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Abstract

Neurons are very complicated computational devices, incorporating numer-
ous non-linear processes, particularly in their dendrites. Biophysical models
capture these processes directly by explicitly modelling physiological vari-
ables, such as ion channels, current flow, membrane capacitance, etc. How-
ever, another option for capturing the complexities of real neural computa-
tion is to use cascade models, which treat individual neurons as a cascade of
linear and non-linear operations, akin to a multi-layer artificial neural net-
work. Recent research has shown that cascade models can capture single-cell
computation well, but there are still a number of sub-cellular, regenerative
dendritic phenomena that they cannot capture, such as the interaction be-
tween sodium, calcium, and NMDA spikes in different compartments. Here,
we propose that it is possible to capture these additional phenomena using
parallel, recurrent cascade models, wherein an individual neuron is modelled
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as a cascade of parallel linear and non-linear operations that can be con-
nected recurrently, akin to a multi-layer, recurrent, artificial neural network.
Given their tractable mathematical structure, we show that neuron models
expressed in terms of parallel recurrent cascades can themselves be integrated
into multi-layered artificial neural networks and trained to perform complex
tasks. We go on to discuss potential implications and uses of these models for
artificial intelligence. Overall, we argue that parallel, recurrent cascade mod-
els provide an important, unifying tool for capturing single-cell computation
and exploring the algorithmic implications of physiological phenomena.

Keywords: Cascade models, Single-cell computation, Dendritic
non-linearities, Artificial neural networks

Introduction

One of the greatest success stories in modern neuroscience is the develop-
ment of biophysical models of single-cell computation. Though there are still
many mysteries to be explored, and new discoveries are still being made, our
core understanding of the biophysics of excitable membranes as described
by circuit equivalence models, cable theory, and Hodgkin & Huxley-style
models has stood the test of time and can reasonably be considered as an ac-
cepted theory in neuroscience (Brunel et al., 2014, Herz et al. 2006, Hodgkin
and Huxley} 1952 Koch| 2004, McKenna et al., 2014} Rall, [1960). This has
provided the foundation for countless computational studies on single-cell
computation using detailed models that explicitly incorporate physiological
variables including membrane capacitance, ion channels, reversal potentials,
etc. Such models have proven very useful for understanding a variety of
phenomena, particularly dendritic computation (Poirazi and Papoutsi, [2020,
Mainen and Sejnowskil, 1996, [Schaefer et al., 2003, Vetter et al., 2001, [Shai
et al., 2015, |[Psarrou et al., [2014) (Gidon et al.| [2020} |[Krichmar et al.l |2002),
Cook and Johnston, 1997, (Gasparini et al., 2004, Ariav et al., 2003, [Eyal et
al, 2014, Deitcher et al., 2017, |[Papoutsi et al. |2017). Without these models
we would understand much less than we do about how dendrites contribute
to computation in neural circuits.

However, due to their complexity, biophysical models are very difficult
to link to algorithmic models of neural computation. To some extent, this
is part of the dilemma we always face in science, i.e., “How detailed should
our models be in order to achieve our scientific goals?” (Poirazi and Pa-
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poutsi, 2020, [Richards et al.| 2019)). But, one thing that we can say is that
it would be beneficial for understanding the functional importance of den-
dritic computation if we possessed models of intermediate complexity that
could capture many of the phenomena of single-neuron computation while
still being sufficiently mathematically tractable to use for explaining complex
animal behaviour. Moreover, if we could develop such intermediate models
we would be better placed to use insights on dendritic computation to inform
the development of novel machine learning approaches (Richards et al., [2019,
Sinz et al., 2019).

To this end, previous work has explored the use of “cascade models” to
capture dendritic computation (Poirazi et al., 2003, Tzilivaki et al., 2019,
Kalmbach et al., 2017, [Ujfalussy et al. [2018) (but see (Francioni and Har-
nett, |[2021). Cascade models use a cascade of linear and non-linear operations,
which are effectively tree-structured, feedforward, multi-layer artificial neu-
ral networks (ANNs) (Poirazi and Papoutsi, 2020). Research has shown that
these models can capture more variance in single-cell activity than standard
point neuron models (which consist of a single linear operation and non-linear
activation function) (Poirazi et al. 2003, Tzilivaki et al.| 2019, |Ujfalussy et
al., 2018). Thus, cascade models treat individual neurons as deep feedfor-
ward ANNs in order to capture single-cell computation with a mathemati-
cally tractable model (Figure [IJA). However, such models still have not been
compared to many facets of dendritic computation, including calcium spikes
and N-methyl-D-aspartate (NMDA) receptor mediated plateaus.

Here, we show that it is possible to capture these phenomena using par-
allel and recurrent cascade models (PRC models), i.e. models that
use a set of parallel cascades of linear and non-linear operations that are
recurrently connected to one another. This is equivalent to treating indi-
vidual neurons as multi-layer, recurrent ANNs (Figure [IB). We show that
these PRC models can successfully reproduce a number of experimentally
observed regenerative phenomena in dendrites, all while being mathemati-
cally tractable. Moreover, because these models are fully differentiable, we
show that they can easily be incorporated into machine learning approaches
that utilize gradient descent for model optimization (Richards et al., 2019).
This opens the door to exploring the possibility that dendrites and dendritic
computation may provide important inductive biases for brains that could
be mimicked by artificial intelligence (AI) (Richards et all 2019, Sinz et al.,
2019). Thus, we conclude this paper by providing some speculation as to the
possible advantages for Al of dendritic PRC models. Altogether, this work


https://doi.org/10.1101/2021.03.25.437091
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.25.437091; this version posted July 5, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Cascade model B PRC model

\ IN I AN S \ {\ z(\s W e N N

g@?@ @

Figure 1: Illustration of cascade models and PRC models: A Dendritic computation can
be modelled using a cascade of linear and non-linear operations (Poirazi et al.| [2003,
Tzilivaki et al., 2019, |Ujfalussy et al.l|2018). B Cascade models can be extended with the
use of parallel pathways and recurrence in the operations, which can enable the modeling
of more complicated regenerative phenomena.

helps to lay the ground for better integration between our well-developed un-
derstanding of the biophysics of neural computation and our ever increasing
understanding of algorithms for complex behaviour.

