.1101/gr.127738.111
744 745 746	Chapman, B. A., J. E. Bowers, F. A. Feltus and A. H. Paterson. (2006). Buffering of crucial functions by paleologous duplicated genes may contribute cyclicality to angiosperm genome duplication. <i>P Natl Acad Sci USA</i> 103 (8): 2730. 10.1073/pnas.0507782103
747 748 749	Chen, JM., D. N. Cooper, N. Chuzhanova, C. Férec and G. P. Patrinos. (2007). Gene conversion: mechanisms, evolution and human disease. 8 (10): 762-775. 10.1038/nrg2193
750 751	Darriba, D., G. L. Taboada, R. Doallo and D. Posada. (2012). jModelTest 2: more models, new heuristics and parallel computing. <i>Nat Methods</i> 9 (8): 772-772. 10.1038/nmeth.2109
752 753	Drouin, G. (2002). Characterization of the gene conversions between the multigene family members of the yeast genome. <i>J Mol Evol</i> 55 (1): 14-23. 10.1007/s00239-001-0085-y
754 755 756 757	Du, Y., Y. Nomura, Z. Liu, Z. Y. Huang and K. Dong. (2009). Functional expression of an arachnid sodium channel reveals residues responsible for tetrodotoxin resistance in invertebrate sodium channels. <i>J Biol Chem</i> 284 (49): 33869-33875. 10.1074/jbc.M109.045690
758 759 760 761	Ducey, P. K., M. Messere, K. Lapoint and S. Noce. (1999). Lumbricid prey and potential herpetofaunal predators of the invading terrestrial flatworm Bipalium adventitium (Turbellaria: Tricladida: Terricola). <i>Am Midl Nat</i> 141 (2): 305-314. 10.1674/0003- 0031(1999)141[0305:LPAPHP]2.0.CO;2
762 763 764	Elewa, A., H. Wang, C. Talavera-López, A. Joven, G. Brito, A. Kumar, <i>et al.</i> (2017). Reading and editing the Pleurodeles waltl genome reveals novel features of tetrapod regeneration. <i>Nat Commun</i> 8 (1): 2286. 10.1038/s41467-017-01964-9
765 766 767	Feldman, C. R., E. D. Brodie, Jr., E. D. Brodie, III and M. E. Pfrender. (2012). Constraint shapes convergence in tetrodotoxin-resistant sodium channels of snakes. <i>Proc Natl Acad Sci</i> USA 109 (12): 4556-4561. 10.1073/pnas.1113468109
768 769 770	Fux, J. E., A. Mehta, J. Moffat and J. D. Spafford. (2018). Eukaryotic voltage-gated sodium channels: on their origins, asymmetries, losses, diversification and adaptations. <i>Front</i> <i>Physiol</i> 9 1406. 10.3389/fphys.2018.01406
771 772 773	Galtier, N., L. Duret, S. Glémin and V. Ranwez. (2009). GC-biased gene conversion promotes the fixation of deleterious amino acid changes in primates. <i>Trends Genet</i> 25 (1): 1-5. 10.1016/j.tig.2008.10.011

774 775 776	Geffeney, S. L., E. D. Brodie, Jr., P. C. Ruben and E. D. Brodie, III. (2002). Mechanisms of adaptation in a predator-prey arms race: TTX-resistant sodium channels. <i>Science</i> 297 (5585): 1336-1339. 10.1126/science.1074310
777 778 779	Geffeney, S. L., E. Fujimoto, E. D. Brodie, III, E. D. Brodie, Jr. and P. C. Ruben. (2005). Evolutionary diversification of TTX-resistant sodium channels in a predator-prey interaction. <i>Nature</i> 434 (7034): 759-763. 10.1038/nature03444
780 781 782 783	Go, Y., Y. Satta, Y. Kawamoto, G. Rakotoarisoa, A. Randrianjafy, N. Koyama, <i>et al.</i> (2003). Frequent segmental sequence exchanges and rapid gene duplication characterize the MHC class I genes in lemurs. <i>Immunogenetics</i> 55 (7): 450-461. 10.1007/s00251-003- 0613-6
784 785 786 787	Goedbloed, D. J., T. Czypionka, J. Altmüller, A. Rodriguez, E. Küpfer, O. Segev, <i>et al.</i> (2017). Parallel habitat acclimatization is realized by the expression of different genes in two closely related salamander species (genus <i>Salamandra</i>). <i>Heredity</i> 119 (6): 429-437. 10.1038/hdy.2017.55
788 789 790	Graham, A. M. and K. G. McCracken. (2019). Convergent evolution on the hypoxia-inducible factor (HIF) pathway genes EGLN1 and EPAS1 in high-altitude ducks. <i>Heredity</i> 122 (6): 819-832. 10.1038/s41437-018-0173-z
791 792 793	Hague, M. T. J., A. N. Stokes, C. R. Feldman, E. D. Brodie Jr. and E. D. Brodie III. (2020). The geographic mosaic of arms race coevolution is closely matched to prey population structure. <i>Evol Lett</i> 4 (4): 317-332. 10.1002/evl3.184
794 795	Hanifin, C. T. (2010). The chemical and evolutionary ecology of tetrodotoxin (TTX) toxicity in terrestrial vertebrates. <i>Mar Drugs</i> 8 (3): 577-593. 10.3390/Md8030577
796 797	Hanifin, C. T. and W. F. Gilly. (2015). Evolutionary history of a complex adaptation: tetrodotoxin resistance in salamanders. <i>Evolution</i> 69 (1): 232-244. 10.1111/evo.12552
798 799 800	 Hanikenne, M., J. Kroymann, A. Trampczynska, M. Bernal, P. Motte, S. Clemens, <i>et al.</i> (2013). Hard selective sweep and ectopic gene conversion in a gene cluster affording environmental adaptation. <i>PLOS Genet</i> 9 (8): e1003707. 10.1371/journal.pgen.1003707
801 802	Hansen, T. F., A. J. R. Carter and CH. Chiu. (2000). Gene conversion may aid adaptive peak shifts. <i>J Theor Biol</i> 207 (4): 495-511. 10.1006/jtbi.2000.2189
803 804 805	 Hellsten, U., R. M. Harland, M. J. Gilchrist, D. Hendrix, J. Jurka, V. Kapitonov, <i>et al.</i> (2010). The genome of the western clawed frog <i>Xenopus tropicalis</i>. <i>Science</i> 328 (5978): 633-636. 10.1126/science.1183670
806 807 808	Hime, P. M., A. R. Lemmon, E. C. M. Lemmon, E. Prendini, J. M. Brown, R. C. Thomson, <i>et al.</i> (2021). Phylogenomics reveals ancient gene tree discordance in the amphibian tree of life. <i>Syst Biol</i> 70 (1): 49-66. 10.1093/sysbio/syaa034

