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ABSTRACT 
Cold exposure is an extensively used intervention for enhancing thermogenic and 

mitochondrial activity in adipose tissues. As such, it has been suggested as a potential 

lifestyle intervention for body weight maintenance. The metabolic consequences of cold 

acclimation are not limited to the adipose tissues, however the impact on rest of the 

tissues in context of their gene expression profile remains unclear. Here we provide a 

systematic characterization of cold exposure-mediated effects in a comparative multi-

tissue RNA sequencing approach using wide range of organs including spleen, bone 

marrow, spinal cord, brain, hypothalamus, ileum, liver, subcutaneous-, visceral- and 

brown adipose tissues. Our findings highlight that transcriptional responses to cold 

exposure exhibit high degree of tissue-specificity both at the gene level and at GO 

enrichment gene sets, which is not directed by the basal gene expression pattern 

exhibited by the various organs. Our study places the cold adaptation of individual tissues 

in a whole-organism framework and provides an integrative transcriptional analysis 

necessary for understanding the cold exposure-mediated biological reprograming. 
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INTRODUCTION  
 
Over the last decade and the discovery of active brown adipose tissue (BAT) presence in 

humans, cold acclimation for stimulating thermogenesis has gained interest as an 

intervention leading to increased energy expenditure (Chondronikola et al., 2016; 

Nedergaard et al., 2007). As such, the association between activating the thermogenic 

program of BAT and metabolic health has been extensively studied (Walden et al., 2012). 

Most of the cold-exposure studies are conducted on mouse models, and various 

interventions differing in length and intensity of the cold have been used to alter adipose 

tissue activity and metabolism (Peres Valgas da Silva et al., 2019). The BAT is present 

at distinct anatomical sites, including the interscapular (iBAT), perineal and axillary 

depots. The white adipose tissue (WAT) stores energy in form of triglycerides and it is 

found throughout the body. Its largest compartments are the subcutaneous and visceral 

adipose tissues (SAT and VAT, respectively). Following prolonged cold, brown fat-like 

cells also emerge in SAT (known as “beige” cells) in a process referred to as fat browning 

(Chouchani et al., 2019; Stojanovic et al., 2018). Brown and beige fat-associated 

thermogenesis account for 2-17% of the total 12-20% of energy that is expanded daily 

(Tan et al., 2011), indicating that other tissues may also contribute (van Marken 

Lichtenbelt and Schrauwen, 2011), as has recently been shown for the liver (Abumrad, 

2017; Simcox et al., 2017). However, the contribution of other organs in the overall 

adaptation of the organism to cold exposure is less understood (Omran and Christian, 

2020). 

Hypothalamus is the central regulating unit in the brain for maintenance of the energy 

homeostasis, including the body temperature. During cold, sympathetic signals are 

sensed by adipocytes via their beta-adrenergic receptors, which results in BAT activation 

(Cannon and Nedergaard, 2004; Chechi et al., 2013; Stojanovic et al., 2018). Immune 

cells are also implicated in the effects of cold exposure in the adipose tissues 

(Hotamisligil, 2017; Kohlgruber et al., 2016; Molofsky et al., 2013; Omran and Christian, 

2020; Qiu et al., 2014; Stojanovic et al., 2018), which harbor an anti-inflammatory immune 

profile under cold. In obesity, the fat predominantly contains inflammatory immune cells 

linked to systemic low-grade inflammation (Hotamisligil, 2017; Kohlgruber et al., 2016). 
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The systemic immune state during cold exposure, however, remains largely elusive. 

While immune cells reside in a variety of organs, the major immune hubs are the primary 

lymphoid tissues where immune cells are generated (e.g. bone marrow), and the 

secondary lymphoid tissues where they are activated and expanded (e.g. spleen). Small 

stretches of lymphoid tissues also reside within other organs, including the intestine that 

contains the gut-associated lymphoid tissues (GALT). We (Chevalier et al., 2015; Spiljar 

et al., 2020) and others (Simcox et al., 2017) observed that cold exposure also affects 

organs apart from the adipose tissues, including the intestine and immunologic tissues. 

These data suggest that cold exposure exerts a whole-body functional reprogramming, 

however, no systematic transcriptomics analysis has addressed to what extent organs 

undergo changes induced by cold exposure. It is also not clear whether various organs 

display conserved, or tissue specific transcriptional signatures. 

RNA sequencing (RNASeq) is the most widely used quantitative approach to assess the 

global gene expression and its alternations under different conditions, since it determines 

subtle molecular changes that may contribute to acquisition of certain phenotypes 

(Carninci et al., 2005; Grada and Weinbrecht, 2013). It has been shown that RNAseq can 

reflect tissue specificity; as such, highly regulated genes might represent the 

characteristic functions of tissues (Breschi et al., 2016; Sonawane et al., 2017). However, 

due to a deluge of data, particularly when several transcriptomic data sets are obtained, 

the combined analysis of several datasets (meta-analysis) remains challenging (Sudmant 

et al., 2015). This analysis becomes even more challenging if one aims to interconnect 

the variations in the meta-data with the complex molecular basis of phenotypic changes. 