The use of recurrent cascade models to capture single-cell compu-
tation

Models made of a cascade of linear-nonlinear (LNL) operations have had
a long history in systems neuroscience, where such models were conceptually
implied by early work on retinal ganglion cells (Kuffler, [1953) and cortical
cells (Hubel and Wiesel, [1968). These models consist of a linear filter of the
stimulus followed by a nonlinear readout to generate predictions of a non-
negative observable. Important refinements to improve the accuracy of these
models were the inclusion of spike-triggered adaptation (Pillow et al., |2005,
Truccolo et al. 2005), the composition of linear-nonlinear (LNL) operations
in a cascade (Vintch et al.,|2015, McFarland et al.; 2013)), and the addition of
recurrent interactions between linear-nonlinear subunits (Pillow et al., [2008,
Truccolo et al., 2011). Together, these various extensions are described by
an LNL subunit with multiple possible types of interconnection motifs. The
LNL subunit is composed of a linear-nonlinear operation with feedback from
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the output of the nonlinearity to capture spike-triggered adaptation (Fig. ;
Methods . Wiring between subunits can create multiple types of motifs
including a strictly feedforward cascade, a common input to two units having
possibly different filters or nonlinearities (parallel feature processing, Fig.
2B), or recurrent interconnections (Fig. [2IC). In most systems neuroscience
applications, the output of the nonlinearity is the Poisson intensity, used to
capture the stochastic spike-timing responses of real neurons. Our approach
with PRC models here is slightly different, as we will consider the output
of the nonlinearity to represent deterministic voltage excursions. Also, in
most systems neuroscience applications, the filters and nonlinearities may
arise from a large number of possible — yet undefined — mechanisms. These
are typically thought of as interactions within and between cells, but may
also include dendritic computations (Taylor et al., 2000). In order to better
understand the cellular mechanisms underlying such information processing,
we focus on the application of a deterministic LNL framework within a single
cell.

Somatic spikes

Since the pioneering work of Richard Stein (Stein),|[1965), the leaky integrate-
and-fire (LIF) model has become the workhorse of interrogations of informa-
tion processing of large numbers of interconnected neurons. In itself, the
LIF can be seen as a special case of the LNL subunit. When a depolarizing
current is injected into an LIF model, it first passes through the membrane
filter and produces a voltage (leaky integration; a linear operation) which is
eventually reset to a lower value if it reaches a threshold (firing; a nonlin-
ear operation). This leaky integrate-and-fire behaviour can be captured by
an LNL subunit with a filter that corresponds to the membrane filter of an
LIF model, together with a Heaviside nonlinearity that is triggered exactly
at spike threshold and a Dirac delta-shaped adaptation filter which resets
the voltage to a lower value. Such deterministic LNL models can capture
both the time-dependent membrane voltage response and the spike timing
responses to complex inputs (Jolivet et al., 2006). Adding multiple time-
scales to the kernel for spike-triggered adaptation makes these models highly
predictive of the responses of a variety of cell types (Jolivet et al., |2008| Mensi
et al. [2012, [Pozzorini et al., 2013, |Kobayashi et al., 2009, Teeter et al., 2018)).
Furthermore, considering smooth nonlinearities and surrogate gradients can
ensure that the LNL unit remains differentiable (Neftci et al., 2019).
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Figure 2: Linear-nonlinear operations and interconnection motifs. A The linear-nonlinear
(LNL) subunit. This architecture combines linear filtering of an input Iex(t) (middle)
with a nonlinear readout (top, g) and feedback (bottom, k.q), which together flexibly
capture the passive filtering effects of neuronal membranes, the nonlinear effects of voltage-
dependent ionic conductances, and adaptation. The contributions of each of these effects to
the output z(t), which may loosely represent neuronal voltage or a spiketrain, can be tuned
via the parameters of the filters Kpnjin, Kiin, and Kaq, and the choice of nonlinear function
g(+). B Multiple LNL subunits arranged in parallel can model the effects of multiple ionic
conductances in a single cellular compartment. C Recurrent connections between model
compartments, each composed of one or more LNL subunits, capture interactions between
cellular compartments.
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Figure 3: Effects of changing parameters in the linear-nonlinear model. A Schema of the
LNL model. An external input undergoes two parallel processing steps: a linear (passive)
filter and a linear filter (possibly distinct from passive) followed by a nonlinear readout.
The nonlinear processing step (top) produces a nonlinear component (blue) which is added
to a passive component (orange). As input to the model, we consider both B a noisy
time-dependent signal representing a bombardment of asynchronous synaptic currents,
and C a short pulse. D, top 3 traces Response to noisy inputs having three different
baselines (lower baseline is topmost trace,dashed line represents the activation threshold
of the nonlinearity). The nonlinear (blue) is added to the passive component (orange). D,
bottom Maximum amplitude of response as a function of pulse amplitude (bottom). E
Same as D but using a model with an increased timescale of the linear filter. F Same as
D but with a model having a decreased sensitivity (steepness) of the nonlinearity. Scale
bars correspond to 10 ms and 5 mV.

In addition it is worth noting that since LNL subunits are a special case of
PRC models, and LIF models are a special case of LNL models, LIF models
are, in fact, a restricted class of PRC models. As such, they can capture
some of the phenomena that the broader class of PRC models are capable
of capturing (Weber and Pillow, 2017, |Gerstner et al., 2014). Part of our
contribution here is to illustrate some of the more complicated sub-cellular
phenomena that cannot be recapitulated with a pure LIF model, such as
dendritic non-linearities and coincidence detection (see sections 2.3-5, below).

