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ABSTRACT

The most prominent acoustic features in speech are intensity modulations, represented by

the amplitude envelope of speech. Synchronization of neural activity with these modulations

is vital for speech comprehension. As the acoustic modulation of speech is related to the

production of syllables, investigations of neural speech tracking rarely distinguish between

lower-level acoustic (envelope modulation) and higher-level linguistic (syllable rate)

information. Here we manipulated speech intelligibility using noise-vocoded speech and

investigated the spectral dynamics of neural speech processing, across two studies at

cortical and subcortical levels of the auditory hierarchy, using magnetoencephalography.

Overall, cortical regions mostly track the syllable rate, whereas subcortical regions track the

acoustic envelope. Furthermore, with less intelligible speech, tracking of the modulation rate

becomes more dominant. Our study highlights the importance of distinguishing between

envelope modulation and syllable rate and provides novel possibilities to better understand

differences between auditory processing and speech/language processing disorders.
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INTRODUCTION

Intensity modulations of the acoustic envelope reflect the most prominent feature of the

acoustic speech stream. Synchronization of neural activity with these modulations is vital

for speech comprehension (1–4). As the acoustic modulation of speech and the production

of syllables is correlated (5), investigations of neural speech tracking rarely distinguish

between the lower-level acoustic and higher-level linguistic information. However, while the

temporal scale of the acoustic modulation (~4-5 Hz) is remarkably similar across languages,

speakers, and speaking conditions (for reviews see 5, 6), the rate at which syllables are

produced can vary significantly across (and within) languages (7), dialects and speaking

conditions (8). Therefore, it remains unclear whether and how the brain differentially tracks

low-level acoustic and linguistic information during natural continuous speech.

Distinguishing these aspects more clearly may also be important in gaining a better

understanding of the neural processes separating auditory processing disorders (e.g.

hearing loss) from language processing disorders (e.g. developmental dyslexia).

The ability to process meaningful information from an acoustic sound stream becomes

especially important in difficult listening situations. While some studies indicate a positive

relationship between speech intelligibility and the synchronization of brain activity with the

speech envelope (neural speech tracking) in the low-frequency range (1–4) others have

reported inverse effects (9, 10). A recent study even suggested an inverted u-shaped

relationship, where synchronization increases when speech is mildly degraded and

decreases as speech becomes unintelligible (11). This wide range of (partly contradicting)

results is suggestive of a complex relationship between the intelligibility of speech and the

related neural dynamics of speech tracking.

One source of these seeming inconsistencies may be caused by the interpretation of

band-limited differences, conflating periodic (center frequency, power, bandwidth) and

aperiodic (offset, exponent) properties of the underlying signal (12). In fact, both the

acoustic envelope of speech and electrophysiological measurements of neural activity

possess an overall 1/f-like spectrum (13, 14). This 1/f-like pattern is also at times present in

the low-frequency coherence/correlation spectrum between both signals (e.g. see 1, 9, 11).

Recently, several approaches were proposed to separate periodic from aperiodic

components of electrophysiological activity (IRASA (15); FOOOF (12)). We applied one of

these approaches (FOOOF) to speech tracking, to parametrize the periodic components

underlying low-frequency speech-brain coherence, such as the center frequency, the

relative height of the coherence peak, and its bandwidth (~tuning). Commonly, when

investigating neural speech tracking these parameters are not separated from the aperiodic
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components of the coherence spectra. Instead (band/-averaged) contrasts over coherence

spectra across several experimental conditions are computed, conflating the periodic and

aperiodic components underlying speech-brain coherence. We propose that the periodic

components (center frequency, relative height of the coherence peak, bandwidth) of

speech-brain coherence offer a better estimate of neural speech tracking than broadband

speech-brain coherence in the conventional frequency ranges. Therefore, it may be

beneficial to investigate these parameters separately to better understand how neural

activity tracks lower-level and higher-level information in a continuous speech stream and

how this tracking is influenced by speech intelligibility.

Here, we applied this approach to two separate studies in which speech intelligibility was

parametrically controlled via vocoding (3-, 7-Channels or no vocoding). Vocoding (16) is a

popular technique to manipulate the intelligibility of speech that allows for high parametric

control, while only moderately influencing the acoustic envelope of the signal (2). We

captured the spectral dynamics of neural speech processing at cortical and subcortical

levels (17) of the auditory hierarchy using magnetoencephalography (MEG). We observed

that low-frequency speech brain coherence in accordance with previous results (1–4)

declines with a decrease in intelligibility. However, parametrization of the coherence spectra

revealed that this effect was mainly driven by the aperiodic components. The periodic

components that are actually reflective of neural speech tracking (as opposed to

band-limited coherence differences) were characterized by a narrower frequency tuning of

the low-frequency coherence peak of vocoded speech along with an increase of its center

frequency. The latter effect points to a shift of cortical tracking away from the syllabic rate

towards the modulation rate of the acoustic envelope as vocoding increased. This effect is

also seen for subcortical regions, although tracking is here overall dominated by the

modulation rate.

RESULTS

Task performance declines with speech intelligibility

Subjects (N=55 across 2 experiments; Fig. 1B,C) listened to an audiobook (“Das Märchen”;

Goethe, 1795) narrated by a female speaker whilst seated in the MEG. Parts of the

audiobook presented were noise-vocoded (Fig. 1A; 7-Chan, 3-Chan). Vocoding levels were

either kept constant throughout the audio presentation (Study#1; Fig. 1B) or changed

intermittently (Study#2; Fig. 1C) to test the influences of vocoded speech on neural speech

tracking under two different conditions. At the end of each audio presentation, subjects

were presented with two nouns from which they had to pick the one they perceived in the
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previous sentence. The audio presentations were embedded in blocks that varied between

3.5 and 9 minutes (see Methods & Materials for a detailed account). Due to the overall low

number of behavioral responses, we added an additional behavioral assessment (adjusted

for each study) to investigate how vocoding influences speech comprehension. The task

was similar to the one performed in the actual measurement but consisted of a larger

amount of shorter trials (24; see Materials & Methods for a detailed account). Due to

technical difficulties, only a subset (N=39) of our subjects participated in these

assessments.