In this study, we conducted a systematic analysis of cold-induced gene expression across 

ten mouse tissues. We establish a common expression signature of deregulated genes 

in BAT during various cold exposure experimental setups across seven studies (six 

previously published RNAseq datasets and this work). Further, we provide a 

comprehensive resource dataset of comparative transcriptomics across ten mouse 

tissues describing the transcriptional landscape at room temperature (RT), and its 

alternations (differential expression) upon cold exposure (CE) (10°C). We systematically 

investigate how differential expression impacts specific cellular functions across the ten 

tissues and identify shared, specific, and inversely regulated gene signatures and gene 
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set enrichments under cold. Our work shows that adipose tissues undergo the most 

pronounced transcriptome deregulations, followed by the immune tissue and central 

nervous system (CNS) cluster. With this resource and the applied bioinformatics 

methods, we characterize tissue-specific expression patterns and detect temperature-

dependent gene expression profiles; provide insights into the tissue-specific adaptation 

mechanisms associated with cold exposure; and place the adaptive role of each tissue in 

a whole-organism perspective to comprehend the tissue-specific organization of the 

biological processes upon cold. 

 
 
RESULTS  
Effectiveness of 10°C for activation and recruitment of the thermogenic capacity of 
brown adipose tissue (BAT) 
We first investigated the effectiveness of a milder cold intervention using 10°C on the BAT 

following a gradual decrease of the temperature, as an approach that mimics the gradual 

decrease of the environmental temperature that typically happens in nature. We 

combined the BAT thermogenic biomarkers introduced in literature (Perdikari et al., 2018) 

with those genes which are annotated in Gene Ontology (GO) database to any GO term 

related to adaptive thermogenesis. This resulted in a list of 148 potential thermogenesis-

induced marker genes, of which 120 genes were significantly deregulated in at least one 

of the seven studies (Table S1). We next compared the regulation of these genes in our 

study to the six other publicly available transcriptomic datasets, in which C57BL/6J male 

mice were used in a cold exposure intervention (Bai et al., 2017; Cheng et al., 2018; Hao 

et al., 2015; Marcher et al., 2015; Shore et al., 2013; Xu et al., 2019) (Figure 1A). Several 

parameters such as gender, initial temperature, the cold temperature, the duration of the 

cold exposure, and the nature of the exposure (acute or chronic) are varying across these 

studies (Figure 1A).  
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Figure 1: Log2FC of brown adipose tissue (BAT) biomarkers across seven datasets. (A) 

Table of seven cold exposure studies with their corresponding experimental conditions. (B) 

Log2FC of 23 selected BAT thermogenic markers. (C) Log2FC of 26 selected fatty acid 

metabolism gene markers. The markers in (B) and (C) were selected as being significantly 

(P<0.05) regulated in at least four datasets. Each dot corresponds to the log2FC of the indicated 

gene and colors specify the corresponding study as designated in (A). 

Within the identified genes across the seven different studies, we found Ucp1 and Bmp8b 

being increased in all seven datasets, followed by Dio2 and Fgf21 that were regulated in 

six studies (Table S1). The cold exposure study of Cheng et al. (2018) covered a 

maximum of 75 of the 120 regulated genes among all the seven studies, follwed by 

Marcher et al. (2015) with 63 regulated genes and this study with 55 regulated genes, 

while the study by Bai et al. (2017) identified the least with only 13 dergulated genes. Out 

of the 120 genes, we selected 23 genes that were significantly regulated in at least four 

datasets and compared their log2FC across the seven studies (Figure 1B). Despite the 

notable differences in the experimental conditions, both the number of regulated 

thermogenesis-induced genes and the magnitude of their regulation in BAT at 10°C were 

in agreement with those obtained at colder temperatures.  

We further focused on 292 genes involved in fatty acid metabolism (as annotated in GO 

database), a process of critical importance for the cold-induced thermogenesis (Table 
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S2). We identified 190 genes which were significantly deregulated in at least one of the 

seven studies. Only Elovl3 was significantly regulated in all seven studies, and we 

observed a similar trend for the number of fatty acid metabolism-related genes across 

seven studies, with the maximum number of 127 regulated genes in Cheng et al. (2018), 

105 regulated genes in this study and 101 regulated genes in the study by Marcher et al. 

(2015). The least number of regulated genes was reported in Bai et al. (2017) with 10 

regulated genes. Comparing the log2FC of the 26 genes that were significantly regulated 

in at least four datasets (Figure 1C) shows that consistent with the thermogenesis-

regulated genes (Figure 1B), the regulation of fatty acid metabolism related-genes in our 

study using 10°C is in agreement with the other studies.  

These comparisons (both the number of regulated genes and the magnitude of their 

regulation) suggest that 10°C used in this study induces gene expression alterations that 

are similar to the harsher cold exposures, indicating that the milder cold temperature is 

an applicable intervention that resembles the more drastic cold exposures. 