LNL models for dendritic spikes

To circumscribe a systems-level function for dendritic computation, many
studies have focused on the role of intrinsic nonlinear dendritic operations—
first using models of dendritic trees in a stationary state (Mel, 1993, Poirazi
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and Mel, 2001} Poirazi et al., 2003), then using models capturing the dy-
namics of dendrites and their intrinsic nonlinear properties (Legenstein and
Maass, 2011, [Kalmbach et al., 2017, [Ujfalussy et al., 2018]). These contribu-
tions are examples of what we call PRC models because they involve a cascade
of nonlinearities, but they leave out the recurrent motifs. Also, most have not
considered the parallel processing introduced by Ujfalussy et al. (2018) (Uj-
falussy et al 2018). Recurrence was, however, part of other efforts focusing
on simplified models of the interaction between somata and dendrites (Pin-
sky and Rinzel, 1994] |Urbanczik and Senn, 2014, Naud et al., 2014, 2017)).
Thus our goal in this section is to unify these complementary perspectives by
presenting data showing that PRC models can reproduce qualitative features
of sub-cellular physiological phenomena, such as dendritic spikes, coincidence
detection, etc.

In comparison to the action potentials generated in the proximity of the
cell body, the spikes observed in dendrites display less stereotypical ampli-
tudes and durations (Golding and Spruston, 1998, |Larkum and Zhu, [2002,
Smith et al., 2013] Schiller et al., [2000). These features pose a problem for
the LIF framework, but they are captured naturally by the LNL framework.
In Figure[3| we illustrated the response of a LNL subunit to noisy inputs and
to short pulses. For a fast filter preceding a sharp nonlinearity, the model
produced short spikes on top of a noisy voltage trace. The short spikes arise
when the low-pass filtered input reaches the activation threshold of the non-
linear readout. Sometimes, the fluctuation is only able to activate a fraction
of the nonlinearity, which produces spikes of variable amplitudes. Increasing
the mean of the input makes those spikes more frequent as there are more
chances that the random fluctuations reach the activation threshold of the
nonlinearity. Thus in the configuration where a sharp sigmoidal nonlinearity
is fed by a linear filter that is considerably faster than the membrane filter, we
observe variable amplitude spikes akin to dendritic sodium spikes. We note
that a very similar model architecture was able to be reproduce with great
precision the response to noisy dendritic inputs in the presence of dendritic
sodium spikes (Kalmbach et al.l 2017).

Next, we examined the effects of changing the parameters in the LNL sub-
unit (Fig. ) We began by increasing the timescale of the filter preceding
the nonlinearity. This reduced the number of suprathreshold fluctuations,
and when a fluctuation in the low-pass filtered input did cross the activation
threshold it tended to stay for a longer time period. This produced less fre-
quent but longer spikes, akin to calcium spikes (Larkum et al.| (1999, Larkum
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and Zhu, 2002, Magee and Carruth, 1999, Xu et al. 2012)) or, with an even
longer timescale, NMDA spikes (Schiller et al. [2000). As a consequence of
changing the filter, the aspect of the nonlinearity that can be observed when
presenting a pulse input is altered, and appears more graded. When, instead
of changing the timescale of the linear filter, we only changed the gain of the
nonlinearity (Fig. ), then the spikes had a more variable amplitude and
duration. Changing the timescale of the filter and the steepness of the non-
linearity had a similar effect on the maximum voltage observed in response to
a pulse input. This can be explained by the fact that in response to a short
pulse, the voltage increases linearly with a slope given by the timescale of
the filter (Gerstner et al. [2014)) and thus acts as a multiplicative factor iden-
tical to the steepness of the nonlinearity. In these simulations, we have not
included an adaptation-like recurrence, although the formalism can include
this mechanism. Thus, altogether, by changing the parameters of the LNL
model, we can simulate some basic electrophysiological features of various
types of dendritic spikes.

Dendritic sodium spikes

To test whether a PRC model can capture other features observed in elec-
trophysiological recordings, we focused on experimental findings reported by
Golding and Spruston (1998) (Golding and Spruston, |1998) pertaining to
dendritic sodium spikes. In one of the experiments reported (Fig. , record-
ings were made simultaneously in a proximal dendrite and in the soma. A
variable-amplitude synaptic-like stimulus was injected in the dendrite. The
recordings showed that in one dendrite, low input amplitudes initiated a
spike in the soma which produced a back-propagating action potential in the
dendrite and at high amplitudes initiated a spike in the dendrite before trig-
gering an action potential in the soma. In another dendritic recording, a low
amplitude stimulus initiated a dendritic spike unaccompanied by an action
potential at the soma, and only a large input produced an action potential
at the soma. We found that we can reproduce these phenomena by changing
the parameters of two LNL subunits wired in a recurrent fashion (Fig.
and C). To capture how different recordings initiated spikes preferentially in
the dendrite or the soma, we varied the relative threshold of activation of the
dendritic and somatic nonlinearities.
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Figure 4: A recurrent motif of linear-nonlinear models for the dendritic sodium spikes.
A Schematic of the model: A dendritic current (I4) impinges on two LNL subunits with
recurrent interactions, one corresponding to a dendrite, another corresponding to the soma.
When the somatic compartment reaches the threshold of its nonlinearity, a spike in the
form of a square pulse is added to the dendritic current. B Experimental data showing
injection of synaptic-like pulses of varying amplitudes in the dendrite (topmost traces have
lowest input), where the voltage in the dendrite (thick trace) and soma (thin trace) are
shown. Two exemplars are shown in different columns. Reproduced from Golding et al.
(1998) Fig. 1 (Golding and Spruston) [1998|). C Model responses showing three amplitude
levels of a synaptic-like input in the model shown in A. To reproduce the exemplars in B
the model in the right column has a lower threshold for the dendritic nonlinearity and a
higher threshold for the somatic nonlinearity.
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Figure 5: Linear nonlinear model of a NMDA spike as a combination of cascade and
parallel processing. A Schematic of the model: current impinging on the dendrite is
passed through two LNL operations in parallel before feeding into another LNL operation
to produce an NMDA spike. B Response of the model to a supra-threshold pulse input
showing the calcium (blue) sodium (orange) and NMDA (green). C The response to the
model with the same pulse input as in B but with the nonlinear component of sodium
and calcium set to zero, simulating the application of TTX and Cadmium. D Maximum
voltage as a function of the amplitude of the input pulse for the model in B (full circles)
and the model in C (open circles). E Experimental recordings of peak membrane potential
as a function of stimulation power in control (full circles) and the presence of calcium and
sodium ion channel blockers (TTX and cadmium, open circles). Figure reproduced from
Schiller et al. (2000) Fig. 3¢ (Schiller et al., 2000]).
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Dendritic NMDA spikes

