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Figure 5: Characterization of double mutants disrupting the same subunit interface. (A, left) Homology model of 

rP2X2R with residues corresponding to the positions mutated shown as spheres. (A, right) Example recordings of 

V80A, S190A and V80A/S190A mutants. Currents are elicited by application of increasing concentrations of ATP 

(black bars). Scale bar: x, 10 s y, ! A. (B) to (F) Normalized ATP-elicited concentration-response data for WT (empty 
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symbols), single (single-colour symbols) and double mutants (split-colour symbols) rP2X2Rs in response to 

application of increasing concentrations of ATP. Data are shown as mean ± S.D. (n = 5-33).  

 

Double mutants at different subunit interfaces show energetic coupling or prevent expression 

Next, we generated a set of double mutants in which each of the inter-subunit interfaces was disrupted by 

two of the above characterized single mutations situated on an interface facing a different subunit. 

Specifically, three positions in the upper body D78, Y86 and E91 (in β3-β4 sheet and loop) were mutated 

in combination with side chains from the head domain (E167), left flipper (L276) or lower body (R313) to 

investigate if double mutations would be energetically coupled (Figure 6A).  

The E91Q/R313Q and D78N/E167A double mutants did not show any ATP-gated inward currents, even in 

response to high (10 mM) concentrations of ATP. In order to assess if this was due to severe gating 

phenotypes or rather surface expression, we performed a surface biotinylation assay, followed by Western 

blotting. As shown in Figure 6B, bands corresponding to a rP2X2R-sized protein are absent for the 

E91Q/R313Q and the D78N/E167A double mutant channels in both the surface fraction and the total lysate, 

suggesting that these double mutants are not expressed in Xenopus laevis oocytes. 

By contrast, the Y86F/L276A and D78N/L276A double mutants displayed an EC50 similar to that observed 

with the single mutants, i.e. significantly left-shifted compared to WT rP2X2R (Figure 6C/D, Table 3). We 

performed double-mutant cycle analysis to assess a potential energetic coupling between these mutations. 

This yielded coupling energies of 5.0 kJ mol-1 for Y86F/L276A and of 6.5 kJ mol-1 for D78N/L276A (Table 

3), suggesting strong energetic coupling between these side chain pairs.   
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Figure 6: Characterization of double mutants disrupting different subunit interface. (A) Homology model of 

rP2X2R with residues corresponding to the positions mutated shown as spheres. (B) Example recordings of D78N, 

L276A and D78N/L276A and Western blot of surface fraction or total lysate extracted from oocytes expressing the 

indicated constructs (or uninjected oocytes). Note that the uncropped blot is provided as Figure S2. (C) and (D) 

Normalized ATP-elicited concentration-response data for WT (empty symbols), indicated single (single-colour 

symbols) and double mutants (split-colour symbols) P2X2Rs in response to application of increasing concentrations 

of ATP. Data are shown as mean ± S.D. (n = 5-33).  

 

Energetic coupling with residues not lining the subunit interface 

We then sought to assess if energetic coupling can also be observed for double mutants in which one of the 

mutations was located away from the subunit interface. We thus chose to generate the S122C and T123C 
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single mutants in the head domain, which resulted in a pronounced left-shift in the ATP CRC (Table 2). 

Similarly, both the S122C/L276A and the T123C/L276A double mutants displayed a left-shifted EC50 

compared to that of the WT and exhibited strong energetic coupling (10.5 kJ mol-1 and 11.0 kJ mol-1, 

respectively; Table 3). This was mirrored by the results obtained for the Y86F/T123C double mutant, which 

also showed high apparent ATP affinity (Table 3) and strong energetic coupling (8.6 kJ mol-1, Table 3).  

These findings suggest that pronounced energetic coupling is not unique to residues located at the subunit 

interface, but may be a more general property of the rP2X2R ECD.  

 

No measurable functional effects by a possibly clinically relevant P2X2 mutation 

Lastly, we sought to identify P2X2 variants in aggregated PHEWAS data from the UK Biobank that could 

be associated with clinical traits (Canela-Xandri et al., 2018). Our analysis identified the genetic variant 

Arg40Cys in hP2X2 (rs75585377) at the bottom of TM1 to be associated with a number of blood 

phenotypes such as corpuscular volume (-log10(p-value): 15.23), reticulocyte volume (-log10(p-value): 

13.08), corpuscular haemoglobin (-log10(p-value: 12.75) and sphered cell volume (-log10(p-value): 9.17). 