 

A comprehensive mouse transcriptomic resource across ten tissues at cold 
exposure  
To identify how cold exposure affects the tissue-specific signatures and it whether 

induces common gene expression changes across various tissues, we performed 

RNAseq on iBAT, bone marrow, brain, hypothalamus, ileum, liver, inguinal SAT (ingSAT), 

spinal cord, spleen, and epididymal VAT (epiVAT) from mice exposed to 10°C for two 

weeks after an acclimatization at 18°C and 14°C for 5 days each and compared them to 

room temperature-kept controls (Figure 2A). All samples were subjected to quality control 

and clustering analysis, and we restricted our analyses to all genes with counts per million 

greater than zero, which ranged from 13,351 in the Liver to 15,959 in the VAT. Biological 

replicates across all tissues and the relationship between the tissues were analyzed using 

hierarchical clustering with pairwise Pearson correlation. We observed high Pearson 

correlation (0.92 to 1) between samples from the same tissue but different mice, 

suggesting that inter-individual variation has little impact on the transcriptomic profiles 

and demonstrating high reproducibility of the data, both at room temperature (RT, red 

section) and at cold exposure (CE, blue section) (Figure 2B). Larger clusters, as for 
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instance the one between SAT, BAT, and VAT, both at RT and CE, indicate that 

physiologically close tissues show high similarity in terms of their global gene expression 

profiles.  

To further investigate the clustering between the tissues, we performed a principal 

component analysis (PCA), using a combined dataset with 11403 genes that were 

identified across all ten tissues (RT and CE, Figure 2C). PCA revealed two strong clusters 

of physiologically related tissues (Figure 2C): The adipose tissue cluster with BAT, SAT, 

and VAT, and the CNS cluster with hypothalamus, brain and spinal cord samples. The 

bone marrow samples clustered relatively close to the spleen samples, which can be 

considered as an immune tissue cluster. The liver samples gathered close to the adipose 

tissues, while the ileum samples clustered between adipose tissue and spleen samples. 

Generally, the samples clustered rather by tissue and not by treatment (RT vs. CE).  

To understand the propensity of samples from cold-exposed and RT-kept mice per given 

tissue, we performed PCA on each tissue separately (Figure 2D) and observed a different 

degree of clustering of RT and CE samples in the various tissues. Specifically, we 

detected a pronounced separation of RT and CE samples in BAT, opposed to a milder 

separation in hypothalamus samples, implying that the cold exposure has varying effects 

depending on the tissue. 
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Figure 2: QC and clustering of the biological samples and tissues at cold and room 
temperature.  

(A) Experimental setup: 8 week old C57BL/6J mice were exposed to 10°C cold (CE) or room 

temperature (RT) for 2 weeks with initial 10 days of acclimatization and their tissues were 

harvested for RNA sequencing. Visceral adipose tissue (VAT), brown adipose tissue (BAT), 

subcutaneous adipose tissue (SAT), bone marrow (BM). (B) Correlation heatmap of 35 samples 

from the ten tissues of RT (red) and CE (blue) mice as in (A). Pearson’s correlation coefficient is 

computed for each pair of samples. (C) Principal component analysis (PCA) of the transcriptome 

across the ten tissues at RT and CE of mice as in (A). Physiologically close tissues are 
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distinguished by global gene expression patterns. (D) PCA of samples for each tissue from mice 

as in (A). 

 
Deregulated genes and enriched GO biological terms upon cold exposure across 
the ten tissues 
To further characterize the response to the cold exposure, we first assessed the number 

of deregulated genes and the magnitude of their deregulations across different tissues 

(Figure 3, Table S3), followed by GO gene set enrichment analysis of the identified 

differentially expressed genes. Collectively in all ten tissues, upon cold exposure we 

found 2471 genes as up-, and 3163 genes as down-regulated (p-value <0.05, |FC| > 1.5), 

while 679 genes were inversely regulated, i.e., upregulated in a given tissue(s) and 

downregulated in others. This inversely regulation may indicate that the regulation of 

certain genes occurs in a tissue specific manner. Physiologically close tissues, which 

clustered together (Figure 2C), shared similar numbers of deregulated genes. SAT 

underwent the most transcriptomic changes upon exposure to cold with 2867 significantly 

deregulated genes, followed by BAT and VAT, while brain and hypothalamus showed the 

least transcriptomic changes with 119 and 113 total deregulated genes, respectively 

(Figure 3). These results suggest that although adipose tissues are the most affected by 

cold exposure, all organs undergo changes that are reflected in their tissue-specific 

transcriptomic profiles.   

Moreover, the magnitude of gene deregulation (log2FC) showed an analogous ordering 

depending on the tissue. The adipose tissues had the biggest deregulation degree, 

including genes upregulated with log2FC of 7, e.g., Ucp1 in SAT and downregulated 

genes with log2FC of -9, e.g., Akr1b7 in VAT, while spinal cord, brain and hypothalamus 

scored the mildest deregulations (Figure 3, Table S3). 
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Figure 3: Distribution and degree of gene deregulation across ten tissues upon cold 
exposure. Log2FC of all genes across the ten tissues of mice as in Figure 2A (red and green 

colored dots indicate P<0.05, whereas grey dots indicate P>0.05). Numbers in parenthesis on the 

x-axis indicate the number of significantly up- (green) and down- (red) regulated genes. Gene 

name is shown for the five up- and five down-regulated genes with highest log2FC.  
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We next performed GO gene set enrichment analysis on the deregulated genes for the 

ten tissues upon cold (|FC| > 1.5 and P -value < 0.05). Enriched gene sets with P-value 

< 0.01 were chosen for further analysis, collectively consisting of 434 downregulated and 

259 upregulated gene sets (Table 1). 