809	Howe, K., M. D. Clark, C. F. Torroja, J. Torrance, C. Berthelot, M. Muffato, <i>et al.</i> (2013). The
810	zebrafish reference genome sequence and its relationship to the human genome. <i>Nature</i>
811	496 (7446): 498-503. 10.1038/nature12111
812	Jeziorski, M. C., R. M. Greenberg and P. A. V. Anderson. (1997). Cloning of a putative voltage-
813	gated sodium channel from the turbellarian flatworm <i>Bdelloura candida</i> . <i>Parasitology</i>
814	115 (3): 289-296. 10.1017/S0031182097001388
815	Jost, M. C., D. M. Hillis, Y. Lu, J. W. Kyle, H. A. Fozzard and H. H. Zakon. (2008). Toxin-
816	resistant sodium channels: parallel adaptive evolution across a complete gene family. <i>Mol</i>
817	<i>Biol Evol</i> 25 (6): 1016-1024. DOI 10.1093/molbev/msn025
818	Katoh, K. and D. M. Standley. (2013). MAFFT multiple sequence alignment software version 7:
819	improvements in performance and usability. <i>Mol Biol Evol</i> 30 (4): 772-780.
820	10.1093/molbev/mst010
821	Kearse, M., R. Moir, A. Wilson, S. Stones-Havas, M. Cheung, S. Sturrock, et al. (2012).
822	Geneious Basic: An integrated and extendable desktop software platform for the
823	organization and analysis of sequence data. <i>Bioinformatics</i> 28 (12): 1647-1649.
824	10.1093/bioinformatics/bts199
825 826	Khakhlova, O. and R. Bock. (2006). Elimination of deleterious mutations in plastid genomes by gene conversion. <i>Plant J</i> 46 (1): 85-94. 10.1111/j.1365-313X.2006.02673.x
827 828 829	Kosakovsky Pond, S. L. and S. D. W. Frost. (2005). Not so different after all: a comparison of methods for detecting amino acid sites under selection. <i>Mol Biol Evol</i> 22 (5): 1208-1222. 10.1093/molbev/msi105
830	Kuhner, M. K., D. A. Lawlor, P. D. Ennis and P. Parham. (1991). Gene conversion in the
831	evolution of the human and chimpanzee MHC class I loci. <i>Tissue Antigens</i> 38 (4): 152-
832	64. 10.1111/j.1399-0039.1991.tb01889.x
833	Leffler, A., R. I. Herzog, S. D. Dib-Hajj, S. G. Waxman and T. R. Cummins. (2005).
834	Pharmacological properties of neuronal TTX-resistant sodium channels and the role of a
835	critical serine pore residue. <i>Pflug Arch Eur J Phy</i> 451 (3): 454-463. 10.1007/s00424-005-
836	1463-x
837 838	Losos, J. B. (2011). Convergence, adaptation, and constraint. <i>Evolution</i> 65 (7): 1827-1840. 10.1111/j.1558-5646.2011.01289.x
839	Márquez, R., V. Ramírez-Castañeda and A. Amézquita. (2019). Does batrachotoxin
840	autoresistance coevolve with toxicity in <i>Phyllobates</i> poison-dart frogs? <i>Evolution</i> 73 (2):
841	390-400. 10.1111/evo.13672
842 843 844	Maruta, S., K. Yamaoka and M. Yotsu-Yamashita. (2008). Two critical residues in P-loop regions of pufferfish Na ⁺ channels on TTX sensitivity. <i>Toxicon</i> 51 (3): 381-387. 10.1016/j.toxicon.2007.10.014

845	Matsunami, M., J. Kitano, O. Kishida, H. Michimae, T. Miura and K. Nishimura. (2015).
846	Transcriptome analysis of predator- and prey-induced phenotypic plasticity in the
847	Hokkaido salamander (<i>Hynobius retardatus</i>). <i>Mol Ecol</i> 24 (12): 3064-3076.
848	10.1111/mec.13228
849	McGlothlin, J. W., J. P. Chuckalovcak, D. E. Janes, S. V. Edwards, C. R. Feldman, E. D. Brodie,
850	Jr., <i>et al.</i> (2014). Parallel evolution of tetrodotoxin resistance in three voltage-gated
851	sodium channel genes in <i>Thamnophis sirtalis</i> . <i>Mol Biol Evol</i> 31 (11): 2386-2846.
852	10.1093/molbev/msu237
853 854 855	McGlothlin, J. W., M. E. Kobiela, C. R. Feldman, T. A. Castoe, F. J. Vonk, M. K. Richardson, <i>et al.</i> (2016). Historical contingency in a multigene family facilitates adaptive evolution of toxin resistance. <i>Curr Biol</i> 26 1616-1621. 10.1016/j.cub.2016.04.056
856	McGrath, C. L., C. Casola and M. W. Hahn. (2009). Minimal effect of ectopic gene conversion
857	among recent duplicates in four mammalian genomes. <i>Genetics</i> 182 (2): 615-622.
858	10.1534/genetics.109.101428
859 860 861	Moreno-Hagelsieb, G. and K. Latimer. (2007). Choosing BLAST options for better detection of orthologs as reciprocal best hits. <i>Bioinformatics</i> 24 (3): 319-324. 10.1093/bioinformatics/btm585
862 863 864	Nowoshilow, S., S. Schloissnig, JF. Fei, A. Dahl, A. W. C. Pang, M. Pippel, <i>et al.</i> (2018). The axolotl genome and the evolution of key tissue formation regulators. <i>Nature</i> 554 (7690): 50-55. 10.1038/nature25458
865 866	Ohta, T. (1989). The mutational load of a multigene family with uniform members. <i>Genet Res</i> 53 (2): 141-145. 10.1017/S0016672300028020
867	Perry, B. W., D. C. Card, J. W. McGlothlin, G. I. M. Pasquesi, R. H. Adams, D. R. Schield, <i>et al.</i>
868	(2018). Molecular adaptations for sensing and securing prey and insight into amniote
869	genome diversity from the garter snake genome. <i>Genome Biol Evol</i> 10 (8): 2110-2129.
870	10.1093/gbe/evy157
871	Petschenka, G., V. Wagschal, M. von Tschirnhaus, A. Donath and S. Dobler. (2017).
872	Convergently evolved toxic secondary metabolites in plants drive the parallel molecular
873	evolution of insect resistance. <i>Am Nat</i> 190 (S1): S29-S43. 10.1086/691711
874 875	Posada, D. (2008). jModelTest: Phylogenetic model averaging. <i>Mol Biol Evol</i> 25 (7): 1253-1256. 10.1093/molbev/msn083
876	Posada, D. and K. A. Crandall. (2001). Evaluation of methods for detecting recombination from
877	DNA sequences: computer simulations. <i>P Natl Acad Sci USA</i> 98 (24): 13757-13762.
878	10.1073/pnas.241370698
879	Rodríguez, A., J. D. Burgon, M. Lyra, I. Irisarri, D. Baurain, L. Blaustein, <i>et al.</i> (2017). Inferring
880	the shallow phylogeny of true salamanders (<i>Salamandra</i>) by multiple phylogenomic
881	approaches. <i>Mol Phylogenet Evol</i> 115 16-26. 10.1016/j.ympev.2017.07.009

- Sawyer, S. A. (1999). GENECONV: a computer package for the statistical detection of gene
 conversion. <u>http://www.math.wustl.edu/~sawyer</u>.
- Semple, C. and K. H. Wolfe. (1999). Gene duplication and gene conversion in the
 Caenorhabditis elegans genome. *J Mol Evol* 48 (5): 555-564. 10.1007/pl00006498
- Signore, A. V., Y.-Z. Yang, Q.-Y. Yang, G. Qin, H. Moriyama, R.-L. Ge, *et al.* (2019). Adaptive
 changes in hemoglobin function in high-altitude Tibetan canids were derived via gene
 conversion and introgression. *Mol Biol Evol* 36 (10): 2227-2237.
 10.1093/molbev/msz097
- Smit, A., R. Hubley and P. Green. (2013-2015). RepeatMasker Open-4.0. Retrieved from
 http://www.repeatmasker.org
- Smith, J. J., N. Timoshevskaya, V. A. Timoshevskiy, M. C. Keinath, D. Hardy and S. R. Voss.
 (2019). A chromosome-scale assembly of the axolotl genome. *Genome Res* 29 (2): 317-324. 10.1101/gr.241901.118
- Smith, S. D., M. W. Pennell, C. W. Dunn and S. V. Edwards. (2020). Phylogenetics is the new genetics (for most of biodiversity). *Trends Ecol Evol* 35 (5): 415-425.
 10.1016/j.tree.2020.01.005
- Soong, T. W. and B. Venkatesh. (2006). Adaptive evolution of tetrodotoxin resistance in
 animals. *Trends Genet* 22 (11): 621-626. DOI 10.1016/j.tig.2006.08.010
- Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of
 large phylogenies. *Bioinformatics* 30 (9): 1312-1313. 10.1093/bioinformatics/btu033
- Stokes, A. N., P. K. Ducey, L. Neuman-Lee, C. T. Hanifin, S. S. French, M. E. Pfrender, *et al.*(2014). Confirmation and distribution of tetrodotoxin for the first time in terrestrial
 Invertebrates: two terrestrial flatworm species (*Bipalium adventitium* and *Bipalium kewense*). *PLOS One* 9 (6): e100718. 10.1371/journal.pone.0100718
- Storz, J. F. (2016). Causes of molecular convergence and parallelism in protein evolution. *Nat Rev Genet* 17 (4): 239-250. 10.1038/nrg.2016.11
- Sun, Y. B., Z. J. Xiong, X. Y. Xiang, S. P. Liu, W. W. Zhou, X. L. Tu, *et al.* (2015). Wholegenome sequence of the Tibetan frog *Nanorana parkeri* and the comparative evolution of
 tetrapod genomes. *P Natl Acad Sci USA* 112 (11): E1257. 10.1073/pnas.1501764112
- Sunami, A., I. W. Glaaser and H. A. Fozzard. (2000). A critical residue for isoform difference in
 tetrodotoxin affinity is a molecular determinant of the external access path for local
 anesthetics in the cardiac sodium channel. *P Natl Acad Sci USA* 97 (5): 2326-2331.
 10.1073/pnas.030438797
- Suyama, M., D. Torrents and P. Bork. (2006). PAL2NAL: robust conversion of protein sequence
 alignments into the corresponding codon alignments. *Nucleic Acids Res* 34 (Web Server
 issue): W609-W612. 10.1093/nar/gkl315