Next we considered the electrophysiological recordings of NMDA spikes
reported in Schiller et al. (2000) (Schiller et al. 2000) (Fig. [5). We focused
on the threshold input-pulse amplitude to trigger an NMDA spike which
was lowered by the addition of blockers of sodium and calcium ion chan-
nels (TTX and cadmium). This observation suggested that the nonlinear
effects of sodium and calcium ion channels participated in the initiation of
the NMDA spikes. Since calcium and sodium ion channels are characterized
by distinct timescales, we considered a parallel connectivity motif shown in
Fig. [fJA. We chose the filter of the sodium LNL to be fast (5 ms), the fil-
ter of the calcium filter to be slower (40 ms), and the filter of the NMDA
LNL to be even slower (80 ms). Simulating the response of this model to
pulse inputs produced a long depolarization that was clearly initiated by
contributions from sodium and calcium (Fig. pB). To simulate the blockade
of these mechanisms by TTX and cadmium, we reduced the amplitudes of
their corresponding nonlinearities to zero, which prevented the occurrence of
spikes for a range of input amplitudes (Fig. pIC). The effect on the initiation
threshold of removing the nonlinearity in the PRC model mimicked that of
pharmacological manpulations (Fig. [fD-E).

Dendritic calcium spikes

We then considered how bidirectional interactions between somatic spik-
ing and calcium spikes can be captured by a PRC model. The tuft dendrites
of cortical pyramidal cells express a high density of voltage-gated calcium
channels which produce dendritic plateau potentials when sufficiently strong
inputs are injected into the soma and tuft dendrites simultaneously (Larkum
et al., 1999, Magee and Carruth, [1999)). These dendritic plateau potentials
mediate burst firing at the soma, producing coincidence detection and modu-
lating the gain of somatic responses to peri-somatic input. To capture these
effects in our PRC framework, we created a model with two recurrently-
connected compartments, corresponding to the soma and apical tuft den-
drites (Fig. @A) Appropriately tuned filtering and nonlinear operations in
each compartment (see Methods caused the somatic compartment to
emit single spikes when input was delivered to the soma alone and intermit-
tent bursts when input was delivered to both compartments simultaneously
(Fig. [6B). Inputs delivered to either compartment alone evoked small re-
sponses in the dendritic compartment, while simultaneous inputs to both
compartments evoked burst-associated plateau potentials in the simulated
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dendrite. In cortical pyramidal neurons, dendritic inputs produce somatic
bursts most potently when they are delivered just before or at the same
time as somatic input, creating an asymmetric coincidence-detection effect
(Larkum et al., [1999). Injecting a synaptic-like pulse into the dendritic com-
partment of our model evoked a dendritic plateau potential and somatic
burst only when it preceded or arrived at the same time as a somatic in-
put pulse (Fig. @C), recapitulating the coincidence-detection effect observed
in pyramidal neurons (Larkum et al., [1999). Dendritic input to our model
also modulates somatic gain by increasing the number of spikes evoked by
a given input (Fig. @D), consistent with an effect of dendritic input on gain
observed experimentally (Larkum et al., 2004)). Together, these simulations
add to previous efforts (Naud et al., |2014) in showing that the PRC frame-
work is able to capture features of dendritic excitability and somatodendritic
interactions.

Potential applications of recurrent cascade models for learning the-
ory

Aside from the additional capabilities to capture biological phenomena in
dendrites that we have illustrated here, PRC models may have relevance for
machine learning applications. Notably, thanks to the use of differentiable
computational graphs (see (Zenke and Ganguli, |2018)) for an approach to
making our somatic units differentiable), a PRC model can be incorporated
into any artificial neural network model and trained with gradient descent
(Ujfalussy et al.,|2018, | Jones and Kording}, 2021)). As such, PRC models open
the door to investigating whether sub-cellular dendritic computations have
any potential utility for improving machine learning applications. The answer
to this question will depend, in large part, on whether dendritic computations
can provide important inductive biases for an artificial neural network (Bird
and Cuntz, 2020, Jones and Kording), 2021)).