SAT showed the highest degree of enrichment (261 GO terms), followed by VAT and 

BAT. The least changed tissues were spinal cord and brain with 17 and 13 deregulated 

gene sets, respectively (Table 1). Interestingly, this ordering was similar to the degree of 

gene deregulation (shown in Figure 3), with the exception of the hypothalamus, which 

ranked 5th when the GO terms were used as criteria. 

 

Table 1: GO-based gene set enrichment analysis across ten tissues upon cold exposure  

Significantly enriched GO terms (p-value <0.05) 

Tissue # of enriched GO terms upregulated downregulated 
SAT 261 83 178 
VAT 115 42 73 
BAT 96 43 53 
Spleen 56 1 55 
Hypothalamus 44 30 14 
Ileum 37 25 12 
Liver 30 3 27 
Bone marrow 24 18 6 
Brain 17 6 11 
Spinal cord 13 8 5 

 
Tissue-specific and tissue-shared gene and GO term signatures in response to 
cold exposure 
To gain initial insights into the tissue-shared and tissue-specific enriched GO terms, the 

top 63 up- and 86 down-regulated terms (out of the 545 unique enriched GO terms, full 

list is shown in Table S4) are shown in Figure 4. The selection is made based on the P 

value in response to cold including both tissue-shared and tissue-specific pathways, and 

it concludes with the last pathway that shows tissue-shared response. Since this visual 

representation indicates that some cold responsive gene sets are shared between 

tissues, we next sought to unravel the genes and biological GO terms that exhibit tissues-
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specific, or common regulation patterns upon cold exposure across the ten tissues. We 

classified the deregulated genes and gene sets into three categories according to the 

number of tissues wherein they are differentially expressed upon cold exposure. 

A        B 

 

Figure 4: Visualization of highly enriched gene sets indicates common enrichment 
within groups of tissues upon cold exposure. (A) The top ranked 63 up-regulated 

gene sets out of 259, and (B) the top ranked 86 down-regulated gene sets out of 4 are 

visualized. The p-value and the gene ratio (the ratio of deregulated genes to annotated 

genes in each gene set) were used as the ranking criteria.  
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Altogether 2597 genes were upregulated in only one tissue (69% of the total upregulated 

genes) and were defined as “tissue-specific up-regulation profiles” and 2696 genes were 

downregulated in a single tissue (50% of the total downregulated genes) and were 

identified as “tissue-specific down-regulation profiles” (Table 2). We observed widespread 

tissue-specific cold response in the adipose tissues where SAT ranked highest with 921 

up- and 1003 and down-regulated genes. We further compared the tissue-specific 

deregulated genes with the total number of deregulated genes for each tissue, which is 

indicated as a ratio in Table 2. The highest percentage of tissue specificity in terms of 

deregulated genes was seen in VAT with 77% tissue-specific upregulated genes, followed 

by spleen with 74% tissue-specific downregulated genes. Considering the total number 

of deregulated genes (sum of up and down regulated gens), SAT, VAT and spleen 

showed highest gene deregulation specificity with an average of 67% tissue-specific 

deregulation profiles (Table S3). Collectively, there was a higher degree of tissue-

specificity in upregulated versus downregulated profiles (69% compared to 50%).  

 
Table 2: Tissue-specific deregulated profiles. Number of up- and down-regulated 

genes per tissue shown as tissue-specific up-regulation profile (left) and tissue-specific 

down-regulation profile (right). The percentage of tissue-specific changes versus the total 

number of deregulated genes (as in Figure 3) is displayed in parenthesis. 

 
Tissue-specific upregulation 
profiles 

Tissue-specific downregulation 
profiles 

Tissue # of genes (% of tissue-
specific) # of genes (% of tissue-specific) 

SAT 921 (70%) 1003 (65%) 
VAT 746 (77%) 260 (43%) 
BAT 409 (53%) 578 (59%) 
Ileum 172 (66%) 218 (65%) 
Spleen 93 (72%) 302 (74%) 
Liver 79 (72%) 214 (57%) 
Bone marrow 53 (68%) 47 (64%) 
Hypothalamus 50 (66%) 25 (68%) 
Brain 47 (62%) 27 (63%) 
Spinal cord 27 (52%) 22 (27%) 
Total 2597 (69%) 2696 (50%) 

 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 29, 2021. ; https://doi.org/10.1101/2021.03.26.437139doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.26.437139
http://creativecommons.org/licenses/by/4.0/


 14 

We next focused on the genes with shared deregulation profiles within several tissues. 