Task performance declined in both experiments with speech intelligibility, recognizable by a

decrease in the mean hit rate. A one-way repeated measures ANOVA across the three

conditions revealed a primary effect for Study#1 (F(2, 48) = 44.583, pggeisser = 7.35e-09, ηp
2 =

0.65) and Study#2 (F(2, 26) = 24.536, p = 1e-06, ηp
2 = 0.654). Comparing the different

vocoding levels with each other showed higher hit rates for unvocoded stimuli than for

stimuli vocoded with 7-Channels (Study#1, z(24) = 2.916, pfdr = 0.0035, d = 0.853; Study#2,

z(13) = 2.566, pfdr = 0.0102, d = 1.39) or 3-Channels (Study#1, z(24) = 3.955, pfdr = 7.7e-05, d

= 2.151; Study#2, z(13) = 2.720, pfdr = 0.0065, d = 2.280). Whereas stimuli vocoded with

7-Channels showed higher hit rates than stimuli vocoded with 3-Channels (Study#1, z(24) =

3.955, pfdr = 0.0002, d = 1.491; Study#2, z(13) = 2.572, pfdr = 0.0101, d = 1.265). Across all

conditions hit rates differed significantly from chance (Study#1, Fig. 1B; Study#2, Fig. 1C):

for unvocoded speech (Study#1, z(24) = 4.838, pfdr = 3.932e-06; Study#2, z(13) = 3.742, pfdr

= 0.0005), for 7 vocoding channels (Study#1, z(24) = 4.483, pfdr = 1.103e-05; Study#2, z(13) =

3.355, pfdr = 0.0011) and for 3 vocoding channels (Study#1, z(24) = 3.625, pfdr = 0.0003;

Study#2, z(13) = 3.105, pfdr = 0.0019). This shows that while speech comprehension

gradually decreases with increases in vocoding, speech was still intelligible even when only

3-Channels were used to vocode the presented audio files.
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Fig. 1 Task performance declines with speech intelligibility (A) An excerpt from the audiobook
presented with the corresponding speech envelope (Original) and with the envelopes of the vocoded
audio stimuli (7-Chan, 3-Chan) and the averaged modulation spectra of the audio streams. (B) In
Study#1 subjects listened either to a continuous segment of clear or vocoded speech. (C) In Study#2
short segments of vocoded speech ~6-18 s were embedded in an otherwise clear speech stream
(~1-3 minute duration). In both studies, subjects were presented with two nouns at the end of each
stimulus. They were further instructed to pick the one they perceived in the previous sentence. Hit
rates declined in both experiments with a decrease in speech intelligibility.

Speech brain coherence declines with speech intelligibility

To investigate how a loss of speech intelligibility via noise-vocoding influences the neural

dynamics of speech tracking we measured the coherence between the speech envelope

and the related cortical activity (see coherence spectra in Fig. 2A).

Comparisons of the coherence spectra across the three conditions (Original, 7-Channels

and 3-Channels) using a cluster-corrected repeated-measures ANOVA, revealed a

significant difference in the low-frequency range (averaged between 2 and 7Hz) for both

Study#1 (p = 0.0004) and Study#2 (p = 9e-05). This difference was strongest in right superior

temporal gyrus for both Study#1 and #2. Both in Study#1 and #2 listening to the unaltered

audio resulted in the strongest speech-brain coherence, while the stimuli with a strong

degradation (3-Channels) elicited the weakest coherence (Fig. 2C & 2F). Listening to the

unaltered (“Original”) audio files elicited stronger speech-brain coherence than listening to

speech vocoded with 7-Channels in Study#1 (t(27) = 2.519, pfdr = 0.018, d = 0.467) but not

in Study#2 (t(26) = 1.425, pfdr = 0.166, d = 0.307). However, listening to the unaltered

(“Original”) audio files elicited a stronger coherence than listening to speech in the

3-Channel condition (Study#1, t(27) = 6.083, pfdr = 3e-06, d = 1.623; Study#2, t(26) = 7.451,

pfdr = 1.959e-07, d = 1.787). Listening to the 7-Channels condition elicited higher levels of
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speech-brain coherence than listening to the 3-Channels condition (Study#1, t(27) = 6.238,

pfdr = 3e-06, d = 1.446; Study#2, t(26) = 7.021, pfdr = 2.802e-07, d = 1.599).

In sum, these results show that both intermittent and continuous degradation similarly affect

low-frequency speech brain coherence. In both experimental designs, speech brain

coherence decreased as speech became less intelligible. Comparing the decrease in

coherence through vocoding across studies revealed that this decrease was not different

across both studies (U = 297, p = .175, r = .214). At first glance, these results are in conflict

with a previous analysis of Study#1 (11). The main difference between the previous and the

current analysis of Study#1 can primarily be attributed to different filter settings (lower

cut-off for the high-pass filter in the current analysis) during preprocessing that affected the

offset and exponent of the speech-brain coherence spectrum differently (see Discussion). In

the present study, these changes were applied to allow for better modeling of the periodic

and the aperiodic components of the coherence spectrum. Interestingly, further analysis of

these components showed that the aperiodic components explain most of the variance

(Offset/Exponent; Study#1, r2 = 0.83/0.67; Study#2, r2 = 0.36/0.32) of the averaged (2-7Hz)

low-frequency speech-brain coherence in both studies (see Supplementary Materials; Fig.

S2). This illustrates that analysing coherence differences in a band-limited range may be

strongly influenced by aperiodic differences that do not necessarily reflect neural tracking of

sound or linguistic information in the relevant frequency range. Depending on the filter

settings, these aperiodic components may heavily impact the results. This observation is

especially important for investigations that focus on slow and infraslow modulations and

highlights the necessity to separate periodic from aperiodic contributions.
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Fig. 2 Speech brain coherence declines with speech intelligibility (A,D) Speech-brain coherence
spectra for the three conditions averaged across all voxels. (B,E) Source localizations of degradation
effects on speech-brain coherence (2-7Hz) during acoustic stimulation across three conditions
(Original, 7-Chan & 3-Chan) in bilateral temporal and medial frontal regions. (C,F) Individual
coherence estimates (averaged) of the three vocoding conditions extracted at voxels showing a
significant difference using a cluster-corrected permutation test. Bars represent 95% confidence
intervals, pfdr < 0.05*, pfdr < 0.01**, pfdr < 0.001***

Declining speech intelligibility increases the center frequency of neural speech

tracking along with a sharper tuning

Both the speech envelope and electrophysiological signals (recorded using EEG/MEG) are

characterized by an overall 1/f-like spectrum (13, 14). This appears to also be evident in the

coherence estimation between both signals (independent of the speech-relevant peak at

low frequencies; see Fig. 2A,D). To quantify relevant aspects of the periodic components of

speech tracking we extracted the most prominent peaks of the coherence spectra in the

low-frequency range across all virtual channels in which we observed a significant

difference across vocoding levels (see Fig. 2B, E). This was operationalized by using