Networks of PRC models can be trained using gradient descent

To illustrate that complex PRC models can be incorporated into multi-
layer artificial neural networks and while remaining trainable via gradient
descent, we next trained an artificial neural network containing a single hid-
den layer made of four PRC neurons to solve a simple binary classification
problem: memorizing labels associated with random patterns of synaptic
input (Fig. ) Before training, our network correctly predicted the label
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Figure 6: A recurrent cascade model of the interaction between the back-propagating
action potential and calcium spikes. A Schematic of the model: external current impinging
on the dendrite (I;) and soma (I;) each engage a LNL operation. The output of the
nonlinearities is combined to the input current of the other unit, forming a recurrent
interaction. B Step current injections in the soma alone, the dendrite alone and then in
both compartments simultaneously produces regular bursting only for the conjunction of
inputs. C A strong synaptic-like current pulse is injected in the both the soma (I) and the
dendrite (I4). Three simulations are shown for three relative timings of the dendritic input
(i blue, ii orange, iii green). Responses for the somatic (Vs, black traces) and dendritic (Vy,
color traces) compartments are overlaid for each condition. Somatic spikes are denoted by
a clear reset but the full depolarization is not shown. A burst of action potentials arise
from the near-coincident condition (ii, orange) recapitulating experimental observations in
pyramidals of the cortex (Larkum et al., [1999). D Responses to increasing amplitudes of
synaptic-like input to soma in the absence of dendritic input (left) and in the presence of
a concomitant input in the dendrite (right), a simulation of the gain modulation property
of dendritic input reported experimentally (Larkum et al., [2004)).
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Figure 7: PRC neurons in a network can be trained to memorize patterns of synaptic
input. A Network architecture with PRC units in the hidden layer. 100 input units
send synaptic input to a hidden layer composed of four PRC neurons with recurrently-
connected somatic and dendritic subunits (as shown in inset and Fig. |§|A), which in turn
send synaptic input to an output layer consisting of two non-spiking single-compartment
neurons. Synaptic input patterns are classified as “green” or “purple” based on the max-
imum voltage attained in the output layer. B Randomly-generated patterns of synaptic
inputs (left) are incorrectly classified approximately 50 % of the time by a PRC network
with randomly-initialized synaptic weights. C, D Training synaptic weights using back-
propagation through time allows the network to memorize labels associated with specific
input patterns, resulting in improved predictions. The mean negative log likelihood loss is
shown (top). A surrogate gradient was used for the Heaviside nonlinearity in the somatic
compartment of hidden PRC neurons (see Methods) in order to train the input weights.
E Different architectures of the PRC unit used in the hidden layer: (I) one-compartment
neuron, (2) two-compartment neuron with no recurrent connection from the soma to den-
drite, (3) two-compartment neuron with recurrent connections between soma and dendrite
(as in and @, @ two-compartment neuron with parallel processing in the dendritic
compartment (as in , and (5) two-compartment neuron with both parallel processing
and recurrent somatodendritic connections.; F1 Mean + SD accuracy during training for
N = 10 randomly-initialized networks of each type. Dashed lines indicate chance-level
accuracy. F2 Training set accuracy before and after training is shown for the different
models.
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(“green” or “purple”) that had been randomly assigned to each randomly-
generated pattern of synaptic input ~50 % of the time, no better than chance.
Adjusting the synaptic weights in the direction of decreasing error using back-
propagation through time (with a surrogate gradient for the somatic spiking
function; see Methods) gradually improved the prediction accuracy to well
above the chance level (>75%, Fig. , D), indicating that the network
had successfully learned a mapping from synaptic input patterns to class la-
bels. We repeated the training procedure with different types of hidden units
(Fig. [7E), ranging from an integrate-and-fire unit without a dendrite (model
(D) to the full PRC model (model (5)), and including recurrently-connected
compartments without paralel processing (as in Fig. @ For the models with
a dendrite (2)-(®) in Fig. @, two independent sets of weights were used,
such that each input unit connects with one trainable weight to the soma
and with another trainable weight to the dendrite. Also, for the more com-
plex models (2)-(®) in Fig. [7]), we fixed as hyper-parameters the connection
strength between the somatic and dendritic compartment as well as the time
scale of the filters (see Methods). We found that, with the exception of the
models with the parallel motif, all models trained well and achieved above
80% accuracy within 2000 epochs, demonstrating these models are trainable
using standard techniques.

Importantly, as with any machine learning model, increasing PRC model
complexity increases the number of parameters to be trained and hyperpa-
rameters to be tuned. Good machine learning practice involves a systematic
methodology for tuning the hyper-parameters (Bergstra et al., 2011, Feurer
and Hutter| |2019). Here, however, the particular choice of hyper-parameters
was based on our comparison with electrophysiological observations. With
these hyper-parameters, good accuracy using the parallel motif was achieved
but only in a small portion of the initializations. It is possible that the slow
time constant used in the parallel subunits tended to prevent these mod-
els from achieving good accuracy. Thus, we have demonstrated that various
forms of PRC models can be trained on a memorization task and that combin-
ing these models with techniques for hyper-parameter optimization (Bergstra
et all 2011, Feurer and Hutter, 2019) opens the door to comparing model
architectures on the basis of training efficacy.

Because few problems solved by machine learning systems or the brain
are likely to closely resemble memorization of random patterns of inputs, we
next assessed whether our PRC models could be trained to solve a more re-
alistic problem: classification of spoken digits. The Heidelberg digits dataset
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Figure 8: Multi-layered networks of PRC neurons can be trained to recognize spoken
digits, and generalize to sound samples from new speakers. A Training examples from
the Heidelberg spoken digits dataset (Cramer et al) [2020). Audio recordings of digits
spoken in English and German were transformed into spiketrains using a detailed model
of the inner ear. B Multi-layered PRC network architecture, an expanded version of the
architecture shown in Fig. [} C Performance of multi-layered PRC networks. Hidden
unit architectures (C1) are the same as in Fig. . C2 shows the mean training accuracy
across N = 3 randomly-initialized networks. Dashed lines indicate chance-level accuracy.
C3 shows test set accuracy (green) as well as initial and end training set accuracy for the
different models.
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contains spiketrains produced by a detailed model of the inner ear in response
to audio recordings of the numbers zero to nine spoken by multiple people
in two different languages (English and German; Fig. [§A). As a benchmark
for assessing the generalization performance of spiking neural network mod-
els, the Heidelberg dataset is divided into a standard set of training and
test examples, where the test examples include digits spoken by two indi-
viduals not included in the training set. To solve this more complex task,
we created a set of larger multi-layered PRC network models containing a
hidden layer with 200 PRC units in addition to the 700 input units and 20
output units required by the structure of the dataset (Fig. ) Training
multi-layered networks containing the same set of five PRC models shown
in Fig. for 200 epochs consistently improved the training set prediction
accuracy from the chance level of 5% to >95% and as high as 99.5% for
the network containing PRC units which capture the effects of backpropa-
gating action potentials (i.e., 3) in Figs. [7] and [§} analogous to Fig. [6} all
values are averages across N = 3 randomly-initialized networks; Fig. )
The multi-layered PRC networks successfully generalized to new examples,
achieving a test set accuracy of 54 % to 70 %, comparable to that previously
reported using networks of LIF neurons (Cramer et al., 2020). The predic-
tion accuracy could be further improved by systematic selection of model
hyperparameters, including PRC neuron architecture (Bergstra et al., [2011]
Feurer and Hutter, [2019). Importantly, these preliminary results provide a
clear proof-of-concept that multi-layered networks containing PRC neurons
can be trained to solve complex tasks.