Interestingly, there was no overall common gene regulation set for all ten tissues. The 

maximum tissue-shared gene signature belonged to Atp2a1, which was decreased in 7 

tissues (All adipose tissues, liver, bone marrow, hypothalamus, and spinal cord). The next 

top tissue-shared gene signatures were 6 genes that were commonly downregulated 

(Myh4, Nnat, Nr1d1, Tnni2, Tnnt3) and upregulated (Thrsp) in 5 tissues. The rest of the 

tissue-shared genes were shared within groups of four, three, and two tissues. To 

illustrate the tissue-shared genes and their distribution within the ten tissues, we 

performed a network analysis (Figure 5 A & B), where the size of each node is correlated 

with the number of tissue-specific cold-deregulated genes of each tissue, e.g., the SAT 

node is the biggest as it represents 921 upregulated (Figure 5A, Table 2) and 1003 

downregulated (Figure 5B, Table 2) genes. 

 
 

Figure 5: Tissue-shared gene deregulations upon cold exposure. Network plot 

visualizing the relationship of tissue-shared (numbered light green and light red circles) 

and tissue-specific (dark green and dark red circles) genes in the ten tissues of mice, as 

in Figure 1A. Upregulated genes upon cold exposure are shown in the green network (A), 

and downregulated genes are shown in the red network (B). Tissue-shared genes with a 

minimum of two shared genes are displayed, and the full dataset is provided in Table S3. 

Tissue-specific genes are connected to tissue-shared genes (light green and light red) 
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with dark grey lines if they indicate a pairwise connection and in light grey, if they are 

shared in more than two tissues. The size of each node indicates the number of both 

shared and specific deregulated genes.  

 

The highest degree of tissue-shared upregulated genes was found within the adipose 

tissues, where 200 genes were similarly upregulated in SAT and BAT, followed by 64 

genes in VAT and SAT and 47 genes in VAT and BAT (Figure 5A). Likewise, SAT, VAT 

and BAT shared 53 genes, which are upregulated in the three tissues. Apart from the 

adipose tissues, the top-shared pairwise connections were related to ileum and liver. The 

analysis also revealed that spinal cord shares the least number of upregulated genes with 

other tissues, having only two genes shared with VAT.  

Similarly, the top-shared pairwise connections for downregulated genes were found in 

adipose tissues where SAT and BAT shared 184 downregulated genes, SAT and VAT 

118 genes, followed by liver and SAT with 33 tissue-shared downregulated genes. The 

hypothalamus displayed lowest number of shared downregulated genes, having only two 

in common with BAT. 

Next, we studied the tissue-specific and the tissue-shared GO terms enrichment. Out of 

the 545 regulated GO terms, 445 (81%) were identified as tissue-specific regulated 

pathways (Table S4). This suggests that the transcriptional cold response at the level of 

functional gene sets is to a great degree tissue-specific. To unravel which cold responses 

are shared between tissues, we identified commonly regulated gene sets. Of note, the 

maximum number of tissues which shared a given regulated gene set is three. A closer 

inspection of the 63 commonly deregulated gene sets revealed that 38 were commonly 

downregulated between three (6 gene sets) and two (32 gene sets) tissues, while 25 gene 

sets were commonly upregulated between three (5 gene sets) and two (20 gene sets) 

tissues (Figure 4, Table 3, and the full list in Table S3). We observed a clear 

overrepresentation of the adipose cluster in the shared deregulated gene sets, which 

suggests a common response in SAT, BAT, VAT that extends to ileum, liver and spleen 

for certain GO terms. This indicates that the closely related tissues share higher numbers 

of cold responsive gene sets.  
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Table 3: Shared tissue GO gene set enrichments within three tissues upon cold 
exposure 

GO gene set enrichment Tissues 

Shared tissue gene set enrichments within upregulated genes (p-value <0.05) 

fatty acid biosynthetic process SAT,BAT,VAT 

phospholipid biosynthetic process SAT,BAT,VAT 

cholesterol biosynthetic process SAT,BAT,VAT 

lipid homeostasis SAT,BAT,VAT 

gluconeogenesis SAT,BAT,ileum 

Shared tissue gene set enrichments within downregulated genes (p-value <0.05) 

G protein-coupled receptor signaling pathway SAT,BAT,VAT 

muscle contraction SAT,BAT,liver 

leukocyte migration involved in inflammatory response SAT,spleen,VAT 

cardiac myofibril assembly SAT,BAT,liver 

regulation of adenylate cyclase activity SAT,BAT,VAT 

skeletal muscle contraction BAT,liver,VAT 

 

 
Shared-tissue regulated GO terms involve tissue-specific and tissue-shared genes 
We next investigated whether the tissue-shared GO terms regulation is derived from the 

shared or the tissue-specific deregulated genes. We particularly focused on SAT, VAT 

and BAT. The Venn diagram of the first three most commonly up- and down-regulated 

gene sets showed that they are largely derived by genes that are deregulated in a tissue-

specific manner (Figure 6A). This tissue specificity is more pronounced in the 

downregulated gene sets (Figure 6B). For example, in fatty acid biosynthesis process, 

only 4 genes are shared between the three tissues and the upregulation of the pathway 

mostly emerges from the tissue-specific genes in SAT (13 genes), VAT (9 genes) and 

BAT (7 genes). This suggests that although different genes are up-regulated in the three 

tissues, they might have a similar function that leads to a common functional response. 
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Interestingly, the degree of tissue-specific gene upregulation is on average higher for VAT 

followed by BAT and SAT.  