918	Tarvin, R. D., C. M. Borghese, W. Sachs, J. C. Santos, Y. Lu, L. A. O'Connell, et al. (2017).
919	Interacting amino acid replacements allow poison frogs to evolve epibatidine resistance.
920	<i>Science</i> 357 (6357): 1261-1266. 10.1126/science.aan5061
921	Vaelli, P. M., K. R. Theis, J. E. Williams, L. A. O'Connell, J. A. Foster and H. L. Eisthen.
922	(2020). The skin microbiome facilitates adaptive tetrodotoxin production in poisonous
923	newts. <i>eLife</i> 9 e53898. 10.7554/eLife.53898
924	Venkat, A., M. W. Hahn and J. W. Thornton. (2018). Multinucleotide mutations cause false
925	inferences of lineage-specific positive selection. <i>Nat Ecol Evol</i> 2 (8): 1280-1288.
926	10.1038/s41559-018-0584-5
927	Venkatesh, B., S. Q. Lu, N. Dandona, S. L. See, S. Brenner and T. W. Soong. (2005). Genetic
928	basis of tetrodotoxin resistance in pufferfishes. <i>Curr Biol</i> 15 (22): 2069-2072.
929	10.1016/j.cub.2005.10.068
930	Widmark, J., G. Sundström, D. Ocampo Daza and D. Larhammar. (2011). Differential evolution
931	of voltage-gated sodium channels in tetrapods and teleost fishes. <i>Mol Biol Evol</i> 28 (1):
932	859-871. 10.1093/molbev/msq257
933	Williams, B. L., C. T. Hanifin, E. D. Brodie, Jr. and E. D. Brodie, III. (2010). Tetrodotoxin
934	affects survival probability of rough-skinned newts (<i>Taricha granulosa</i>) faced with TTX-
935	resistant garter snake predators (<i>Thamnophis sirtalis</i>). <i>Chemoecology</i> 20 (4): 285-290.
936	DOI 10.1007/s00049-010-0057-z
937	Yang, Z. (1998). Likelihood ratio tests for detecting positive selection and application to primate
938	lysozyme evolution. <i>Mol Biol Evol</i> 15 (5): 568-573.
939	10.1093/oxfordjournals.molbev.a025957
940 941	Yang, Z. and M. dos Reis. (2010). Statistical properties of the branch-site test of positive selection. <i>Mol Biol Evol</i> 28 (3): 1217-1228. 10.1093/molbev/msq303
942 943	Yang, Z., R. Nielsen, N. Goldman and AM. K. Pedersen. (2000). Codon-substitution models for heterogeneous selection pressure at amino acid sites. <i>Genetics</i> 155 (1): 431-449.
944	Yang, Z., W. S. W. Wong and R. Nielsen. (2005). Bayes empirical Bayes inference of amino
945	acid sites under positive selection. <i>Mol Biol Evol</i> 22 (4): 1107-1118.
946	10.1093/molbev/msi097
947 948	 Yang, Z. H. (2007). PAML 4: Phylogenetic analysis by maximum likelihood. <i>Mol Biol Evol</i> 24 (8): 1586-1591. DOI 10.1093/molbev/msm088
949	Yu, F. H. and W. A. Catterall. (2003). Overview of the voltage-gated sodium channel family.
950	<i>Genome Biol</i> 4 (3): 207. 10.1186/gb-2003-4-3-207
951 952 953	Zakon, H. H. (2012). Adaptive evolution of voltage-gated sodium channels: The first 800 million years. <i>P Natl Acad Sci USA</i> 109 (Supplement 1): 10619-10625. DOI 10.1073/pnas.1201884109

- Zakon, H. H., M. C. Jost and Y. Lu. (2011). Expansion of voltage-dependent Na⁺ channel gene family in early tetrapods coincided with the emergence of terrestriality and increased brain complexity. *Mol Biol Evol* 28 (4): 1415-1424. DOI 10.1093/molbev/msq325
 Zhang, J., R. Nielsen and Z. Yang. (2005). Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. *Mol Biol Evol* 22 (12): 2472-2479. 10.1093/molbev/msi237
- Zhen, Y., M. L. Aardema, E. M. Medina, M. Schumer and P. Andolfatto. (2012). Parallel
 molecular evolution in an herbivore community. *Science* 337 (6102): 1634-1637.
 10.1126/science.1226630
- 963

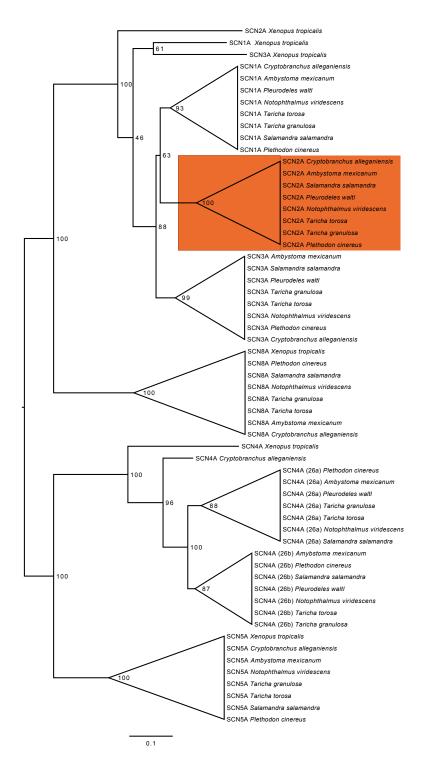

KCNH7 (+) KCNH7 (-) KCNH7 (+) chr9q: 525,755,516 - 526,117,016 FIGN (-) FIGN (+) FIGN (+) chr9q: 519,457,497 - 519,521,940 GRB14 (-) GRB14 (+) COBLL1 (+) chr9q: 512,376,156 - 512,780,076 COBLL1 (-) COBLL1 (+) SLC38A11 (-) SLC38A11 (+) SCN3A (-) SCN3A(+) chr9q: 509,830,827 - 510,576,927 SCN3A(+) SCN2A (-) chr9q: 507,685,503 - 508,688,108 SCN2A (+) SCN2A (-) CSRNP3 (+) CSRNP3 (-) CSRNP3 (-) chr9q: 506,528,681 - 506,948,226 GALNT3 (+) GALNT3 (-) GALNT3 (+) chr9q: 505,454,353 - 506,296,878 TTC21B (-) TTC21B (+) TTC21B (+) chr9q: 504,015,312 - 505,390,411 SCN1A (-) SCN1A(+) SCN1A(+) chr9q: 503,107,904 - 503,797,933 SCN9A (-) SCN7A (-) XIRP2 (-) XIRP2 (-) chr9q: 497,880,526 - 498,393,334 XIRP2 (+) B3GALT1 (-) chr9q: 494,995,914 - 496,316,508 B3GALT1 (+) B3GALT1 (-) STK39 (+) STK39 (-) STK39 (+) chr9q: 491,983,556 - 493,984,920 NOSTRIN (+) NOSTRIN (-) NOSTRIN (-) chr9q: 489,365,437 - 489,677,048 ABCB11 (+) chr9q: 488,766,712 - 489,202,271 ABCB11 (-) ABCB11 (+) Homo Chr 2 Xenopus Chr 9 Ambystoma Chr 9 Ambystoma Genome Coordinates

Figure S1. Conserved synteny of voltage-gated sodium channel paralogs across tetrapods. The genetic configuration of brain/nerve voltage-gated sodium channels (SCNA genes) is highly conserved across three tetrapod species: humans (Homo), frogs (Xenopus), and salamanders (Ambystoma). Genome coordinates are based on the AmexG.v6 assembly. Symbols (+) and (-) refer to gene orientation within this reference genome.

Supporting information

Figure S2. Maximum likelihood tree constructed from 6789 bp coding sequence alignment of salamander *SCNA* gene coding sequences with sequences from frogs (*Nanorana parkeri* and *Xenopus tropicalis*) and fish (*Danio rerio*) as outgroups. Black circles indicate nodes with bootstrap support >90%.