We found that the equivalent mutation in rP2X2 (R28C) had no significant effect on apparent ATP affinity 

(Fig S1 and Table 1). However, in light of the relatively lower degree of conservation in the N-terminus 

across P2X2R orthologs (both in terms of length and sequence identity), future studies on the hP2X2R and 

additional functional assays may be required to exclude possibly clinically relevant effects by the Arg40Cys 

variant in the hP2X2R. 
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DISCUSSION 

Analysis of the frequency of missense mutations in hP2X2Rs across an approximately representative 

sample of the human population reveals a strikingly uneven distribution of the mutational frequency. Both 

the ATP binding site and the TMD display very low mutational burden, likely due to their crucial role in 

P2X2R function and integrity. By contrast, our data reveal a surprisingly high number of missense 

mutations at the inter-subunit interfaces. This observation has potentially important implications because 

mutations at protein-protein interfaces often affect protein function and can be the cause of 

pathophysiologically relevant protein dysfunction (Iqbal et al., 2020; Jubb et al., 2017; Livesay & Marsh, 

2021).  

However, we did notice an apparent conundrum: on the one hand we identify more positions at the interface 

with missense variants in the human population than expected, while on the other hand, the interfaces 

display a high degree of ortholog conservation. There are multiple possible explanation for this observation: 

i) The variants we observe are variants without deleterious effects, potentially even with beneficial effects; 

ii) These variants are exceedingly rare and heterozygous; iii) Other positions at the interface, i.e. those 

without variants in the human population, are less susceptible for variations or iv) The positions we classify 

as interface from the various models are not overlapping exactly with the interface in the actual human 

protein.  

Regardless of the origin for this phenomenon, the inter-subunit interface clearly stands out in our genetic 

analysis and we therefore embarked on a detailed functional investigation of mutations at sites predicted to 

be located at the interface. In absence of any P2X2 structure and to avoid bias, we pursued two distinct 

approaches to identify residues at the interface: first, we studied the impact of mutations at positions 

predicted to lie at the interface based on the hP2X3 structure (focusing only on sites that display two or 

more missense variants in the population) and, second, used an unbiased approach based on the zfP2X4 

structure to identify interface-lining positions. Although only two sites overlapped between the two 

approaches (S284 and R313), numerous others were in very close proximity (E63 and S65; R274 and L276; 

Y294 and both K293 and Y295) and, strikingly, about 80% of mutations examined at the interface resulted 
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in left-shifted CRCs (18 out of the total of 23). Together, this emphasizes the appropriateness of using two 

different and independent approaches and highlights an overall trend for functional outcomes of disruptions 

at the inter-subunit interface.  

 

Mutations of conserved side chains within a protein of interest typically disrupt function. In the context of 

LGICs, this means that mutations in the ECD, including those at or near the subunit interface, tend to result 

in increased EC50 values for ligands binding at the orthosteric binding site or more generally disrupt channel 

function. This has been observed for a variety of LGICs, such as GlyR a1, nAChR a7 and iGluRs (Braun 

et al., 2016; Iacobucci et al., 2021; Tang et al., 2018; Tang & Lummis, 2018; Weston et al., 2006). In fact, 

even mutational scans in the ECD of a close cousin of the P2X2R, the P2X1R, have established that the 

vast majority of mutations result in increased EC50 values (Ennion et al., 2000; Roberts & Evans, 2004, 

2006). Similarly, mutations in or near the ATP-binding pocket of a variety of P2XR subtypes have been 

shown to greatly increase EC50 values (Bodnar et al., 2011; Gasparri et al., 2019; Hausmann et al., 2013; 

Jiang et al., 2000; Roberts et al., 2008; Zemkova et al., 2007). Here, however, we find that about 80% of 

mutations designed to disrupt putative interactions across rP2X2R inter-subunit interfaces resulted in lower 

EC50 values. Importantly, this trend was independent of the chemical properties of the side chain in question, 

i.e. this was true for aromatic, hydrophobic and charged side chains. This finding is consistent with previous 

P2X2R studies, which demonstrated that individual mutations of side chains lining the subunit interface in 

the ECD or TMD result in lower EC50 values or even constitutive activity (George et al., 2019; Jiang et al., 

2010; Jindrichova et al., 2009). 