Parallel-recurrent cascade models as architectural inductive biases

One of the realities that any machine learning system faces is that no
learning agent can be efficient at learning all types of problems and/or
tasks. Due to the No Free Lunch Theorem for Optimization (Wolpert and
Macreadyl, [1997), we know that there is always a trade-off: for a learning
system to achieve good performance in one set of problems, it must sacrifice
its performance in other sets of problems. When an engineer introduces some
design components into an optimization system that help to bias a learning
system towards a particular set of problems, we refer to these components
as “inductive biases”. Inductive biases are key to developing useful machine
learning systems, because without appropriate inductive biases, learning sys-
tems will provide mediocre performance on all tasks, as opposed to superior
performance on the subset of tasks that we may care about (Hessel et al.
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2019, Goyal and Bengio, 2020). For example, if an engineer creates a machine
learning system that is built with an inductive bias to seek out relationships
between discrete objects, then that can help the system learn about spatio-
visual object relations such as “there is a blue ball to the left of a red cube”
(Battaglia et al., [2018, Santoro et al., 2017)).

These insights about the importance of inductive biases actually helped
to lay the foundations for the modern deep learning approach in Al (Bengio
et al., [2007, Goyal and Bengio, 2020). The early proponents of deep learning
proposed that the set of problems we most care about in Al are those that
humans and/or animals are good at, e.g. image processing, motor control,
language comprehension, etc (Bengio et al., 2007). Given this, they argued
that machine learning researchers should seek inspiration from real brains in
order to find appropriate inductive biases for Al (LeCun et al., 2015). At
the time, the principal inductive bias that these researchers were interested
in was network depth (hence the name “deep” learning). They believed that
the macroscopic architecture of the brain, with multiple stages of processing
involved in sensorimotor transformations, provided inductive biases to pro-
mote hierarchical representations, which was proposed to solve the type of
problems where humans and animals excel (Bengio et al., 2007). In hind-
sight, it appears that their intuitions were largely correct: deep ANNs have
consistently outperformed other types of machine learning approaches in ex-
actly the sort of problem/task domains that humans and animals excel at
(LeCun et al., 2015)). Moreover, theoretical analyses have provided some ex-
planations for why ANNs with deep architectures are particularly well suited
to such applications (Lee et al., 2017 [Li and Sompolinsky, 2020)).

There is a broader, two-fold point within the story of deep learning and
inductive biases. First, it is clear now that the inductive biases of an ANN are
determined in large part by architecture, i.e. how the linear and non-linear
operations are arranged in a computational graph within the ANN. This
is because architecture determines both how information flows through the
ANN, but also the shape of the loss landscape, which can directly impact
the efficiency with which different types of representations can be learned
(Belkin et al.; 2019} |Du et al.; 2019)). Second, the success of using the brain’s
hierarchical structure to inspire the architecture of ANNs demonstrates that,
in principle, it can be beneficial for Al to seek inspiration from the brain
when seeking new inductive biases (Hassabis et al., [2017). Importantly, PRC
models provide a new way of incorporating biological insights into the design
of ANN architectures. If we were to replace the standard units of an ANN
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with PRC models based on real neurons, this would represent a major change
in the architecture of the ANN, one that may provide useful inductive biases.

Potential advantages of PRC-based inductive biases

When considering the potential inductive biases that PRC models in-
troduce, the natural question is, would these inductive biases actually help
or hinder AI? Though it is true that inspiration from brains have provided
useful inductive biases for machine learning in the past (LeCun et al., [2015,
Hassabis et al [2017), there is no rule that says that neural phenomena al-
ways provide such utility. Indeed, some aspects of physiology may be more
related to phylogenetic history and biological constraints than they are to
improved learning performance. However, there are a few reasons to think
that dendrite inspired PRC models may provide useful inductive biases.

As noted above, research over the last decade has confirmed that network
depth is an important architectural consideration for Al (Lee et all 2017,
Li and Sompolinsky, 2020). However, not all depth is equal. Researchers
have found that increasing depth is most useful when additional architectural
features are included, such as skip connections (Du et al., [2019)). If we were
to replace the units of an ANN with PRC models based on real neurons that
would increase the depth of the network, but in a very particular way. The
central question, then, is would the specific form of increased depth that one
would obtain from using PRC model units would be helpful?

One reason that PRC models may provide a useful form of depth is that
they would help to promote sparsity, which has also been shown to be useful
in neural networks (Srivastava et al.l [2014). PRC models would help to
promote sparsity because they would provide distinct computational sub-
units with non-linear interactions that could handle different components
of a task. For example, it would be possible to have individual dendrites
that are responsible for processing distinct types of features, e.g. one set of
dendrites for processing facial features, another set for processing body parts,
etc. Thus, depending on the input provided, the network could activate only
a very sparse set of all the dendrites for processing.