Figure S3. Maximum likelihood tree constructed from 1063 bp nucleotide alignment of *SCNA* exon 26 sequences. Node labels indicate bootstrap support from 100 replicates. Orange highlighting indicates clade grouping *SCN2A* from *Ambystoma* and other salamander species (bootstrap support 100%).

44

Table S1. Summary statistics from salamander SCNA sequencing and alignments. For each sequence, percent complete is calculated from the number of base pairs in a sequence divided by the total alignment length and pairwise percent identity is calculated from the average of all pairwise comparisons within an alignment. Average coverage is reported for all paralogs sequenced *de novo* in this study; sequences with unreported coverage were obtained from already published assemblies.

SCN1A (Na _v 1.1)	GC %	Length	Gaps	% Gaps	% Complete	Pairwise % identity	Average coverage
Ambystoma mexicanum	42.3	6224	165	2.7	97.3	81.8	-
Pleurodeles waltl	42.0	6149	390	6.3	93.7	81.9	-
Cryptobranchus alleganiensis	42.5	6216	162	2.6	97.4	81.6	21.44
Notophthalmus viridescens	41.5	6188	231	3.7	96.3	84.3	21.33
Taricha granulosa	41.5	6224	201	3.2	96.8	85.2	42.41
Taricha torosa	41.4	6224	159	2.6	97.4	85.4	39.88
Salamandra salamandra	41.6	5915	1846	31.2	68.8	60.2	-
Plethodon cinereus	46.1	6219	477	7.7	92.3	75.1	13.42
Xenopus tropicalis	41.2	6216	153	2.5	97.5	73.4	-
SCN2A (Na _v 1.2)	GC %	Length	Gaps	% Gaps	% Complete	Pairwise % Identity	Average coverage
Ambystoma mexicanum	43.5	5946	402	6.8	93.2	70.9	-
Pleurodeles waltl	41.5	5982	108	1.8	98.2	79.7	-
Cryptobranchus alleganiensis	41.3	6000	438	7.3	92.7	74.9	18.6
Notophthalmus viridescens	42.3	6039	432	7.2	92.8	13.4	22.54
Taricha granulosa	41.8	6060	75	1.2	98.8	81.7	40.43
Taricha torosa	41.9	6060	69	1.1	98.9	81.6	34.32
Salamandra salamandra	41.9	3672	1077	29.3	70.7	56.8	-
Plethodon cinereus	46.7	6006	700	10	90.0	68.4	22.7
Xenopus tropicalis	41.4	6054	141	2.3	97.7	66.4	-
SCN3A (Nav1.3)	GC %	Length	Gaps	% Gaps	% Complete	Pairwise % Identity	Average coverage
Ambystoma mexicanum	45	6072	51	0.8	99.2	83.3	-
Pleurodeles waltl	42.3	6069	195	3.2	96.8	85.9	-
Cryptobranchus alleganiensis	43.3	6093	39	0.6	99.4	83.7	23.59
Notophthalmus viridescens	42.4	6078	72	1.2	98.8	88.3	49.48
Taricha granulosa	42.3	6093	72	1.2	98.8	88.6	42.71
Taricha torosa	42.2	6099	72	1.2	98.8	88.6	40.9
Salamandra salamandra	42.9	6096	186	3.1	96.9	85.3	
Plethodon cinereus	47.9	6096	510	8.4	91.6	75.1	14.44
Xenopus tropicalis	42.2	6093	36	0.6	99.4	75.5	-
SCN4A (Na₊1.4)	GC %	Length	Gaps	% Gaps	% Complete	Pairwise % Identity	Average coverage
Ambystoma mexicanum	43.4	5034	141	2.8	97.2	81.8	-
Pleurodeles waltl	43.3	5622	96	1.7	98.3	85.3	-
		5580	48	0.9	99.1	80.9	12.46
Cryptobranchus alleganiensis	40.Z						
Cryptobranchus alleganiensis Notophthalmus viridescens	46.2 43.6					87.1	47.29
Notophthalmus viridescens	43.6	5622	96	1.7	98.3	87.1 87.3	47.29 35.46
Notophthalmus viridescens Taricha granulosa	43.6 44	5622 5469	96 87	1.7 1.6	98.3 98.4	87.3	35.46
Notophthalmus viridescens Taricha granulosa Taricha torosa	43.6 44 44	5622 5469 5469	96 87 90	1.7 1.6 1.6	98.3 98.4 98.4	87.3 87.4	
Notophthalmus viridescens Taricha granulosa Taricha torosa Salamandra salamandra	43.6 44 44 44.5	5622 5469 5469 5619	96 87 90 135	1.7 1.6 1.6 2.4	98.3 98.4 98.4 97.6	87.3 87.4 85.4	35.46 42.97 -
Notophthalmus viridescens Taricha granulosa Taricha torosa	43.6 44 44	5622 5469 5469	96 87 90	1.7 1.6 1.6	98.3 98.4 98.4	87.3 87.4	35.46
Notophthalmus viridescens Taricha granulosa Taricha torosa Salamandra salamandra Plethodon cinereus Xenopus tropicalis	43.6 44 44 44.5 43.5 43.3	5622 5469 5469 5619 5628 5622	96 87 90 135 279 111	1.7 1.6 1.6 2.4 5 2	98.3 98.4 98.4 97.6 95 98	87.3 87.4 85.4 78.2 71.2	35.46 42.97 - 12.2 -
Notophthalmus viridescens Taricha granulosa Taricha torosa Salamandra salamandra Plethodon cinereus Xenopus tropicalis SCN5A (Nav1.5)	43.6 44 44.5 43.5 43.3 GC %	5622 5469 5469 5619 5628 5622 Length	96 87 90 135 279 111 Gaps	1.7 1.6 2.4 5 2 % Gaps	98.3 98.4 97.6 95 98 % Complete	87.3 87.4 85.4 78.2 71.2 Pairwise % Identity	35.46 42.97 - 12.2 -
Notophthalmus viridescens Taricha granulosa Taricha torosa Salamandra salamandra Plethodon cinereus Xenopus tropicalis SCN5A (Na_v1.5) Ambystoma mexicanum	43.6 44 44.5 43.5 43.3 GC % 48.9	5622 5469 5619 5628 5622 Length 5988	96 87 90 135 279 111 Gaps 45	1.7 1.6 1.6 2.4 5 2 % Gaps 0.8	98.3 98.4 97.6 95 98 % Complete 99.2	87.3 87.4 85.4 78.2 71.2 Pairwise % Identity 82.7	35.46 42.97 - 12.2 -
Notophthalmus viridescens Taricha granulosa Taricha torosa Salamandra salamandra Plethodon cinereus Xenopus tropicalis SCN5A (Nav1.5) Ambystoma mexicanum Pleurodeles waltl	43.6 44 44.5 43.5 43.3 GC % 48.9 44.7	5622 5469 5619 5628 5622 Length 5988 5706	96 87 90 135 279 111 Gaps 45 102	1.7 1.6 1.6 2.4 5 2 % Gaps 0.8 1.8	98.3 98.4 97.6 95 98 % Complete 99.2 98.2	87.3 87.4 85.4 78.2 71.2 Pairwise % Identity 82.7 86.9	35.46 42.97 - 12.2 - Average coverage
Notophthalmus viridescens Taricha granulosa Taricha torosa Salamandra salamandra Plethodon cinereus Xenopus tropicalis SCN5A (Nav1.5) Ambystoma mexicanum Pleurodeles waltl Cryptobranchus alleganiensis	43.6 44 44.5 43.5 43.3 GC % 48.9 44.7 47	5622 5469 5619 5628 5622 Length 5988 5706 5961	96 87 90 135 279 111 Gaps 45 102 33	1.7 1.6 1.6 2.4 5 2 % Gaps 0.8 1.8 0.6	98.3 98.4 97.6 95 98 % Complete 99.2 98.2 99.4	87.3 87.4 85.4 78.2 71.2 Pairwise % Identity 82.7 86.9 81.6	35.46 42.97 - 12.2 - Average coverage
Notophthalmus viridescens Taricha granulosa Taricha torosa Salamandra salamandra Plethodon cinereus Xenopus tropicalis SCN5A (Nav1.5) Ambystoma mexicanum Pleurodeles waltl Cryptobranchus alleganiensis Notophthalmus viridescens	43.6 44 44.5 43.5 43.3 GC % 48.9 44.7 47 45.5	5622 5469 5619 5628 5622 Length 5988 5706 5961 5943	96 87 90 135 279 111 Gaps 45 102 33 42	1.7 1.6 1.6 2.4 5 2 % Gaps 0.8 1.8 0.6 0.7	98.3 98.4 97.6 95 98 % Complete 99.2 98.2 99.4 99.3	87.3 87.4 85.4 78.2 71.2 Pairwise % Identity 82.7 86.9 81.6 88.6	35.46 42.97 - 12.2 - Average coverage - - 16.06 55.83
Notophthalmus viridescens Taricha granulosa Taricha torosa Salamandra salamandra Plethodon cinereus Xenopus tropicalis SCN5A (Nav1.5) Ambystoma mexicanum Pleurodeles waltl Cryptobranchus alleganiensis	43.6 44 44.5 43.5 43.3 GC % 48.9 44.7 47	5622 5469 5619 5628 5622 Length 5988 5706 5961	96 87 90 135 279 111 Gaps 45 102 33	1.7 1.6 1.6 2.4 5 2 % Gaps 0.8 1.8 0.6	98.3 98.4 97.6 95 98 % Complete 99.2 98.2 99.4	87.3 87.4 85.4 78.2 71.2 Pairwise % Identity 82.7 86.9 81.6	35.46 42.97 - 12.2 - Average coverage