FOOOF (12) to first flatten the coherence spectrum and then compute Gaussian model fits

to extract peaks. For each subject, the average relative magnitude of the coherence peak,

the bandwidth (~tuning) and center frequency of the extracted peaks (Fig. 4) were

computed and compared within subjects and across the three conditions (Original,

7-Channels and 3-Channels) using a repeated-measure ANOVA.
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This analysis showed that the actual magnitude of the extracted peaks did not differ across

the three vocoding conditions in both studies (Study#1, F(2, 54) = 0.522, p = 0.596, ηp
2 =

0.019; Study#2, F(2, 50) = 2.18, p = 0.124, ηp
2 = 0.08). However, we noticed a significant

difference across the center frequencies of the detected peaks over the three conditions in

both studies (Study#1, F(2, 54) = 48.628, p = 8.365e-13, ηp
2 = 0.643; Study#2, F(2, 50) =

5.28, p = 0.008, ηp
2 = 0.175). Comparing the different vocoding levels with each other

showed lower center frequencies for unvocoded stimuli than for stimuli vocoded with

7-Channels (Study#1, t(27) = -7.122, pfdr = 1.753e-07, d = -1.271; Study#2, t(25) = -2.756, pfdr

= 0.016, d = -0.613) and with 3-Channels (Study#1, t(27) = -8.797, pfdr = 6.18e-09, d = -1.918;

Study#2, t(25) = -2.946, pfdr = 0.0161, d = -0.7). The two vocoding conditions did differ

significantly from each other in Study#1 (t(27) = -3.227, pfdr = 3.273e-03, d = -0.544) but not

in Study#2 (t(25) = -0.114, pfdr = 0.91, d = -0.023) with lower center frequencies for speech

vocoded with 7-Channels compared to speech vocoded with 3-Channels.

For the bandwidth of the detected peaks, differences across the three conditions were also

observed both in Study#1 (F(2, 54) = 18.808, p = 6.329e-07, ηp
2 = 0.411) and Study#2 (F(2,

50) = 5.444, p = 0.007, ηp
2 = 0.179). In the continuous design, (Study#1) the tuning

bandwidth for unvocoded stimuli was broader than for stimuli vocoded with 7-Channels

(t(27) = 3.219, pfdr = 0.003, d = 0.666) and with 3-Channels (t(27) = 5.196, pfdr = 5.4e-05, d

=1.422 ). In the intermittent design (Study#2), the direction of the effect was similar, yet only

significant for the difference between unvocoded speech and speech vocoded with

3-Channels (t(25) = 3.398, pfdr = 0.007, d = 0.983) and not for the difference between

unvocoded speech and speech vocoded with 7-Channels (t(25) = 0.699, pfdr = 0.491, d =

0.201). Speech vocoded with 7-Channels had a broader tuning bandwidth than speech

vocoded with 3-Channels across both studies (Study#1, t(27) = 3.592, pfdr = 0.002, d =

0.758; Study#2, t(25) = 2.668, pfdr = 0.02, d = 0.774).

In sum, these results show that intermittent and continuous degradation similarly affect the

periodic components of speech-brain coherence that are putatively reflective of neural

speech tracking. Interestingly, the difference between speech tracking across different

levels of intelligibility was not driven by the relative height of the peak in the coherence

spectrum, but rather by a sharper tuning (Fig. 4; Bandwidth) combined with an increase of

center frequencies of the coherence spectra (Fig. 4; Center Frequency).
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Fig. 3 Declining speech intelligibility increases the center frequency of neural speech tracking
along with a sharper tuning (A) Peak parameters influencing a significant coherence difference
across experimental conditions. (B) The averaged relative magnitude, center frequencies and
bandwidth of peaks extracted from the coherence spectra for each subject were compared across
three conditions (Original, 7-Chan & 3-Chan). Bars represent 95% confidence intervals, pfdr < 0.05*,
pfdr < 0.01**, pfdr < 0.001***

Neural speech tracking shifts from syllabic to modulation rate as speech intelligibility

decreases

As speech intelligibility decreases we noted an increase of the center frequencies of

speech-brain coherence. We also extracted the center frequencies of the modulation

spectra from the acoustic envelopes of the audiobook for the three conditions (Original,

7-Channels, 3-Channels as in (9); see Fig. 4A) and computed the realized syllable rate of the

presented audiobook (18). Although, there was generally a strong overlap over the

modulation spectra of the speaker across vocoding levels (see Fig. 1A), a one-way repeated

measures ANOVA across the extracted center frequencies and the syllable rate of the audio

signal revealed a significant main effect (F(3, 1098) = 454.104, p = 2.68e-175, ηp
2 = 0.554). All

conditions differed significantly from each other (see Fig. 4 & Table S1 for a related post-hoc

analysis). The rate at which the syllables were produced (Mdn = 4 Hz) was lower than the

center frequencies of the modulation spectra of the audio signal 3-Channels (Mdn = 5.16
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Hz), 7-Channels (Mdn = 5.5 Hz) and clear speech condition (Mdn = 6.16 Hz). The increase

in center frequencies of speech-brain coherence along with the differences in modulation

and syllable rates suggests that the brain may be driven more by acoustic or linguistic

information depending on the signal quality. This is intuitive, as with increased vocoding it

also becomes more difficult to extract linguistically meaningful information such as phrase

boundaries or syllables. This mainly leaves the modulation intensities of the acoustic

speech envelope as an information source to the listener. The following analysis aims at

addressing this point more directly.

We trained and tested an ensemble of k-nearest neighbor classifiers to test whether neural

speech tracking shifts from the syllabic (linguistic information) to the modulation rate

(acoustic information) as speech becomes less intelligible. This analysis was performed in a

nested 5-fold cross-validation (see Methods for a detailed account) to differentiate between

the center frequencies of the modulation spectra for the three conditions (Original,

7-Channels, 3-Channels) and the realized syllable rate of the speaker (see Fig. 4A). The

results of the nested cross-validation procedure (Fig. 4B) show that the classifiers can

predict with a high accuracy whether a given frequency in hertz can be related either to the

modulation or realized syllable rate of the speaker. We then used the weights of these

classifiers to predict whether the extracted center frequencies of speech brain coherence

were related more closely to the realized syllable rate or the modulation rate of our speaker.

This analysis showed that in the unaltered clear speech condition, neural speech tracking

was closely related to the syllable rate. However, as intelligibility decreases the probability

that the classifiers predict that a given center frequency is related rather to the modulation

as opposed to the syllabic rate increases.