 

 
Figure 6: Shared tissue GO term enrichments and implicated genes. (A-B) Venn diagram of 

shared adipose tissue GO gene set enrichments of up- (A) and down- (B) (left), and dot plot of 

genes involved in these gene sets (right) across the adipose tissues from mice as in Figure 2A. 

Not all the genes are labeled on the dot plots.  

 
Tissue-specific response to cold is not orchestrated by the gene expression 
patterns 
To investigate if the strong tissue specificity in response to cold exposure is directed by 

the tissue specificity in the overall gene expression patterns, we first accounted for the 

genes with minimum 5 raw counts as a filtering threshold, and observed that 19,747 

genes are expressed at least in one tissue, wherein 10977 genes (55% of expressed 

genes) were expressed in all ten tissues (Figure 7A). From these, 3407 genes (36%) were 

deregulated in at least one tissue (Figure 7B). Looking at these deregulated genes, 
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irrespective of the consistency in the direction of change, we found that 2428 genes (over 

71%) were altered in only one tissue, 731 (over 21%) in two, and 190 (over 5%) commonly 

deregulated in three tissues. The rest 1.7% of deregulated genes were commonly 

changed in four or more tissues (Figure 7C). These data demonstrate high tissue-

specificity in the transcriptional response to cold also among the commonly expressed 

genes. Moreover, 1623 genes (8 % of expressed genes) were expressed in only one 

tissue (Figure 7A). Spinal cord with 554 genes showed the most tissue-specificity in term 

of expressed genes, followed by VAT (339 genes), bone marrow (202 genes), ileum (140 

genes), spleen (138 genes), liver (96 genes), hypothalamus (79 genes), brain (52 genes), 

BAT (13 gens) and SAT (10 genes). Interestingly, only 66 genes of the 1623 tissue-

specific expressed genes were significantly deregulated upon cold exposure (Figure 7B). 

Together, this indicates that the high degree of tissue-specificity in the transcriptional 

responses during cold exposure is not orchestrated by the global expression pattern 

exhibited by the various organs. 

 
Figure 7: Global tissue-shared and tissue-specific gene expression and regulation 
patterns across ten tissues during cold. (A) Pie chart depicting distribution of the 

19,747 genes on the number of tissues. Number of tissues where is indicated on each 

slice of the Pie chart, and the number of commonly expressed genes for the respective 

number of tissues is shown in parenthesis, e.g., 10,977 genes are expressed in all ten 

tissues and 1,623 genes are expressed in only one tissue (B) Distribution of 5,948 

deregulated genes during cold based on the number of tissues. Number of tissues is 

indicated on each slice of the Pie chart and the number of genes is shown in parenthesis. 

Number of tissues and colors are kept in the same order as in (A), e.g., out of the 1623 
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genes that are expressed only in one tissue, 66 genes are deregulated. (C) Distribution 

of 3,407 that are expressed in all ten tissues (as in B) that are deregulated in at least one 

tissue. The number shows number if tissues where the gene is deregulated, and in 

parenthesis are the number of deregulated genes per respective number of tissues. E.g. 

2,428 genes are deregulated in only one tissue. 

 

To further underpin these conclusions, and given the importance of the thermogenic and 

fatty acid metabolism biomarkers in the cold response, we specifically analyzed and 

compared the tissue specificity on both global expression and regulation levels of the 148 

thermogenic and 292 fatty acid metabolism biomarkers (Table S1 & Table S2) across the 

ten tissues (Figure 8). All the 148 thermogenic markers are expressed (minimum 

threshold of 5 raw counts) at least in two tissues, i.e., there is no gene that is specifically 

expressed only in one tissue. Surprisingly, we found only 30 genes which are not 

expressed in all ten tissues, which is in agreement with the global expression analysis. 

Liver contributes the most to this list by not expressing 16 of these 30 genes (Figure 8A, 

Table S5). Although all the 148 thermogenic biomarkers are expressed across most of 

the ten tissues, only 97 genes exhibit significant deregulation (p-value <0.05, |FC| > 1.5) 

upon cold exposure (Figure 8C), wherein 71 belong to adipose tissues. SAT has the 

highest number deregulated thermogenic biomarkers, followed by BAT and VAT (65, 31 

and 25 deregulated genes, respectively), while the brain showed no thermogenic 

biomarker deregulation (Figure 8C).  