Δ	5
т	2

Plethodon cinereus	48.7	5961	48	0.8	99.2	81.8	22.49
Xenopus tropicalis	47	5988	45	0.8	99.2	73.3	-
SCN8A (Na _v 1.6)	GC %	Length	Gaps	% Gaps	% Complete	Pairwise % Identity	Average coverage
Ambystoma mexicanum	44.5	5946	30	0.5	99.5	88.0	-
Pleurodeles waltl	44.5	5691	84	1.5	98.5	90.0	-
Cryptobranchus alleganiensis	44.7	5946	21	0.4	99.6	88.2	21.26
Notophthalmus viridescens	44.7	5916	30	0.5	99.5	91.5	49.65
Taricha granulosa	44.8	5952	30	0.5	99.5	91.7	43.78
Taricha torosa	44.8	5907	30	0.5	99.5	91.8	35.75
Salamandra salamandra	44.9	5946	30	0.5	99.5	90.8	-
Plethodon cinereus	44.7	5949	42	0.7	99.3	86.8	32.32
Xenopus tropicalis	41.9	5946	18	0.3	99.7	79.1	-

Table S2. Synonymous and nonsynonymous polymorphism in salamander *SCNA* sequences obtained for this study using targeted sequence capture.

	SCN1A	SCN2A	SCN3A	SCN4A	SCN5A	SCN8/
C. alleganiensis (n=2)						
Synonymous (Ps)	3	4	1	1	2	0
Nonsynonymous (Pn)	0	2	0	0	0	0
Insertions	0	0	0	0	0	0
Missing exons	0	1	0	0	0	0
P. cinereus (n=2)						
Synonymous (Ps)	0	3	3	6	4	0
Nonsynonymous (Pn)	1	0	0	1	0	0
Insertions	0	0	0	0	0	0
Missing exons	0	2	2	1	0	0
N. viridescens (n=3)						
Synonymous (P _s)	24	22	35	19	11	12
Nonsynonymous (P _n)	5	2	4	8	1	1
Insertions	1 (39 bases)	0	0	0	0	0
Missing exons	0	2	0	0	0	0
<i>T. torosa</i> (n=3)						
Synonymous (P _s)	2	5	2	2	1	0
Nonsynonymous (P _n)	1	2	0	1	1	0
Insertions	0	0	0	1 (3 bases)	0	0
Missing exons	0	2	0	0	0	0
T. granulosa (n=3)						
Synonymous (Ps)	4	8	3	10	4	5
Nonsynonymous (Pn)	0	0	0	2	2	0
Insertions	0	0	0	0	0	0
Missing exons	0	2	0	0	0	0

46

Table S3. Likelihood ratio tests from codeml site models. Included for each paralog are summaries of likelihood-ratio tests ($2\Delta\ell$) for site models using codeml from the PAML software program. Significance is indicated for p-values < 0.05 (*) and <0.01 (**) with critical values determined from the χ^2 distribution.

	l	n Parameters	Parameter Estimates	2∆ℓ
SCN1A (Na _v 1.1)				
Nearly neutral site model (M1a)	-20237.40	18	$p_0 = 0.91, (p_1 = 0.09)$ $\omega_0 = 0.03, (\omega_1 = 1.00)$	-
Site selection model (M2a)	-20237.40	20	$p_0 = 0.91, p_1 = 0.09, (p_2 = 0.00)$ $\omega_0 = 0.03, (\omega_1 = 1.00), \omega_2 = 50.8$	(M2a vs. M1a) 0.00
Site null model (M7)	-20200.36	18	p = 0.11, q = 1.01	-
Site neutral model (M8a)	-20193.38	19	p = 0.13, q = 1.69 $p_0 = 0.96, (p_1 = 0.04)$	-
Site selection model (M8)	-20193.38	20	$p_0 = 0.96$, $(p_1 = 0.04)$ p = 0.13, $q = 1.69p_0 = 0.96, (p_1 = 0.04), \omega_1 = 1.00$	(M7 vs. M8) 13.97** (M8 vs. M8a) 0.00
SCN2A (Na _v 1.2)				, , , , , , , , , , , , , , , , , , ,
Nearly neutral site model (M1a)	-21559.11	18	$p_0 = 0.89$, ($p_1 = 0.11$) $\omega_0 = 0.05$, ($\omega_1 = 1.00$)	-
Site selection model (M2a)	-21559.11	20	$p_0 = 0.89, p_1 = 0.11, (p_2 = 0.00)$ $\omega_0 = 0.05, (\omega_1 = 1.00), \omega_2 = 45.2$	(M2a vs. M1a) 0.00
Site null model (M7)	-21481.17	18	$\omega_0 = 0.03$, $(\omega_1 = 1.00)$, $\omega_2 = 43.2$ p = 0.19, q = 1.43	_
Site neutral model (M8a)	-21474.94	19	p = 0.19, q = 1.43 p = 0.22, q = 2.14	-
	2111 1.01	10	p = 0.22, q = 2.14 $p_0 = 0.97, (p_1 = 0.03)$	
Site selection model (M8)	-21474.89	20	p = 0.21, q = 2.07 $p_0 = 0.98, (p_1 = 0.02), \omega_1 = 1.09$	(M7 vs. M8) 12.56** (M8 vs. M8a) 0.10
<i>SCN3A</i> (Na _v 1.3)				· · · · · ·
Nearly neutral site model (M1a)	-21487.41	18	$p_0 = 0.91$, ($p_1 = 0.09$) $\omega_0 = 0.03$, ($\omega_1 = 1.00$)	-
Site selection model (M2a)	-21487.41	20	$p_0 = 0.03, (\omega_1 = 1.00)$ $p_0 = 0.91, p_1 = 0.09, (p_2 = 0.00)$ $\omega_0 = 0.03, (\omega_1 = 1.00), \omega_2 = 4.73$	(M2a vs. M1a) 2.92
Site null model (M7)	-21439.44	18	p = 0.12, q = 0.99	-
Site neutral model (M8a)	-21406.75	19	p = 0.14, q = 1.84 p ₀ = 0.96, (p ₁ = 0.04)	-
Site selection model (M8)	-21401.10	20	p = 0.13, q = 1.48 $p_0 = 0.98, (p_1 = 0.02), \omega_1 = 1.83$	(M7 vs. M8) 76.68** (M8 vs. M8a) 11.30* *
<i>SCN4A</i> (Na _v 1.4)				
Nearly neutral site model (M1a)	-21877.67	18	p ₀ = 0.83, (p ₁ = 0.17)	-
Site selection model (M2a)	-21877.67	20	$\omega_0 = 0.03, (\omega_1 = 1.00)$ $p_0 = 0.83, p_1 = 0.17, (p_2 = 0.00)$	(M2a vs. M1a) 0.00
o		10	$\omega_0 = 0.03 \ (\omega_1 = 1.00), \ \omega_2 = 123.5$	
Site null model (M7)	-21820.89	18	p = 0.14, q = 0.76	-
Site neutral model (M8a)	-21809.60	19	p = 0.17, q = 1.65	-
Site selection model (M8)	-21807.68	20	$p_0 = 0.93$, $(p_1 = 0.07)$ p = 0.16, $q = 1.27p_0 = 0.96, (p_1 = 0.02), \omega_1 = 1.51$	(M7 vs. M8) 26.42** (M8 vs. M8a) 3.83*
SCN5A (Na _v 1.5)			$p_0 = 0.00, (p_1 = 0.02), w_1 = 1.01$	(1010 V3. 1010a) 3.03
Nearly neutral site model (M1a)	-22525.65	18	$p_0 = 0.88 (p_1 = 0.12)$	-
Site selection model (M2a)	-22523.34	20		(M2a vs. M1a) 4.63
			$\omega_0 = 0.03 \ (\omega_1 = 1.00), \ \omega_2 = 30.1$. ,
Site null model (M7)	-22482.16	18	p = 0.15, q = 1.04	-
Site neutral model (M8a)	-22465.19	19	p = 0.20, q = 2.28	-
Site selection model (M8)	-22465.19	20	p ₀ = 0.95, (p ₁ = 0.05) p = 0.20, q = 2.28	(M7 vs. M8) 33.94 **