The results of a two-way repeated measures ANOVA revealed that there was a significant

main effect for the factors tracking (Modulation/Syllable rate) in both studies (Study#1 F(1,

27) = 16.175, pggeisser = 0.0004, ηp
2 = 0.375; Study#2 F(1, 25) = 18.999, pggeisser = 0.0002, ηp

2 =

0.432). The probability that neural speech tracking is reflective of the syllable rate (linguistic

component) was overall higher than the tracking of the modulation rate (acoustic

component). There was no significant main effect of Vocoding (Original, 7-Channels,

3-Channels; Study#1 F(2, 54) = 0, p = 1; Study#2 F(2, 48) = 0, p = 1) this is intuitive as the

overall probability in each condition is 0.5 when ignoring the factor tracking

(Modulation/Syllable rate). However, there was a significant interaction effect for the factors

tracking (Modulation/Syllable rate) and vocoding (Original, 7-Channels, 3-Channels) across

both Studies (Study#1 F(2, 54) = 47.340, pggeisser = 1.387e-11, ηp
2 = 0.637; Study#2 F(2, 50) =

10.235, pggeisser = 0.0006, ηp
2 = 0.29). This suggests that while speech intelligibility decreases
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and less linguistically meaningful information is present, neural speech tracking starts to

drift away from the syllabic rate towards the modulation rate of speech.

Fig. 4 Neural speech tracking shifts from syllabic to modulation rate as speech intelligibility
decreases (A) Center frequencies extracted from the acoustic envelopes of clear and vocoded
speech (green) and the syllabic rate (yellow). Although, we generally noted a strong overlap across
the modulation spectra (see Fig. 1A) the extracted center frequencies of the acoustic envelopes
differed not only significantly from the syllabic rate, but also across vocoding levels. (B) An ensemble
of k-nearest neighbors classifiers were trained in a nested cross validation scheme to decode the
modulation rate vs. the syllabic rate. (C) Classifiers applied to the center frequencies of the coherence
spectra to decode whether the tracking was either related to the tracking of the syllable or the
modulation rate of speech. Bars represent 95% confidence intervals, pfdr < 0.05*, pfdr < 0.01**, pfdr <
0.001***

Modelling of subcortical activity reveals a predominant tracking of the modulation

rate of speech

Recent studies using non-invasive electrophysiology have shown that auditory activity at

putative subcortical processing stages can be measured for complex natural sounds (such

as speech; 19–22). Furthermore, this subcortical activity can even be modulated by

attention (19, 20, 23). Interestingly, top-down attentional modulations of auditory activity
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can already be detected at the hair cells in the inner ear measured as otoacoustic activity

(faint sounds emitted by the outer hair cells; see 24). Other studies have shown that even

subcortical nuclei on the auditory pathway are behaviorally relevant for speech recognition

(medial geniculate bodies; 25). Using a recently developed modeling procedure (17), we

further aimed to investigate whether differences in speech intelligibility can be already

observed at putative subcortical processing stages.

We used a localizer measurement (17) to compute individualized weights (per subject; note

that the localizer was only available for Study#2). These weights reflect activity along the

auditory hierarchy, resulting in 100 virtual channels ranging putatively from the auditory

nerve (channels 0-20) to early thalamo(-cortical) processing stages (channels 90-100). We

then applied these weights (see Material & Methods: Modelling of subcortical auditory

activity) to the epoched data from Study#2 to infer activity along the auditory hierarchy (see

spectral distribution in Fig. 5A). A cluster-corrected repeated-measures ANOVA across the

three conditions (Original, 7-Channels and 3-Channels) and within subjects revealed a

significant difference in the low frequency range (2-7Hz) between virtual channels that are

reflective of subcortical activity at early stages of auditory processing (putatively auditory

nerve/cochlear nucleus, p = 0.0045). Listening to the the unaltered (“Original”) audio files

elicited higher speech-brain coherence than listening to the 7-Channels (t(24) = 3.2, pfdr =

0.005, d = 0.798) and the 3-Channels condition (t(24) = 4.282, pfdr = 0.0008, d = 1.212).

However, the two vocoding conditions did not differ significantly from each other (t(24) =

1.547, pfdr = 0.135, d = 0.488).

We further investigated the periodic components that are reflective of speech tracking by

extracting peaks from the coherence spectra to analyse the corresponding magnitude of the

coherence peak, the bandwidth and center frequencies. A repeated-measures ANOVA

across conditions (Original, 7-Channels and 3-Channels) and within subjects revealed no

significant differences for the relative magnitude of the coherence peak (F(2, 48) = 0.335, p

= 0.717, ηp
2 = 0.014) and the bandwidth of the extracted peaks (F(2, 48) = 0.192, p = 0.826,

ηp
2 = 0.008). However, significant differences were found across conditions for the center

frequencies of the peaks (F(2, 48) = 3.213, p = 0.049, ηp
2 = 0.118). Listening to the unaltered

(“Original”) audio files was associated with significantly lower center frequencies than

listening to the 3-Channel condition (t(24) = -3.062, pfdr = 0.016, d = -0.664) but not than

listening to the 7-Channel condition (t(24) = -0.767, pfdr = 0.450, d = -0.204) at subcortical

processing stages. The two vocoding conditions did not differ significantly from each other

(t(24) = -1.528, pfdr = 0.21, d = -0.425).
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We applied the pre-trained classifiers (see Fig. 4) to detect whether the tracking of speech

at putatively early auditory processing stages could be either related to the modulation rate

of speech or the syllabic rate. We found that modelling of the related subcortical activity

reveals predominantly a tracking of the acoustic modulation rate of speech (F(2, 48) =

23.220, p = 6.6e-05, ηp
2 = 0.492), contrary to the previous analysis mainly reflecting cortical

effects (see Fig. 4). However, similar to the previous analysis reflecting mainly cortical

activity there was an interaction effect between tracking and vocoding, with decreasing

intelligibility the probability increases that the classifiers rather predict that the center

frequency is related to the modulation as opposed to the syllabic rate (F(2, 48) = 6.947, p =

0.00224, ηp
2 = 0.224).