Out of the 292 fatty acid metabolism biomarkers, 278 genes are expressed (minimum 

threshold of 5 raw counts) in at least one tissue. Similarly, most of the expressed genes 

(75 %) were expressed in the ten tissues and we did not observe a strong tissue specificity 

on the level of gene expression in fatty acid biomarkers (Figure 8B). 137 genes out of the 

278 expressed genes were deregulated in at least one tissue. We identified 83 tissue-

specific gene deregulations, where within SAT we found 37 tissue-specific deregulated 

genes ranking it on the top, followed by BAT with 23 genes and VAT with 16 genes. The 

spinal cord exhibits no tissue-specific deregulation of fatty acid metabolism biomarkers 

(Figure 8D, Table S6). The strong tissue-specificity pattern of deregulated genes (Figure 

5) was further observed in the thermogenic (Figure 8C) and the lipid metabolism (Figure 
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8D) biomarkers. Collectively, these results suggest that tissue specificity is dictated in the 

response to cold (gene regulation level) and not on the gene expression level.  

 
Figure 8: Expression and regulation of thermogenic and fatty acid metabolism 
biomarkers across ten tissues. (A) and (B) Heatmap showing an average of the 

thermogenic and fatty acid metabolism biomarker expression values of mice at RT or cold 

as in Figure 2A across the ten tissues. (C) and (D) Log2FC of the significantly (P<0,05) 

deregulated thermogenic and fatty acid metabolism biomarkers across the ten tissues. 

Each dot corresponds to the log2FC of a gene and colors specify the number of tissues 

where that gene is deregulated. The total number of deregulated genes for each tissue is 

shown in parenthesis.  
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Tissue-specificity of genes from the same family and with similar functions  
By grouping the 19,747 expressed genes of our mouse gene catalog solely based on 

their gene nomenclature and without considering their specific function, we identified 

2827 belonging to a “group of genes”. Members of these groups range from 1084 genes 

in the biggest group - Olfr (Olfactory receptors), to 2 genes in the smallest group (1273 of 

these groups have only two members) (Table S7). We found several thermogenic and 

fatty acid metabolism biomarkers such as Abhd, Abhd, Acsm, Pex, Ppar, Hacd, Elovl, 

Apoa, etc. as protein families, where we performed comparative analysis of their gene 

expression and regulation across the ten tissues (Table S5, Table S6). Similar as before, 

we observed tissue-specificity on the response to cold, but not on the gene expression 

patterns. As an example, we describe the elongation of very long chain fatty acids (Elovl) 

protein family, which plays an important role in fatty acid metabolism in adipose tissues. 

Elovl family includes seven genes named Elovl1 to Elovl7, and catalyzes the first and 

rate-limiting reaction of the very long-chain fatty acid elongation cycle in the fatty acid 

biosynthesis pathway (Jump, 2009). The seven members displayed differing gene 

expression levels (Figure 9A) and variable rates of deregulation upon cold exposure 

across the ten tissues (Figure 9B). Elovl1 and Elovl7 are present at all ten tissues with 

particularly high expression in Ileum, but without any significant change upon cold 

exposure. The liver expresses all genes except Elovl7 and Elovl4 at a very high level, 

however we found no significant change in the expression levels at cold. The highest 

average expression value belongs to Elovl6 in BAT and the highest regulation was seen 

for Elovl3 in SAT. Elovl5 and Elovl6 expression levels were relatively high across all 

tissues and showed a pronounced upregulation by cold in the three adipose tissues 

(Figure 9B). Moreover, we observed a VAT-specific increase in Elovl2 expression upon 

cold. Elovl3 on the other hand was upregulated in BAT and SAT, whereas Elovl4 

expression was enhanced in BAT and VAT from the cold-exposed mice compared to their 

RT-kept controls and the magnitude of upregulation was much higher in VAT (Figure 9B). 

Consistent with our previous analysis, although different members of Elovl gene family 

were expressed in most of the tissues, their response to cold was tissue specific.  
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Figure 9: Average expression and regulation of Elovl gene family across ten tissues 
at RT and cold. (A) Heatmap showing average of the normalized gene expression values 

of mice at RT or cold as in Figure 2A across ten tissues. (B) Log2FC of the significantly 

upregulated genes (P<0,05) of the Elovl family from mice as in (A). Significant changes 

of the Elovl family were detected only in in the adipose tissues. 

 

 
DISCUSSION 
Cold exposure is an extensively studied intervention to promote BAT activity and SAT 

browning. Despite the potential therapeutic relevance of this environmental trigger in 

increasing the energy expenditure, the impact of cold on the transcriptomic landscape of 

other tissues and their physiological response has received little attention so far. On the 

other hand, different temperatures have been interchangeably used in cold exposure 

studies. In this study, we first gathered all publicly available RNASeq profiles of C57BL/6J 

mouse BATs obtained under different cold exposures ranging from 4 °C to 8 °C. This 

comparative analysis revealed that biomarker response to our milder (10°C) cold setup 

was effectively in the 50th percentile range with the exception of a few genes e.g., Dio2. 

Interestingly, our results indicate that the variance in magnitude of the transcriptional 

upregulation across the different studies can be explained by the duration of the cold 
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exposure rather than the extent of the temperature decrease per se, as evidenced by the 

expression of the thermogenic and fatty acid metabolism biomarkers.  