SCN8A (Na _v 1.6)				
Nearly neutral site model (M1a)	-18903.82	18	$p_0 = 0.94 \ (p_1 = 0.06)$	-
			$\omega_0 = 0.02, (\omega_1 = 1.00)$	
Site selection model (M2a)	-18903.82	20	$p_0 = 0.94, p_1 = 0.06, (p_2 = 0.00)$	(M2a vs. M1a) 0.00
			$\omega_0 = 0.02 \ (\omega_1 = 1.00), \ \omega_2 = 89.1$	
Site null model (M7)	-18911.33	18	p = 0.09, q = 0.99	-
Site neutral model (M8a)	-18879.57	19	p = 0.12, q = 2.25	-
			$p_0 = 0.97, (p_1 = 0.03)$	
Site selection model (M8)	-18878.56	20	p = 0.11, g = 1.70	(M7 vs. M8) 65.54**
			$p_0 = 0.98$, ($p_1 = 0.02$), $\omega_1 = 1.42$	(M8 vs. M8a) 2.02

48

Table S4. Likelihood ratio tests from codeml branch and branch-site models. Included for each

paralog are summaries of likelihood-ratio tests $(2\Delta \ell)$ for branch and branch-site models comparing TTXbearing newts (foreground) with other salamanders (background) using codeml from the PAML software program. Significance is indicated for p-values < 0.05 (*) and <0.01 (**) with critical values determined from the χ^2 distribution.

	l	n Parameters	Parameter Estimates	2∆ℓ
SCN1A (Na _v 1.1)				
One ratio model (M0)	-20546.55	17	ω = 0.07	-
Branch model	-20526.69	18	ω salamanders = 0.07, $ω$ newts = 0.17	(Branch vs. M0) 39.71 **
Branch-site neutral model (A1)	-20229.55	19	$p_0 = 0.86, p_1 = 0.08, (p_2 = 0.05)$ $\omega_0 = 0.03, (\omega_1 = 1.00)$	-
Branch-site selection model (A)	-20229.55	20	$p_0 = 0.86, p_1 = 0.08, (p_2 = 0.05)$ $\omega_0 = 0.03, (\omega_1 = 1.00), \omega_2 = 1.00$	(A vs. A1) 0.00
SCN2A (Na _v 1.2)				
One ratio model (M0)	-21838.97	17	$\omega = 0.09$	-
Branch model	-21838.97	18	ω salamanders = 0.09, $ω$ newts = 0.09	(Branch vs. M0) 0.00
Branch-site neutral model (A1)	-21558.98	19	$p_0 = 0.89, p_1 = 0.11, (p_2 = 0.00)$ $\omega_0 = 0.05, (\omega_1 = 1.00)$	-
Branch-site selection model (A)	-21558.52	20	$p_0 = 0.89, p_1 = 0.11, (p_2 = 0.00)$ $\omega_0 = 0.05, (\omega_1 = 1.00), \omega_2 = 7.84$	(A vs. A1) 0.94
SCN3A (Na _v 1.3)				
One ratio model (M0)	-21867.12	17	ω = 0.08	-
Branch model	-21853.31	18	ω salamanders = 0.07, $ω$ newts = 0.15	(Branch vs. M0) 27.63**
Branch-site neutral model (A1)	-21471.92	19	$p_0 = 0.89, p_1 = 0.08, (p_2 = 0.03)$ $\omega_0 = 0.03, (\omega_1 = 1.00)$	-
Branch-site selection model (A)	-21468.13	20	$p_0 = 0.90, p_1 = 0.09, (p_2 = 0.01)$ $\omega_0 = 0.03, (\omega_1 = 1.00), \omega_2 = 5.50$	(A vs. A1) 7.59 *
<i>SCN4A</i> (Na _v 1.4)				
One ratio model (M0)	-22400.36	17	ω = 0.11	-
Branch model	-22380.87	18	ω salamanders = 0.10, $ω$ newts = 0.25	(Branch vs. M0) 38.96**
Branch-site neutral model (A1)	-21859.15	19	$p_0 = 0.75, p_1 = 0.17, (p_2 = 0.08)$ $\omega_0 = 0.03, (\omega_1 = 1.00)$	-
Branch-site selection model (A)	-21858.94	20	$p_0 = 0.78, p_1 = 0.16, (p_2 = 0.06)$ $\omega_0 = 0.03, (\omega_1 = 1.00), \omega_2 = 1.61$	(A vs. A1) 0.42
SCN5A (Na _v 1.5)				
One ratio model (M0)	-22980.74	17	ω = 0.09	-
Branch model	-22978.73	18	ω salamanders = 0.09, $ω$ newts = 0.12	(Branch vs. M0) 4.00
Branch-site neutral model (A1)	-22525.65	19	$p_0 = 0.88, p_1 = 0.11, (p_2 = 0.00)$	-
Branch-site selection model (A)	-22525.65	20	$\omega_0 = 0.02, (\omega_1 = 1.00)$ $p_0 = 0.88, p_1 = 0.11, (p_2 = 0.00)$ $\omega_0 = 0.02, (\omega_1 = 1.00), \omega_2 = 66.9$	(A vs. A1) 0.00
<i>SCN8A</i> (Na _v 1.6)				
One ratio model (M0)	-19187.81	17	ω = 0.06	-
Branch model	-19183.65	18	ω salamanders = 0.05, $ω$ newts = 0.09	(Branch vs. M0) 8.33*
Branch-site neutral model (A1)	-18903.82	19	$p_0 = 0.94, p_1 = 0.06, (p_2 = 0.00)$	-
Branch-site selection model (A)	-18903.82	20	$\omega_0 = 0.02, (\omega_1 = 1.00)$ $p_0 = 0.94, p_1 = 0.06, (p_2 = 0.00)$ $\omega_0 = 0.02, (\omega_1 = 1.00), \omega_2 = 1.00$	(A vs. A1) 0.00

Table S5. Sites with elevated d_N/d_s in toxic newts. Positively selected sites were identified using branch site models from the PAML software. Numbers indicate posterior probabilities of positive selection from empirical Bayes estimates. Known TTX-binding sites are bolded. Site numbers reference amino acid positions in the rat Na_v1.4 channel (accession number AAA41682). Sites under putative positive selection without a homologous amino acid site in rat Na_v1.4 are excluded from this table.

Site	Exon	Nav1.1	Nav1.2	Nav1.3	Nav1.4	Nav1.5	Nav1.6
12 27	1 1		0.91	0.55	0.61		
120	2		0.01	0.00		0.77	0.75
150 155	3 3	0.53			0.56		
249	6	0.64					
278 338	6	0.58		0.56			
330 340	6 6	0.79		0.56			
452	9			0.61			
460 493	9 10	0.54		0.60			
543	13			0.98			
549 621	13 14			0.55 0.59			
719	15			0.58			
756 759	15 15			0.61	0.95		
767	15			0.61			
774 829	15 16	0.53		0.66			
837	16	0.60			0.53		
842 843	16 16	0.59		0.51			
845	16	0.60		0.51			
877	16 16	0.51		0.57			
879 881	16 16	0.60		0.57			
884	16			0.97			
887 898	16 16			0.60 0.59			
911	16	0.61					0.74
921 936	16 16	0.51 0.53					0.74
940	16					0.69	
946 957	17 17	0.60 0.58					
960	17	0.59					
965 968	17 17	0.95 0.53					
981	17	0.00			0.53		
993 1006	18 18			0.51	0.53 0.53		
1028	18			0.51	0.98		
1046	19				0.51	0.56	
1127 1179	20 21	0.59				0.56	
1187	21				0.52		
1189 1191	21 21	0.51		0.86			
1194	21	0.60		0.83			
1224 1240	21 22	0.61			0.51		
1250	22	0.61					
1254 1257	23 23			0.54 0.97			
1261	23	0.52		0.07			
1262	23	0.61					

5	Λ
J	υ

1367	25	0.60	
1383	25		0.52
1390	25		0.54
1519	26		0.51
1529	26	0.52	
1532	26		0.98
1542	26		0.60
1631	26	0.52	
1719	26		0.56
1737	26		0.56
1738	26		0.51
1739	26	0.53	
1741	26		0.51
1744	26		0.54
1748	26		0.52
1752	26		0.83
1774	26	0.61	
1796	26	0.56	
1817	26	0.59	
1820	26	0.59	
1827	26	0.51	
1832	26	0.52	
1939	26	0.52	

51

Table S6. Sites under putative positive selection in all salamanders. Positively selected sites were identified using site models M2a and M8 in codeml from the PAML software. Numbers indicate posterior probabilities of positive selection from empirical Bayes estimates. A single value indicates detection from the M8 model only, and two values indicate detection from both the M2a model and M8 models. Known TTX-binding sites are bolded. Site numbers reference amino acid positions in the rat Nav1.4 channel (accession number AAA41682). Sites under positive selection without a homologous amino acid site in rat Nav1.4 are excluded from this table.