In sum, these results suggest that differences in speech tracking between clear and

vocoded stimuli already arise at subcortical processing stages. This difference in neural

speech tracking occurs at virtual channels that can be associated with subcortical activity

between the auditory nerve and cochlear nucleus. The extracted peaks at this level of

processing did not differ significantly from each other regarding the relative peak height of

the coherence (similar to cortical observations; see Fig. 4) and their tuning width (different to

cortical observations; see Fig. 4). Yet, the center frequency shift of these peaks showed a

similar effect when compared to cortical processing stages. As intelligibility decreased the

probability that the center frequencies could be related to the modulation opposed to the

syllable rate increased steadily. However, contrary to the cortical recordings, tracking across

different levels of intelligibility at subcortical processing stages was predominantly related to

the modulation rate of speech rather than the syllabic rate. This shows that although

tracking at a subcortical level is dominated by lower-level acoustic envelope modulations,

intelligibility also influences these hierarchically early responses.
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Fig. 5: Modelling of subcortical activity reveals a predominant tracking of the modulation
spectrum of speech (Ai) Speech-brain coherence spectra for the three conditions averaged across
all virtual channels. (Aii) The three conditions (Original, 7-Chan & 3-Chan) differed significantly at
virtual channels reflecting activity putatively related to the auditory nerve/cochlear nucleus (channels
16-20). (Aiii) Individual coherence (2-7Hz) extracted at channels 16-20 was highest for clear speech.
(B,C) Peak height, center frequencies and bandwidth of peaks extracted from virtual channels (16-20)
(D) Classifiers applied to the center frequencies of the coherence spectra to decode whether speech
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tracking was either related to the tracking of the syllable or the modulation rate of speech. Bars
represent 95% confidence intervals, pfdr < 0.05*, pfdr < 0.01**, pfdr < 0.001***

DISCUSSION

Speech tracking is modulated by the intelligibility of the sensory input. However, the pattern

of that modulation-frequently operationalized by band-limited coherence effects- is not

consistent across studies (see e.g. 9, 11, 26). This complicates a mechanistic

understanding of how speech tracking actually supports speech comprehension. Applying

a method to separate periodic from aperiodic components in the coherence spectrum, our

results yield a differentiated picture, indicating that intelligibility affects tuning-width and

center frequency of the periodic components in the low frequency range.

Band-limited speech-brain coherence declines with speech intelligibility

Here, we investigated the effects degraded speech has on the neural dynamics of speech

tracking using data from two slightly different experimental paradigms. In Study#1 speech

was displayed continuously at one of three different levels of intelligibility (Original,

7-Channels, 3-Channels; ~15s-3min). In Study#2 segments of degraded speech

(7-Channels, 3-Channels; ~6-18s) were embedded in a clear audio stream (Original;

~1-3min) as both studies produced comparable results, they will be discussed together. We

observed in accordance with previous results (1–4) that low frequency speech-brain

coherence declines with a decrease in intelligibility. However, other studies have reported a

variety of partly contradicting results (9–11). Our present results show that the reported

band-limited coherence spectra are very strongly related to the underlying aperiodic

components in the spectrum (see supplementary material). Since the field is mostly

interested in neural tracking of (relatively) periodic speech features around the syllable rate,

it is questionable whether band-limited coherences without consideration of the aperiodic

components are a viable measure for neural speech tracking.

Neural speech tracking shifts from syllabic to modulation rate as speech intelligibility

decreases

Interestingly, in the investigation of spectral power differences in electrophysiological

signals, a variety of contradicting results is also commonly reported for band-limited effects.

This appears to be caused by the conflation of periodic (center frequency, power,

bandwidth) and aperiodic (offset, exponent) properties of the underlying signal (12). This is

deemed problematic as periodic and aperiodic components of the signal can be linked to a

variety of different effects (12). Both the acoustic envelope of speech and

electrophysiological measurements of neural activity possess an overall (aperiodic) 1/f-like

spectrum (13, 14). This 1/f-like pattern is at times also found in the low-frequency
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coherence/correlation spectrum between both signals (e.g. see 1, 9, 11). We therefore

decomposed the speech-brain coherence spectra in their periodic and aperiodic

components using FOOOF (12), to better understand the relationship between the

intelligibility of speech and the related neural dynamics of speech tracking. Interestingly,

these investigations revealed that the aperiodic components (offset & exponent) explained

most of the variance observed in the coherence difference (at 2-7 Hz; see Fig. 2) across

vocoding levels (see Fig. S2). This highlights the importance of separating periodic from

aperiodic components in the speech-brain coherence spectra, as we were primarily

interested in investigating peaks in the coherence spectra (periodic components) that can

be related to neural speech tracking. Further investigations of the periodic components of

the low frequency coherence peak (center frequency, relative magnitude, bandwidth)

revealed that there was no difference across vocoding levels in the relative magnitude of the

coherence peak. Instead, the differences in neural speech tracking were rather caused by a

sharpening in the frequency tuning of the coherence peak of vocoded speech along with an

increase of the center frequencies of the observed peaks (see Fig. 3). Using a decoding

analysis, we were able to link the increase of the center frequencies to a shift in tracking

from higher-level linguistic to lower-level acoustic information of the speech stream. Our

analysis showed that as intelligibility decreases the probability that tracking is related to the

modulation (acoustic) rather than the syllabic rate (linguistic) of speech increases. This is

intuitive, as with decreased intelligibility it also becomes more difficult to extract

linguistically meaningful information such as phrase boundaries or syllables. This mainly

leaves the modulation intensities of the acoustic speech envelope as an information source

to the listener. As the acoustic modulation of speech is closely related to the production of

syllables (5), investigations of neural speech tracking are typically not making a distinction

between lower-level acoustic and higher-level linguistic information on the level of syllable

processing. However, while the modulation rate (acoustic property) of speech appears to be

exceptionally stable across languages and speaking conditions (5, 6), the syllable rate

(linguistic property) of speech differs depending on the language and the speaking

conditions (7, 8). This suggests that modulation rate and syllable rate are not terms that can

be necessarily used interchangeably. Therefore, distinguishing these properties more clearly

may be important to gain a better understanding of the neural processes separating

auditory processing disorders (e.g. hearing loss) from language processing disorders (e.g.

developmental dyslexia), which has been difficult based solely on neural speech tracking.

This difficulty may be linked to the variety of (partly contradicting) results within and across

auditory/linguistic processing disorders that relate to the neural dynamics of speech
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tracking. While a recent study was able to link hearing loss to a relative increase in speech

envelope tracking (compared to (age matched) normal hearing listeners (27)), previous

studies could not report enhanced envelope tracking in individuals with a

hearing-impairment (28, 29). Related to language proficiency, similar inconsistencies are

reported as non-native speakers appear to show an increased envelope tracking compared

to native speakers (10, 30). On the other hand, individuals suffering from developmental

dyslexia are reported to have lower synchronization with the speech envelope compared

with neurotypical individuals (31). This range of (partly contradicting) results again highlights

the complex relationship between the intelligibility of speech and the related neural

dynamics of speech tracking. Using the approach proposed here of decomposing

coherence spectra in their periodic and aperiodic components, it should be possible to gain

a more fine-grained view on the specific characteristics underlying the neural dynamics of

speech tracking. This may help in the future to better differentiate the neural signatures of

individuals suffering from auditory processing or language processing disorders.