Given that many of the side chains mutated here are conserved across different P2XR isoforms (Kawate et 

al., 2009), it remains to be elucidated to what extent our findings apply to the other members of this receptor 

family. Also, in light of the lower EC50s observed for mutations away from the subunit interface (S122C 

and T123C in this study, E167R and H319A/K in work by others (Clyne et al., 2002; Hausmann et al., 

2013; Sattler et al., 2020)), we cannot exclude the possibility that the trend observed for mutations at the 

subunit interface is not a more general feature of the rP2X2R ECD (outside the ATP binding pocket). 
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Finally, we sought to assess if combining two of the tested single mutants would indicate energetic 

coupling. To this end, we turned to double-mutant cycle analysis. Two of the mutant pairs (E91Q/R313Q 

and D78N/E167A) failed to express, but the remaining 10 pairs could be tested functionally (Table 3). Both 

double mutants involving S190A (S190A/D78N and S190A/V80A) showed no signs of strong coupling 

(DDG values of 0.9 and -2.0 kJ/mol, respectively), possibly due to the large physical distance between the 

two mutations/residues. By contrast, we observed energetic coupling for the remaining double mutants we 

tested, especially for side chains in relatively close proximity within the structure (DDG values >2.5 kJ/mol, 

see Table 3). Here, the E84Q/E91Q double mutant stood out in particular, with a DDG value of 12.9 kJ/mol. 

This value is much higher than those observed in previous P2X2R studies (Hausmann et al., 2013; Jiang et 

al., 2010), but similar to that reported with side chains lining the ligand-binding site of a glutamate-gated 

chloride channel (Lynagh et al., 2017). Interestingly, strong energetic coupling was not restricted to double 

mutants along the subunit interface. In fact, the L276A-containing double mutants L276A/S122C and 

L276A/T123C both showed high DDG values, although neither S122 and T123 are located at the subunit 

interface. This could suggest that residue pairs involving at least one interface side chain tend to be strongly 

coupled. However, it is also plausible that the strong coupling observed for the S122 and T123 mutants are 

due to more global disruptions caused by altered disulphide bond patterns in the cysteine-rich head domain 

(Lörinczi et al., 2012).  

 

When interpreting our work, it is important to consider a number of limitations: i) we cannot exclude the 

possibility that the positions we classify as interface in this study may not overlap exactly with the interface 

in the actual human P2X2 receptor protein; ii) mutational effects could be masked or distorted because 

many inter-subunit interface side chains can engage in interactions with more than one other side chain or 

backbone; iii) our methodological approach is not capable of discerning all possible effects caused by the 

mutations. For example, it is unable to disentangle effects on binding and/or gating (Colquhoun, 1998). 
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Further, the TEVC approach does not provide sufficiently high temporal resolution to address potential 

alterations in kinetics, changes in desensitization or changed membrane expression; iv) expression of 

rP2X2Rs in Xenopus laevis oocytes affords relatively high throughput, but functional and pharmacological 

properties may differ in mammalian cells or with the expression of the human clone. The latter two caveats 

are particularly relevant for the R28C mutation, which did not display a change in EC50 upon expression in 

oocytes, but may affect other receptor properties or show altered function in other cell types. 

 

In conclusion, we find that mutations at the subunit interface of the rP2X2R ECD based on either hP2X2 

receptor population data or homology model-derived data (based on the zfP2X4R channel structure), 

generally result in lower EC50 values. We further demonstrate that double mutations involving these sites 

typically show strong energetic coupling. This is true in particular for sites within close proximity, revealing 

a tight functional interplay between residues in the ECD. Although possibly not exclusive to inter-subunit 

locations or even ECD sites, these findings indicate that rP2X2Rs, unlike numerous other LGICs, have 

apparently not evolved for maximum agonist sensitivity. In support of this notion, their activation is fine-

tuned by Mg2+, which when bound to ATP renders it a very ineffective agonist (Li et al., 2013). It is thus 

tempting to speculate that P2X2Rs have evolved towards low levels of activity, possibly as a cellular 

protection mechanism against overstimulation or as a means to enable additional modulation of agonist 

sensitivity. From a clinical perspective, this motivates the development of both P2X2R inhibitors and 

potentiators, in order to be able to eventually treat patient with mutations that either increase or decrease 

apparent ATP affinity.  
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TABLES 