Site	Exon	Na _v 1.1	Na _v 1.2	Na _v 1.3	Na _v 1.4	Na _v 1.5	Na _v 1.6
19	1			0.58; 0.81			
22	1						0.70; 0.93
43	1			0.75; 0.95			
46	1		0.51; 0.60		0.54		
51 56	1 1			0.56:0.70	0.51		
56 73	1	0.52; 0.63		0.56; 0.79 0.51		0.60; 0.84	0.68; 0.91
74	1	0.52, 0.05		0.51		0.00, 0.04	0.76; 0.96
80	1					0.54	0.70, 0.00
115	2				0.84		
155	3					0.52	
185	4					0.90; 0.99	
202	4			0.56			
209	5					0.62	
287	6	0.65; 0.88	0.51; 0.83		0.74		
289	6	0.54	0.50.0.07		0.74		
290 294	6	0 62. 0 95	0.56; 0.67		0.73	0.52	
294 295	6 6	0.62; 0.85				0.52 0.67; 0.93	
298	6	0.56; 0.78				0.51; 0.71	0.60
300	6	0.53; 0.70	0.60; 0.82			0.01, 0.71	0.00
301	6	,	,			0.56	
302	6	0.51; 0.62	0.56; 0.68	0.65; 0.88			
306	6		0.71; 0.91				
307	6			0.68; 0.92		0.53	
309	6			0.59; 0.81		0.60	
311	6					0.58	
325	6				0.80		
326 328	6 6		0.53		0.69		
329	6		0.55	0.51; 0.66			
330	6			0.01, 0.00		0.53	
332	6					0.00	0.54; 0.72
333	6	0.66		0.64; 0.88			0.56; 0.77
337	6		0.70; 0.90	0.81; 0.98			,
338	6	0.55; 0.75					
339	6	0.61; 0.82	0.61; 0.75				0.57; 0.79
340	6			0.62		0.63	0.52; 0.61
344	7	0.60; 0.80	0.64; 0.82	0.51; 0.67		0.55	0.50.0.04
345	7					0.69; 0.93	0.52; 0.61
346 348	7 7			0.70; 0.92		0.69; 0.94 0.66; 0.90	
351	7	0.60; 0.81		0.70, 0.32		0.00, 0.30	
358	7	0.55; 0.71	0.58; 0.72				
365	8	0.00, 0.1 1	0.00, 0.12	0.59; 0.80		0.62; 0.88	
366	8			,		0.52; 0.73	
368	8	0.52; 0.70	0.56; 0.71		0.65		0.60; 0.82
374	8						0.62
401	8	0.61; 0.85		0.51; 0.65			0.51; 0.68
485	10	0.51; 0.64					
487 555	10	0.53; 0.71	0 52: 0 04	0.70.0.07			
555 557	13	0.58; 0.74	0.53; 0.61	0.78; 0.97	0 02		0 52: 0 62
557 560	13 13	0.60 0.65		0.68; 0.91	0.82		0.53; 0.62
563	13	0.66; 0.88				0.56	
567	13	0.00, 0.00				0.00	0.51

5	\mathbf{r}
3	L

598	13	0.62; 0.87			0.53	0.73; 0.96	0.57; 0.81
601	13	,		0.80; 0.97		-	-
602 606	13 13		0.52			0.66; 0.91	0.65; 0.85
609	13		0.02			0.53	
654	14		0.57.0.05	0.76; 0.96			
728 729	15 15		0.57; 0.65	0.51; 0.64	0.89	0.50; 0.71	0.75; 0.96
732	15		0.52; 0.56	0.61; 0.81	0.64	0.71; 0.94	0.1.0, 0.000
739 774	15 15		0.70; 0.90			0.54; 0.79	
828	16		0.70, 0.90			0.70	
830	16						0.87; 0.99
832 840	16 16	0.55	0.57				0.85; 0.99 0.53; 0.71
841	16					0.64	0.00, 0.11
846	16					0.61	
848 849	16 16					0.57; 0.82	0.51
850	16					0.63	
852 864	16 16			0.56; 0.69 0.54; 0.66		0.55; 0.80	
877	16			0.54, 0.00		0.68; 0.93	
878	16					0.61	
881 886	16 16					0.51 0.52; 0.76	
887	16		0.58			0.02, 0.10	
892	16				0.88	0.54	
899 912	16 16		0.60; 0.82			0.54	
913	16		0.64; 0.82				
945 947	17 17				0.51 0.72		
947 950	17				0.72	0.64	
951	17			0.73; 0.94			
952 967	17 17	0.55 0.53; 0.70					
971	17	0.00, 0.70			0.78		
972	17	0.69; 0.91			0.55	0.52	
976 978	17 17	0.58; 0.79				0.53	
979	17	,		0.86; 0.99			
980 981	17 17	0.53; 0.71				0.52; 0.72	
985	17	0.55, 0.71					0.64
997	18				0.68		
999 1003	18 18	0.59				0.61	
1004	18			0.76; 0.96		0.01	
1006	18 18		0.64; 0.85			0.68; 0.92	0 77: 0 07
1009 1012	18		0.04; 0.05			0.52; 0.74 0.52; 0.75	0.77; 0.97
1106	20					0.55; 0.79	
1111 1113	20 20					0.64; 0.88 0.62; 0.85	
1115	20					0.65	
1187	21			0.50; 0.66		0.57 0.00	
1188 1189	21 21			0.54; 0.68		0.57; 0.82	0.53
1192	21			0.72; 0.93			
1193	21	0.70; 0.93	0.63; 0.86	0.87; 0.99	0.60		0.73; 0.93
1195 1203	21 21	0.59; 0.78		0.57; 0.82	0.60		0.64; 0.88
1204	21	0.58		0.53			0.69; 0.92
1207 1208	21 21	0.60; 0.81		0.88; 0.99 0.60; 0.81		0.61; 0.86	0.55; 0.74
1208	21			0.00, 0.01	0.80		0.00, 0.74
1216	21			0 67. 0 00		0.58	
1251 1253	22 23	0.57; 0.80		0.67; 0.88			
		, 0.00					

1254	23	0.59; 0.81					
1257	23				0.77		
1260	23		0.52				
1332	24	0.64; 0.85	0.53; 0.66				
1334	25		0.65; 0.87				
1351	25				0.56		
1372	25						0.69; 0.92
1380	25	0.57		0.69			
1390	25					0.62	
1533	26	0.50; 0.67	0.55; 0.71				
1542	26					0.66	
1543	26	0.67; 0.90				0.70	
1549	26	0.50; 0.66		0.66; 0.89	0.54		
1550	26	,		,	0.61		
1551	26		0.58; 0.78	0.68; 0.91		0.57; 0.80	
1556	26		,	,	0.84	,	
1558	26				0.77	0.56	
1623	26		0.56; 0.78				
1631	26		0.000, 0.110	0.53			
1635	26	0.53					
1708	26				0.81		
1725	26	0.60				0.58; 0.83	
1726	26		0.62; 0.81			,	
1733	26	0.62; 0.81	,				
1736	26	,			0.63		
1739	26		0.56; 0.70				
1742	26				0.77		
1745	26		0.53; 0.66		0111		
1746	26		0.70; 0.92		0.82		
1747	26		0.62; 0.83		0.74		
1748	26		0.63; 0.84		011 1		
1751	26		,		0.67		
1754	26				0.80		
1755	26		0.62; 0.79	0.57	0.00		
1757	26		0.02, 0.10	0101			
1767	26				0.61		
1769	26				0.61		
1775	26				0.88		
1777	26				0.50		
1784	26				0.54		
1798	26				0.88		
1800	26				0.78		
1805	26				0.58		
1807	26				0.91		
1822	26			0.58; 0.82	0.01		
1828	26			0.00, 0.02		0.62	
1831	26				0.76	0.02	
1834	26				0.53; 0.93		
1835	26				0.00, 0.00		