Declining speech intelligibility goes along with a sharper frequency tuning

Apart from the intelligibility-dependent changes in the center frequencies of the coherence

peaks, we also noted a wider frequency tuning of speech tracking in clear as opposed to

vocoded speech. The width of this frequency tuning decreased with a loss in intelligibility.

As the syllabic rate of our speaker (~4Hz) differed from the modulation rate of her speech

stream (~5-6Hz; see Fig. 4), the narrowing in tuning may also be related to a loss in

linguistically meaningful information. This might suggest that in situations where speech is

clear, both linguistic (syllable rate) and acoustic information (modulation rate) were tracked

resulting in an increased bandwidth covering all relevant frequencies. As speech becomes

less intelligible and it becomes harder to extract linguistically meaningful information, the

bandwidth of the coherence peak narrows around the higher frequencies of the residual

acoustic modulation of speech. Furthermore, previous studies have shown that auditory

selective attention effects may arise from an enhanced tuning of receptive fields of

task-relevant neural populations (32, 33). Therefore, the observed narrower frequency

tuning could also be related to enhanced top-down auditory attention processes (34) in

situations where listening becomes more challenging.

Influences of aperiodic components on the neural dynamics of speech tracking

Investigating the parameters related to low frequency peaks in measurements of speech

brain coherence is offering a new and unique perspective to better understand the neural

dynamics underlying speech tracking. However, we also noticed that band-limited

differences in the speech-brain coherence spectra are strongly related to the underlying
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aperiodic components. This highlights the importance to separate periodic from aperiodic

components, as periodic and aperiodic components can be linked to a variety of different

effects (12). Commonly, aperiodic components of most signals have been considered as

noise and as such are often just removed from the overall signal. Especially for

low-frequency activity this can be easily achieved by spectrally normalising (whitening) the

signal via filtering (e.g. see 35). Different choices in filter settings however can also generally

accentuate different properties of a signal. For instance, in this study we reanalysed data

from a recent study (Study#1 (11)) using a larger time window for the coherence estimation

(4s instead of 2s; to obtain a better frequency resolution for low frequency speech tracking)

and a lower cut-off for the high-pass filter (0.1Hz instead of 1Hz). These changes were

intended to improve the model fit of FOOOF for the low frequency coherence spectra, but

also resulted in a different pattern for low frequency speech-brain coherence (compare Fig.

2ABC) with Fig. 2ab) in (11)). The previous analysis of Study#1 (11) showed that neural

speech tracking increases for mild decreases in intelligibility (putatively driven by an

increased listening effort) and then decreases as speech becomes increasingly

unintelligible. We now show that low frequency speech tracking gradually decreases with

intelligibility. This difference was mainly driven by changes in filter settings accentuating

different properties of the signal by putatively differently influencing the 1/f-like pattern of

low frequency speech-brain coherence. Similar to the analysis of power spectral densities,

1/f-like patterns in the coherence spectra also appear to play a striking role when

computing statistics across experimental conditions (see S2 for a comparison of slope and

offset for the data analysed in the present study). However, whether or not 1/f-like patterns

carry (in general) meaningful information is heavily debated. Nevertheless, recent studies

have shown that 1/f-like patterns in electrophysiological power spectra can change both

dependent on trait-like factors (age (36), ADHD (37) and schizophrenia (38)) and state-like

factors (e.g. differences over cognitive and perceptual states (39, 40).This suggests a

physiologically meaningful underpinning of 1/f-like neural activity. However, interpretations

related to the aperiodic patterns found in low frequency speech-brain coherence go beyond

the scope of the present study, as we were mainly focused on the distinction between the

processing of the syllabic rate and the modulation rate of speech related to peaks in the

speech-brain coherence spectra (periodic components). Perhaps aperiodic components of

speech-brain coherence could be modulated by slower components in the speech stream

reflecting higher level information (e.g. sentence or phrasal information), that become

increasingly lost with less intelligibility. Addressing this question should be the topic of

future investigations using paradigms in which these features are parametrically controlled
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(41). However, the present study illustrates that analysing coherence in a band-limited range,

even though more or less explicitly assumed, may not reflect neural tracking of sound or

linguistic information in the relevant frequency range. Instead, depending on the filter settings,

the aperiodic components may heavily impact the results. This is especially important for

investigations that focus on slow and infraslow modulations.

Modelling of subcortical activity reveals a predominant tracking of the modulation

spectrum of speech

Previous research has shown that not only cortical, but also subcortical regions play an

important role in language processing (42). These subcortical regions appear to be even

behaviorally relevant for speech recognition (medial geniculate bodies; 25). Here, we

generated individualized spatial filters reflective of subcortical auditory processing using a

localizer measurement (17). In principal, these filters can be applied to a separate

measurement to infer subcortical auditory activity. Using this modeling procedure, we

aimed to investigate whether differences in speech intelligibility can already be observed at

putative subcortical processing stages. Similarly to the activity from cortical processing

stages, we noticed a shift of the center frequency of the extracted peaks. As intelligibility

decreased, the center frequencies of the detected peaks increased steadily. However,

contrary to the cortical recordings, the applied decoding analysis showed that the center

frequencies of the speech-brain coherence peaks (reflecting neural speech tracking) across

different levels of intelligibility at subcortical processing stages was predominantly related to

the modulation rate of speech opposed to the syllabic rate. This shows that although

tracking at a subcortical level is overall higher for the low-level acoustic envelope

modulation, intelligibility also influences these hierarchically early responses (see Fig. 5D).

This highlights the potentially important yet often overlooked role of subcortical nuclei in

speech and language processing.

CONCLUSION

In this study, we introduce a novel way to investigate neural speech tracking by utilizing an

approach recently introduced to parametrize electrophysiological power spectra (12). Our

results show that cortical regions mostly track the syllable rate, whereas subcortical regions

are driven by the acoustic modulation rate. Furthermore, the less intelligible speech

becomes, the more dominant the tracking of the modulation rate becomes. Our study

underlines the importance of making a distinction between the acoustic modulation and

syllable rate of speech and provides novel possibilities to better understand differences

between auditory processing and speech/language processing disorders. In general,
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parametrization of coherence spectra may offer a new and unique perspective to investigate

the parameters that drive neural speech tracking across a variety of listening situations.
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MATERIALS & METHODS

Subjects

Twenty‐eight individuals participated in Study#1 (female = 17, male = 11). Mean age was

23.82 years (standard deviation, SD = 3.71) with a range between 19 and 37 years. In

Study#2 twenty‐seven individuals participated (female = 11, male = 16). Due to technical

difficulties one subject was removed from Study#2. Mean age was 23.38 years (SD = 4.15)

with a range between 19 and 38 years. Across both studies we recruited only German

native speakers and people who were suitable for MEG recordings, that is, without

nonremovable ferromagnetic metals in or close to the body. Participants provided informed

consent and were compensated monetarily or via course credit. Participation was voluntary

and in line with the declaration of Helsinki and the statutes of the University of Salzburg.