Related to this, there is a growing recognition in the machine learning
community that a desirable form of inductive biases for AI would be those
that promote the emergence of specialized modules that can be flexibly com-
posed (Goyal et al., 2019, Hinton et al., 2018). This may turn out to be
critical to overcoming the limitations of current ANN approaches. Specifi-
cally, if an ANN was provided with an architecture that promoted the learn-
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ing of distinct, specialized modules that can be composed, then it should be
possible both to learn more intuitive part-whole relationships that capture
the underlying structure of objects in the world more accurately (Goyal et
al., 2019 [Hinton et al., 2018) and to avoid the catastrophic forgetting that
can plague standard ANNs (Masse et al., 2018). However, current systems
to promote specialized modules are only loosely inspired by real neural cir-
cuits. Therefore, an interesting open question is whether PRC models could
provide a good mechanism for implementing brain-inspired inductive biases
to promote composability. Notably, dendrites have functionally clustered
inputs (Kastellakis et al., [2015), synaptic dynamics can perform LNL oper-
ations (Rossbroich et al 2021), and these phenomena interact (Wilson et
al., 2016). Given the fact that PRC models would allow an ANN to learn
dendrite-like, flexible, non-linear, recurrent interactions between function-
ally clustered inputs, it is plausible that they could help with composability.
Thus, we would argue that future research should investigate the potential
for ANNs that use PRC models inspired by sub-cellular dendritic computa-
tion to show better specialization and composability, and less catastrophic
forgetting.

Discussion

In this article, we have illustrated the capabilities of PRC models to cap-
ture the various experimentally observed features of dendritic computation,
and discussed how this modeling framework may be key to understand the
role of dendrites in learning and neuronal computation. In doing so, we have
identified modular, composable connectivity motifs (Fig. [2)), with the paral-
lel, recurrent and cascade elements forming the basic building blocks of the
framework. We have illustrated how the interaction between sodium spikes
in the dendrite and the soma (Golding and Spruston, |1998) can be captured
using a recurrent motif of LNL subunits (Fig. . Furthermore, we have
demonstrated that a parallel motif of LNL subunits within a cascade can
reproduce the dependence of NMDA spikes on the activation of sodium and
calcium channels (Schiller et al., 2000). Finally, we demonstrated that the
interaction between back-propagating action potentials and calcium spikes
can be captured by a recurrent motif of LNL subunits with a different set
of parameters (Fig. (Larkum et al.l 1999, 2004). In closing, we have
argued that these PRC models of dendritic computation could have an im-
portant role in shaping inductive biases (Section , and thus contribute to
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the optimization of learning capabilities of the brain.

Our LNL models, however, bear some important limitations. Firstly, the
set of operations that are possible within the LNL framework correspond
to a subset of the operations that are achievable by the type of dynamical
systems used in detailed simulations of dendritic integration (Schiller et al.
2000, Hay et all 2011, |Ujfalussy et al., 2018| |Beaulieu-Laroche et al., [2018).
For instance, modeling the NMDA spike as two LNL units in parallel fol-
lowed by another nonlinearity ignores the nonlinear impact that sodium ion
channels can have on calcium ion channels via rapid increase of the mem-
brane potential. Another element not captured by the phenomenological
LNL model is that ion channel time constants almost always depend on the
mean depolarization, which implies an adaptive filter instead of a fixed filter
assumed in the LNL model. A second important limitation is that we have
assumed that the dendrites remain in a fluctuation-driven regime where the
net input is low on average but highly variable. If we were to give strong and
sustained inputs to the LNL model, these would saturate the nonlinearity
and nonlinear transients would disappear. Such a sustained-depolarization
regime has been observed in some experiments (Larkum et al., [2004), but it
remains to be seen whether these take place in vivo or whether homeostatic
mechanisms preserve the fluctuation-driven regime (Vogels et al., 2011)). One
last limitation of our model is that a very high input variability is capable
of making nonlinear operations effectively linear (Ujfalussy et al., 2018)). In
this case, the complex linear-nonlinear structure operates in a way that can
actually be captured by an effective model that is entirely linear. Although
some in vivo manipulation of dendritic inputs (Xu et al., [2012, Gambino et
al, 2014}, [Doron et al., 2020) argue against this point of view, the full rela-
tionship between inputs and outputs of neurons in a naturalistic condition is
far from being fully known.

We included in this paper some discussion of the potential machine learn-
ing applications of PRC models. As we outlined, there are some reasons to
believe that dendritic computations may provide useful inductive biases for
machine learning systems. We are hopeful that future research will demon-
strate this. However, it also has to be recognized that real dendrites may be
solving an implementation problem for neurons, i.e. how can you actually
integrate thousands of distinct signals in a physical circuit with space and
energy constraints? It is possible that this is the problem which dendrites
solve for real neurons, and that dendritic computation is, itself, not impor-
tant at the algorithmic level. Only by exploring the potential advantages of
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training Al systems with PRC models inspired by real neurons will we be
able to get some initial insight on this mystery.

In summary, our work shows how PRC models can be used to model sub-
cellular dendritic computation with a computationally tractable approach.
This lays the groundwork for future explorations of the algorithmic implica-
tions of dendritic computation, both in the brain, and in machine learning
applications. We believe that PRC models will help open the door to explor-
ing the true computational power of dendrites.

1. Methods

1.1. Linear-nonlinear subunit

The basic component of the modeling framework presented here is the
linear-nonlinear subunit, which receives a net time-varying input I;(¢) and
produces an activation z(t) as its output

Z(ta Rnlin; Rlin, I{ad) - g(anlin(t; Rnlin, l{ad)) + Qiin (ta Rlin, /{ad) (]->
ax(t; Kz, '%ad) = ["i:v * ([ext + Lid)] (t) (2>
[ad(t; Had) = ["iad * Z] (t)7 (3)

where ¢(-) is a nonlinear activation function; an;, () and ay,(t) are the pre-
activations for the nonlinear and linear parts of the output, respectively;
I (t) = >, I;(t) is the total input from all external sources; l,q(t) is a re-
current adaptation current; and (k * z)(t) = ffoo k(t — 7)z(7)dT denotes the
causal convolution of a filter k with a signal x evaluated at time t. The
subunit is parameterized in terms of the activation filters s, and ki, the
adaptation filter .4, and the choice of nonlinear activation function g(-). Ex-
cept where noted, all filters in this work are defined as exponential functions
1 -

k(t) = ;67 (4)

with time constant 7. For models with multiple cellular compartments, I ()
may include inputs from an external source as well as from other compart-
ments (eg, Methods [1.4)). Depending on the model, z(t), aun(t), or ay,(t)
may correspond loosely to the voltage of a compartment denoted V,,(t) where
x is the name of the compartment.
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1.2. Two-compartment model subject to a single dendritic input