Table 1: ATP-elicited concentration-response data (EC50) shown as mean ± S.D. as well as number of 

experiments (n) for WT and single mutants in the rP2X2R interface based on human population data (along 

with corresponding residue positions in hP2X2 and zfP2X4 receptors). Significant differences were 

determined by unpaired t-test. **, p < 0.01; ***, p < 0.001; ****, p < 0.0001. 

rP2X2 
construct 

Corresponding 
hP2X2 residue 

Corresponding 
zfP2X4 residue EC50 ± SD (µM) 

 
n 

WT N.A. N.A. 31.0 ± 14.5 33 

R28C R40 K30 29.3 ± 17.5 10 

E63A E75 L64 12.8 ± 4.2**** 8 

G92R G104 E98 1590.9 ± 443**** 9 

R274Q R286 R280 15.4 ± 5.8*** 6 

S284A S296 A292 9.1 ± 4**** 10 

N288A N300 N296 2566.6 ± 502**** 7 

Y294F Y306 Y302 76.9 ± 32.5 ** 8 

R304Q R315 R312 3011.8 ± 862.4**** 7 

R313Q R324 R321 13.7 ± 3**** 9 
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Table 2: ATP-elicited concentration-response data (EC50) shown as mean ± S.D. as well as number of 

experiments (n) for WT and single mutants lining the P2X2R inter-subunit interface (along with 

corresponding residue positions in hP2X2 and zfP2X4 receptors). Significant differences were determined 

by unpaired t-test. **, p < 0.01; ***, p < 0.001; ****, p < 0.0001; a, residues in the TM domain of P2X2R; 

b, residues away from the interface (S122, T123) or previously characterized (E167 in (Hausmann et al., 

2013)). 

rP2X2 
construct 

Corresponding 
hP2X2 residue 

Corresponding 
zfP2X4 residue EC50 ± SD (µM) 

 
n 

WT N.A N.A. 31.0 ± 14.5 33 

Y43Aa Y55 Y45 0.7 ± 0.3**** 6 

Y43Fa Y55 Y45 11 ± 2**** 5 

S65A S77 S66 1.7 ± 0.2**** 6 

I73A I85 I74 56 ± 12** 6 

D78N H90 E84 9.3 ± 3**** 11 

K79Q K91 R85 36 ± 10 6 

V80A V92 I86 263.2 ± 100.5*** 8 

E84Q E96 A90 4.1 ± 2**** 9 

Y86F Y98 Y92 11 ± 5**** 10 

E91Q E103 Q97 17 ± 7**** 12 

S122Cb A134 S127 3.4 ± 1**** 6 

T123Cb T135 T128 1.9 ± 0.3**** 6 

E167Qb E179 E171 6.1 ± 2**** 8 

S190A S202 N195 3 ± 0.4**** 7 

D209N G221 S215 8.2 ± 3**** 6 

H213L R225 H219 13 ± 5**** 6 

L276A L288 L282 4.5 ± 1**** 12 
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K293Q K305 K301 3.5 ± 0.9**** 10 

Y295F Y307 Y303 4.1 ± 1**** 6 
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Table 3: ATP-elicited concentration-response data (EC50) shown as mean ± S.D. as well as number of 

experiments (n) for WT and double mutants both at different and same subunit interface. Coupling energy 

values (kJ/mol) calculated as described in material and method section. Significant differences were 

determined by unpaired t-test. **, p < 0.01; ***, p < 0.001; ****, p < 0.0001; a, residues located away from 

the subunit interface. 

rP2X2 construct EC50 ± SD (µM) n 
Coupling energy, 
ΔΔG, kJ/mol 

WT 31.0 ± 14.5 33 ND 

Y86F L276A 12 ± 9.8*** 8 5.0 

D78N L276A 18.6 ± 7.9*** 13 6.5 

D78N E167A ND ND ND 

E91Q R313Q ND ND ND 

L276A S284A 8.6 ± 1**** 5 4.6 

Y86F K293Q 10 ± 1**** 5 5.2 

E84Q E91Q 414 ± 269*** 13 12.9 

S190A D78N 1.3 ± 0.3**** 9 0.9 

S190A V80A 11 ± 3**** 9 -2.0 

L276A T123Ca 23.3 ± 18.5 19 11.0 

L276A S122Ca 34.4 ± 23.4 15 10.5 

Y86F T123Ca 21.6 ± 9.8** 20 8.6 
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