The study was approved by the ethical committee of the University of Salzburg.

Stimuli

For the MEG recording, audio files were extracted from audio–visual recordings of a female

speaker reading Goethe's “Das Märchen” (“The Tale”; 1795). In Study#1, lengths of 12

stimuli varied between approximately 15 s and 3 min, with two stimuli of 15, 30, 60, 90, 120

and 150 s, and 6 of 180 s. Stimuli were presented in 3 blocks with 4 stimuli in each block. In

Study#2, two or three segments of degraded speech (7-Channels, 3-Channels; 4.8-21.6 s)

were embedded in 15 clear audio streams. The lengths of the 15 stimuli varied between 60

s and 3 min with two stimuli of 60, 90, 120, and 9 of 180 s. Stimuli were presented in 5

blocks with 3 stimuli in each block. In both studies, each stimulus ended with a two‐syllable

noun within the last four words. In order to keep participants’ attention on the stimulation,

we asked participants after each stimulus to choose from two presented two‐syllable

nouns, the one that had occurred within the last four words of a sentence. The sequence of

all the audio stimuli was randomized across participants, not following the original storyline

of the audiobook. The syllable rate of the stimuli varied between 3.1 and 4.3 Hz with a

median of 4 Hz (estimated using Praat (18)).

Vocoding

Noise‐vocoding of all audio stimuli was done using the vocoder toolbox for MATLAB (43),

and we created conditions with 7 and 3 channels (Fig. 1A). Vocoding for both studies was

performed as described in (11). For the vocoding, the waveform of each audio stimulus was

passed through two Butterworth analysis filters (for 7 and 3 channels) with a range of

200–7,000 Hz representing equal distances along the basilar membrane. Amplitude

envelope extraction was done with half‐wave rectification and low‐pass filtering at 250 Hz.
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The envelopes were then normalized in each channel and multiplied with the carrier. Then,

they were filtered in the band and the RMS of the resulting signal was adjusted to that of the

original signal filtered in that same band. Auditory stimuli were presented binaurally using

MEG‐compatible pneumatic in‐ear headphones (SOUNDPixx, VPixx technologies).

Behavioral Assessment

Due to the low number of behavioral responses from the MEG part, we added an additional

behavioral assessment. For Study#1 and Study#2, 24 audio files were created from

recordings of another female native German speaker reading Antoiné St. Exupery’s “The

little prince” (1943). Each stimulus contained one sentence (length between 2-15 s) and was

either presented unvocoded with 7-channel vocoding or 3-channel vocoding. For Study #1,

the stimuli in the vocoding condition were vocoded from start to the end; for Study #2, the

stimuli were vocoded only in the last 0.6-5 s. Comparable to both MEG experiments, the

stimuli also ended with a two-syllable noun within the last four words, and participants were

asked to choose the last noun they heard between two nouns on the screen. The sequence

of all audio stimuli was random across the participants, not following the storyline. In each

study, the hit rates across the three vocoding conditions were compared using one-way

repeated measures ANOVAs. Post-Hoc analysis was performed using FDR (44) corrected

Wilcoxon signed-rank tests (as the assumptions for paired samples t-tests were violated).

Data Acquisition

Data acquisition and parts of the data analysis for Study#1 and #2 closely resemble, with

minor exceptions, the one described in two previous studies (11, 45). Magnetic brain

activity was recorded using a 306-channel whole head MEG system (TRIUX, Elekta Oy,

Finland) with a sampling rate of 1 kHz for the main experiments (Study#1 and Study#2) and

with a sampling rate of 10 kHz for the brainstem localizer in Study#2 (see Backward

Modeling for further information). The system consists of 204 planar gradiometers and 102

magnetometers. Before entering the magnetically shielded room (AK3B, Vakuumschmelze,

Hanau, Germany), the head shape of each participant was acquired with >300 digitized

points on the scalp, including fiducials (nasion, left and right pre-auricular points) with a

Polhemus FASTRAK system (Polhemus, Vermont, USA). The auditory brainstem response

was measured with a single electrode located on FpZ based on the electrode placement of

the international 10–20-System (46). A ground electrode was placed on the forehead at

midline and a reference on the clavicle bone of the participants.
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Data Analysis

Preprocessing

All data analysis steps for Study #1 and #2 were performed similarly and are therefore

reported together. The acquired data was Maxwell-filtered using a Signal Space Separation

(SSS) algorithm (47) implemented in the Maxfilter program (version 2.2.15) provided by the

MEG manufacturer to remove external magnetic interference from the MEG signal and

realign data to a common standard head position (-trans default Maxfilter parameter). The

Maxwell-filtered and continuous data was then further analysed using the FieldTrip toolbox

(48) and custom built Matlab routines. First, the data was high-pass filtered at 0.1 Hz using

a finite impulse response (FIR) filter (Kaiser window). For extracting physiological artefacts

from the data, 50 independent components were calculated from the filtered data. Via visual

inspection, the components showing eye-movements & heartbeats were removed from the

data. On average across studies, 3 components were removed per subject (SD = 1). Then,

trials related to each of the three conditions (Original, 7-Channels and 3-Channels) were

defined. The acoustic speech envelope was extracted and aligned with the measured MEG

data (11). Afterwards data was cut into segments of 4 seconds to increase signal-to-noise

ratio.