54

Table S8. Sources for amphibian voltage-gated sodium channel (*SCNA*) sequences used for targeted NGS sequencing probe design. WGS – whole genome shotgun database, TSA – transcriptome shotgun assembly database

Species	Source	Best BLAST hit	Accession
Ambystoma mexicanum	WGS NCBI	SCN1A	gb PGSH01113157.1
Ambystoma mexicanum	WGS NCBI	SCN2A, SCN3A	gb PGSH01109388.1
-			
Ambystoma mexicanum	WGS NCBI	SCN4A	gb PGSH01101866.1,
			gb PGSH01095590.1,
		00154	gb JXRH01331098.1
Ambystoma mexicanum	WGS NCBI	SCN5A	gb PGSH01008813.1
Ambystoma mexicanum	WGS NCBI	SCN8A	gb PGSH01049067.1
Hynobius chinensis	TSA NCBI	SCN1A	gb GAQK01012416.1,
			gb GAQK01089723.1,
			gb GAQK01123640.1,
			gb GAQK01022956.1,
			gb GAQK01037701.1,
			gb GAQK01110837.1,
			gb GAQK01035933.1,
			gb GAQK01049457.1,
			gb GAQK01026323.1
			gb GAQK01020323.1
			gb GAQK01062486.1,
			gb GAQK01026323.1,
11	TOANODI	00000	gb GAQK01062486.1
Hynobius chinensis	TSA NCBI	SCN2A	gb GAQK01012415.1,
			gb GAQK01089724.1,
			gb GAQK01123639.1,
			gb GAQK01062305.1,
			gb GAQK01047585.1,
			gb GAQK01096581.1,
			gb GAQK01044980.1,
			gb GAQK01086119.1,
			gb GAQK01096592.1,
			gb GAQK01106518.1,
			gb GAQK01122588.1
Hynobius chinensis	TSA NCBI	SCN4A	gb GAQK01140156.1,
			gb GAQK01024534.1,
			gb GAQK01021831.1,
			gb GAQK01021830.1,
			gb GAQK01082803.1,
			gb GAQK01071419.1,
			gb GAQK01071419.1
Hynobius chinensis	TSA NCBI	SCN5A	gb GAQK01128205.1,
			gb GAQK01083790.1,
			gb GAQK01027263.1,
			gb GAQK01027805.1,
			gb GAQK01015614.1,
			gb GAQK01012146.1,
			gb GAQK01014539.1,
			gb GAQK01014539.1
Hynobius chinensis	TSA NCBI	SCN8A	gb GAQK01067521.1,
			gb GAQK01020756.1,
			gb GAQK01038507.1,
			gb GAQK01045113.1,
			gb GAQK01022217.1,
			gb GAQK01096591.1,
			gb/GAQK01071418.1,
			gb GAQK01071418.1
Hynobius retardatus	TSA NCBI	SCN1A	gb/LE210884.1, gb/LE107081.1,
		CONTA	gb/LE105972.1
Hynobius retardatus	TSA NCBI	SCN3A	gb/LE175129.1
างการการาชเลเนลเนร		SUNSA	yulr 119129.1
Hynobius retardatus	TSA NCBI	SCN4A	gb LE175126.1, gb LE175128.1
,			Jan 1997

Hynobius retardatus	TSA NCBI	SCN5A	gb LE143587.1, gb LE143588.1
Hynobius retardatus	TSA NCBI	SCN8A	gb LE175125.1
Lyciasalamandra atifi	Transcriptome assembly provided by Miguel Vences (Rodríguez et al. 2017)	-	-
Nanorana parkeri	WGS NCBI	SCN1A, SCN2A, SCN3A	gb NW_017306417.1
Nanorana parkeri	WGS NCBI	SCN4A	gb NW_017306748.1
Nanorana parkeri	WGS NCBI	SCN5A	gb NW_017306389.1
Nanorana parkeri	WGS NCBI	SCN8A	gb NW_017307114.1
Notophthalmus viridescens	http://sandberg.cmb.ki.se/red spottednewt/	-	-
Paramesotriton hongkonginensis	Sequence Read Archive NCBI SRX796492	-	-
Pleurodeles waltl	Whole genome assembly provided by Ahmed Elewa (Elewa et al. 2017)	SCN1A	abyss_v4.2_66066951
Pleurodeles waltl	Transcriptome assembly from iNewt Database: http://www.nibb.ac.jp/imori/m ain/	SCN1A	TRINITY_DN288824_c1_g3_i7
Pleurodeles waltl	Whole genome assembly provided by Ahmed Elewa (Elewa et al. 2017)	SCN2A	abyss_v4.2_66112789
Pleurodeles waltl	Whole genome assembly provided by Ahmed Elewa (Elewa et al. 2017)	SCN3A	abyss_v4.2_66060341
Pleurodeles waltl	Transcriptome assembly from iNewt Database: http://www.nibb.ac.jp/imori/m ain/	SCN3A	TRINITY_DN288824_c1_g3_i6
Pleurodeles waltl	Whole genome assembly provided by Ahmed Elewa (Elewa et al. 2017)	SCN4A	abyss_v4.2_48183054
Pleurodeles waltl	Transcriptome assembly from iNewt Database: http://www.nibb.ac.jp/imori/m ain/	SCN4A	TRINITY_DN288824_c1_g2_i5
Pleurodeles waltl	Whole genome assembly provided by Ahmed Elewa (Elewa et al. 2017)	SCN5A	abyss_v4.2_66164693
Pleurodeles waltl	Whole genome assembly provided by Ahmed Elewa (Elewa et al. 2017)	SCN8A	abyss_v4.2_66123907
Salamandra atra	Transcriptome assembly provided by Miguel Vences (Rodríguez et al. 2017)	-	-
Salamandra infraimmaculata	Transcriptome assembly provided by Miguel Vences (Rodríguez et al. 2017)	-	-
Salamandra salamandra	TSA NCBI	SCN1A	gb GIKK01030996.1, gb GIKK01027377.1, gb GIKK01026170.1, gb GIKK01027688.1
Salamandra salamandra	TSA NCBI	SCN2A	gb GIKK01012950.1, gb GIKK01007670.1, gb GIKK01006682.1
Salamandra salamandra	TSA NCBI	SCN3A	gb GIKK01031859.1
Salamandra salamandra Salamandra salamandra	TSA NCBI TSA NCBI	SCN4A SCN5A	gb GIKK01007017.1, gb GIKK01015583.1 gb GIKK01011042.1
Salamandra salamandra Salamandra salamandra	TSA NCBI	SCN8A	
Salamanula Salamahula		SUNDA	gb GIKK01019313.1, gb GIKK01023854.1, gb GIKK01002548.1

5	6
Э	0

Tylototriton wenxianensis	TSA NCBI	SCN4A	gb GESS01000732.1, gb GESS01024789.1, gb GESS01029581.1, gb GESS01063809.1
Tylototriton wenxianensis	TSA NCBI	SCN5A	gb GESS01003003.1 gb GESS01016882.1, gb GESS01035197.1
Xenopus tropicalis	WGS NCBI	SCN1A	gb AAMC03035440.1
Xenopus tropicalis	WGS NCBI	SCN2A	gb AAMC03035445.1
Xenopus tropicalis	WGS NCBI	SCN3A	gb AAMC03035458.1, gb AAMC03035459.1, gb AAMC03035460.1
Xenopus tropicalis	WGS NCBI	SCN4A	gb AAMC03036452.1
Xenopus tropicalis	WGS NCBI	SCN5A	gb AAMC03022243.1, gb AAMC03022245.1, gb AAMC03022246.1, gb AAMC03022247.1, gb AAMC03022249.1, gb AAMC03022250.1, gb AAMC03022250.1,
Xenopus tropicalis	WGS NCBI	SCN8A	gb AAMC03008918.1, gb AAMC03008917.1, gb AAMC03008916.1