The two-compartment model with a recurrent connection from the so-
matic to the dendritic compartment is defined as follows

29(t) = glalh (6 K5)) + al) (t ki) (5)
2D (1) = o(aly, (t K5 + alf) (£ 1) (6)
ISt = 15)(t) = I,(t), (7)

where the dendritic nonlinearity o(-) is the sigmoid function. g¢(-) is the
somatic spiking nonlinearity, a function which emits a 1ms square pulse of
amplitude A = 2 AU when 2®)(¢) crosses the somatic spike threshold from

below
g(t;v) = rect(t Z 5(t — ) (8)
t(H<t
A forO<t<1
rect(t) = CoUs e (9)
0 otherwise

where t) denotes the time of a threshold crossing. Exponential functions
with the following time constants were used for the pre-activation filters:

7‘1(1”:’1) = 40 ms, 4= 90 ms, Tlﬁh)n = 40 ms, and Tnhn = 2 ms. Adaptation

lin
filters were set to zero and the terms associated with them were omitted from
the above model for simplicity. The activation output z(*)(t) corresponds
loosely to the voltage of each compartment; V,(¢) = 2 (¢) and Vy(t) = 29 (t)
are therefore used to refer to these terms in figures and the main text for

ease of interpretation.

1.3. Multi-subunit model with parallel processing

The model is composed of three linear-nonlinear subunits which loosely
capture the contributions of sodium, calcium, and NMDA voltage-dependent
conductances (denoted by the superscripts (1), (2), and (3), respectively) to
nonlinear processing of synaptic inputs in a dendritic compartment. Their
dynamics are defined as follows

D) =0 (a(x) (t; H(X))) + a™ (t; kM) for x € {1,2,3} (10)
() = 7
K ey et (11)
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with inputs

IS = IE)(t) = L(t) (12)
ISty = 20(t) + 2P (2). (13)

In all three subunits, the non-linear and linear pre-activation filters were set

to be equal, such that
C - K( X _ &)

nlin (14)
where 7)) = 5ms, 7 = 40 ms, and 7 = 80 ms. The adaptation filters were
set to zero and the associated terms dropped for simplicity. The dendritic

synaptic-like input current is given by the alpha function
I,(t) = Ate™ for t >0 (15)

with amplitude A and time constant 7 = 2ms. The voltage output shown in
the figures and main text is analogous to the activation output Vi (t) = 2™ ()
for each respective subunit.

1.4. Two-compartment model with bi-directional dendro-somatic interactions

The model with bi-directional dendro-somatic interactions is composed
of two reciprocally-connected linear-nonlinear subunits (see Section as

follows
2(t) = © (alfh (155 kD)) (16)
IS(t) = L(t) + 2 (1) (17)
20) = o (alfu (550 (18)
I (8) = L(t) + 29 (0), (19)

where O(-) is the Heaviside step function and o(-) is the sigmoid function.
()

The nonlinear actlvatlon filters k.

7 @ _ 5ms. The somatic adaptation filter is defined as

nlin n

1 fort =0
(s)
t) = —t 20
i 1) {T_ldeTad fort >0 (20)

are defined as exponential functions with
= 10ms and 7,

with 7, = 20ms. In this model, the linear activation filters nffﬁ and K (q)

are set to zero, along with the dendritic adaptation filter n;ff. (The terms
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associated with these filters have been dropped from the above model defi-
nition for simplicity.) Is(t) and I4(t) correspond loosely to synaptic inputs
to the somatic and dendritic compartments, respectively. The somatic pre-
activation asgn and the dendritic activation z(? loosely correspond to the
voltage in their respective compartments. For clarity, we use Vi(t) = afﬁ?n(t)
and V(t) = 2(9(¢) to refer to these quantities in the figures and main text.

1.5. Multi-layered networks of PRC models

Artificial spiking neural networks with a hidden layer of PRC neurons
were constructed following the approach of Refs. (Zenke, [2019, Neftci et al.
2019, |Cramer et al. [2020). Briefly, spikes in each layer were integrated as
exponentially-decaying synaptic currents in each neuron/PRC-compartment
in the following layer, which in turn were integrated by the dynamics of
the corresponding PRC subunit as Iey(t). The neurons in the output layer
consisted of leaky integrators without threshold or reset. The time-varying
voltage of the neurons in the output layer was transformed into a set of
class probabilities by applying a softmax operation to the maximum voltage
attained by each output unit during each example.

The PRC filters x used in network models were defined as

Rx(t) = e fort>0 (21)

where the membrane time constant 7,;, = 10ms, and the synaptic time
constant Ty, = Hms. Time constants of sodium, calcium, and NMDA filters
took the same values as in Methods [I.3] The linear forward filters xy, were
dropped for simplicity. The adaptation filter in the somatic compartment

was defined as
15 fort=0
K = { - (22)

0  otherwise.

In order to train multi-layered networks of PRC neurons, it was necessary
to use a surrogate gradient for the Heaviside step function used to generate
spikes in the somatic compartment (since its gradient is zero almost every-
where). Following the approach of (Zenke and Ganguli, 2018, Zenke, 2019),
we used the normalized gradient of a sigmoid function to approximate the
gradient of the Heaviside function

d o
PG R e L
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where « is a proportionality constant and s = 10 is a scale parameter that
sets the slope of the sigmoid.

All training was carried out using the Adam optimization algorithm with
a learning rate of 0.002 and the negative log likelihood of making a correct
class prediction as the loss function.

1.6. Numerical methods

Simulations were implemented in Matlab and Python 3.8 using NumPy
1.18.5, SciPy 1.5.0, and ez-ephys 0.4.2. Figures were prepared in Python
using Matplotlib 3.2.2, Jupyter 1.0.0, and ez-ephys. Code is available at .
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