Source Analysis

Anatomical template images were warped to the individual head shape and brought into a

common space by co-registering them based on the three anatomical landmarks (nasion,

left and right preauricular points) with a standard brain from the Montreal Neurological

Institute (MNI, Montreal, Canada) (49). Afterwards a single-shell head model (50) was

computed for each participant. As a source model, a grid with 1 cm resolution and 2982

voxels based on an MNI template brain was morphed into the brain volume of each

participant. This allows group-level averaging and statistical analysis as all the grid points in

the warped grid belong to the same brain region across subjects. Common linearly

constrained minimum variance (LCMV) beamformer spatial filters (51) were then computed

on the preprocessed MEG data and applied to project the single-trial time series into source

space. The number of epochs across conditions was equalized (by the lowest number of

epochs across conditions within each study). We applied a frequency analysis to the 4-s

segments of all three conditions (original, 7‐Chan and 3‐Chan) calculating multi‐taper

frequency transformation (dpss taper: 0–25 Hz in 0.25 Hz steps, 4 Hz smoothing, no

baseline correction). For the coherence calculation between each virtual sensor and the

acoustic speech envelope, 0.25-Hz frequency steps were chosen. Then, the coherence
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between activity at each virtual sensor and the acoustic speech envelope during acoustic

stimulation in the frequency spectrum was calculated and averaged across trials. We refer

to the coherence between acoustic speech envelope and brain activity as neural speech

tracking. Most studies on neural speech tracking report findings of frequencies below 7 Hz;

we, therefore, analysed frequencies between 2 and 7 Hz. We applied repeated‐measures

ANOVAs for each frequency within the range (ft_statfun_depsamplesFunivariate in FieldTrip)

to test modulations of neural measures across the different intelligibility levels. To control for

multiple comparisons, a nonparametric cluster-based permutation test test was undertaken

(52). The test statistic was repeated 10,000 times on data shuffled across conditions and

the largest statistical value of a cluster coherent in source space was kept in memory. The

observed clusters were compared against the distribution obtained from the randomization

procedure and were considered significant when their probability was below 5%. Effects

were identified in source space. All voxels within the cluster and the corresponding

individual coherence and power values were extracted and averaged. Post hoc paired

samples t tests between conditions were corrected for multiple comparisons by using the

FDR method (44) implemented in Pingouin (53). Slopes of the change in coherence along

with changes in intelligibility were compared across studies using a Mann-Whitney U test.

For visualization, source localizations were averaged across the 2–7 Hz frequency bands

and mapped onto inflated surfaces as implemented in FieldTrip.

Peak Analysis

For further analysis of the coherence spectra in source space, we extracted the most

prominent peaks in the low frequency range (2-7Hz) across all virtual channels in which we

observed a significant difference across vocoding levels (579 channels for Study#1 and 417

for Study#2; see Fig. 2 B, E). This was operationalized by using FOOOF (12) to flatten the

coherence spectrum at each virtual channel and compute Gaussian model fits to extract

peaks. For each subject, the average peak height, bandwidth and center frequency of the

extracted peaks (see Fig. 3) were computed. Peaks were only considered if they exceeded a

threshold relative to the aperiodic slope of 1.5 standard deviations (peak_threshold=1.5).

Bad model fits were dropped (one bad model fit in Study#2). If the residual model fits

differed from the rest based on the R2 (between the input spectrum and the full model fit), or

error of the full model fit by more than 2.5 SDs, they were dropped. The most prominent

peak in the range between 2 and 7 Hz was extracted per virtual channel. Peak and

aperiodic parameters were then averaged across all virtual channels and further analysed

using repeated‐measures ANOVAs and dependent-samples t-tests (as implemented in
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Pingouin (53)) for post-hoc analysis (corrected for multiple comparisons using the FDR

method (44)).

Analysis of modulation- and syllable rate

We estimated the modulation and syllabic rate of all twelve audio files for each condition

(Original, 7-Channels, 3-Channels). Audio files were transformed to 6-s duration segments

(as in (6)) resulting in 386 audio segments per condition (Original, 7-Channels, 3-Channels).

The modulation rates for the three different levels of intelligibility were then extracted using

custom matlab scripts taken from (6). The center frequency of each spectrum was further

extracted by taking the global maximum value of each modulation spectrum. The realized

syllable rate of the speaker was computed using Praat (18). The center frequencies of the

three conditions and syllable rate were then compared using repeated‐measures ANOVAs

and dependent-samples t-tests (as implemented in Pingouin (53)) for post-hoc analysis

(corrected for multiple comparisons using the FDR method (44)). Afterwards an ensemble

(50 classifiers) of k-nearest neighbor classifiers were trained in a nested 5-fold

cross-validation (54) to decode whether a given frequency can be associated with either the

modulation or the syllabic rate. We decided to use the k-nearest neighbor classifiers as data

had only a low number of features (i.e. one center frequency per audio segment); a

classification problem usually solved well by a k-nearest neighbor approach (55). The

repeated nested cross-validation procedure was chosen to avoid overfitting of

hyperparameters. Each external cross-validation loop was embedded in a repeated

stratified k-folding procedure (RepeatedStratifiedKFold; 25 repetitions) the best number of

neighbors was determined by searching the hyper-parameter space for the best

cross-validation (CV) score of a kNN model using the implemented GridSearchCV function

and by computing the area under the receiver operating characteristic curve (roc-auc) as

loss-function. Confusion matrices were then computed on a separated test set (10% of all

data) that was not part of the initial inner cross-validation to avoid overfitting of

hyperparameters. Confusion matrices of each inner loop were kept in memory and

averaged across all repetitions (150 repetitions). The procedure was implemented using

sci-kit learn(56) and custom written python scripts. The code used for the analysis can be

found in the corresponding authors gitlab repository (see Data & Code Availability). The

trained classifiers were subsequently applied to the center frequencies from speech-brain

coherence (see Peak Analysis) to determine whether a frequency was rather related to the

modulation- or the syllabic rate. The corresponding probabilities were then compared using
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a two-way repeated measures ANOVA with the factors tracking (Modulation/Syllable rate)

and vocoding (Original, 7-Channels, 3-Channels).

Modeling of subcortical auditory activity

In order to reconstruct auditory brainstem activity from the MEG data we applied a recently

developed backward modelling approach (17) to the data obtained in Study#2. As planar

gradiometers are less sensitive to sources below the cortical surface than magnetometers

(57) only magnetometer data was included in this analysis. The backward models were

trained independently for each subject using data obtained from a localizer run dedicated to

elicit auditory brainstem activity (see (17) for a detailed account). In brief, we used the signal

captured by the MEG sensors (during the first 10ms) as regressors for a concurrent EEG

recording of an auditory brainstem response (similar to the estimation of regression based

ERPs (58)). The corresponding weights (a time-generalized representation of auditory

brainstem activity) were then applied to the upsampled (10 000 Hz) single-trial time series

data from Study#2. Afterwards, the data was downsampled (100Hz) and a frequency

analysis was applied to the 4‐s segments of all three conditions (original, 7‐Chan and

3‐Chan) calculating multi‐taper frequency transformation (dpss taper: 0–25 Hz in 0.25 Hz

steps, 4 Hz smoothing, no baseline correction) for the analyses of the coherence

calculation between each virtual sensor and the acoustic speech envelope. Afterwards

analysis steps that were performed for the previous analysis were repeated for the modeled

activity (see statistics reported in source analysis and steps undertaken for peak and

decoding analysis).
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