When analyzing the comparative RNAseq data across the ten tissues, we observed that 

as expected, similar tissues effectively clustered together in terms of their overall 

transcriptomic profile, regardless of the imposed condition, i.e., cold exposure or RT. The 

extent of the sample separation following cold was different for different tissues, 

suggesting that cold exposure causes variable and tissue-specific responses. These 

conclusions were further supported by the number and the magnitude of deregulated 

genes and the enriched gene sets. Upregulated GO terms, which were mostly related to 

thermogenesis, oxidative phosphorylation, fatty acid biosynthesis, elongation and 

catabolic processes, and mitochondrial ATP synthesis scored the highest in the adipose 

tissues. This was followed by the hypothalamus and the ileum where some of the 

upregulated pathways related to lipid metabolism went in the same direction as the 

adipose tissues, however to a lower extent. Strikingly, the tissue specificity in the 

response to cold was not dictated by the gene expression differences between the various 

tissues, since we found the same levels of alterations even within the commonly 

expressed genes (55%).  

The multi tissue data in this study opens the possibilities for integrative analyses of the 

adaptation to lower environmental temperatures, and it allows investigating how organs 

compensate for the increased activity of the above-mentioned biological process. As 

expected, in the adipose tissues, which showed the highest number of upregulated gene 

sets particularly related to thermogenesis, we identified a considerable number of 

downregulated gene sets. This may suggest that on a tissue level the energy expenditure 

is balanced by a tendency for lowering a range of biological processes to maximize the 

necessary biological response to a given trigger.  

On the other hand, such balance between up- and down-regulated biological processes 

was not seen in the spleen, where we observed primarily downregulated gene sets. 

Several biological processes such as innate immune response in mucosa, neutrophil-

mediated killing of symbiont cell, inflammatory response, and many other responsive 

systems, e.g., response to bacteria, were all highly downregulated in spleen. The 

predominant down-regulations in the spleen could be explained by its mainly immunologic 
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functions, a biological process that might be blunted during cold. Intriguingly, our results 

further indicated that some pathways are inversely regulated across tissues. For example, 

the triglyceride catabolic process was upregulated in SAT, brain, and hypothalamus, but 

downregulated in spleen. In part, this may indicate an overall redistribution of the 

metabolic energy towards the tissues necessary for acute response to an environmental 

trigger such as cold, on account of the other maintenance biological programs.  

Examining tissue-specific and tissue-shared genes and gene set signatures revealed that 

tissue-specificity both at level of genes and gene sets dominate over tissue-shared 

patterns. Interestingly, even within the adipose tissues, we observed preferential tissue-

specific response over shared characteristics. Interestingly, the shared-tissue gene sets, 

e.g., upregulation of fatty acid biosynthetic process, do not necessarily require 

upregulation of the same genes. This highlights the tissue specificity also on a gene level, 

where regulation of different genes contributes to emergence of the same biological 

process. Similarly, analysis of the Elovl gene family in context of the different tissues 

revealed that different members of a given gene family could evolve and be regulated in 

a tissue-specific manner. Such inter-tissue specificity of genes from the same family can 

guide discovery of tissue-specific regulators upon cold adaptation and contribute to a 

better understanding of the underlying molecular basis of cold adaptation of each tissue.  

In summary, our work shows that 10°C cold exposure causes a representative 

transcriptomics response in BAT, and highlights the local alternations in the 

transcriptomic profile across ten tissues, which include neural, immune, and metabolic 

responses. We believe that this tissue-specific cold-induced expression atlas will be a 

useful resource for studding the physiological alterations in response to lower 

environmental temperatures in an integrative manner. 

 
METHODS 
Mice 
Male 8 weeks old C57BL/6J mice were obtained from Janvier (France). Mice were housed 

in a specific pathogen free (SPF) facility in 12 h day/night cycles with free access to 

irradiated standard chow diet and water from autoclaved bottles. All mice were housed 2 

per cage without bedding and nesting material to ensure controlled temperature 
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conditions. Cold exposure was performed in a light- and humidity-controlled climatic 

chamber (TSE, Germany) under SPF conditions, at 10 °C for 2 weeks with an initial 

acclimatization period of 5 days at 18°C and 5 days at 14°C. All animal experiments were 

performed at the Universities of Geneva with authorization by the responsible Geneva 

cantonal, and Swiss federal authorities in accordance with the Swiss law for animal 

protection. 

 

Experimental model and subject details 
Our study design is summarized in table S8. Transcriptome dataset were generated from 

ten different tissues (Brown adipose tissue (BAT), bone marrow, brain, hypothalamus, 

ileum, liver, inguinal subcutaneous adipose tissue (SAT), spinal cord, spleen, and 

epididymal visceral adipose tissue (VAT)) of C57BL/6J mice subjected to cold, or kept at 

RT. The summary of mice and tissue sampling is provided in Table S8. 

 
RNA extraction for RNA sequencing 
After collection, all tissues except bone marrow were snap frozen in liquid nitrogen and 

stored at -80°C until used. Frozen tissues were mechanically homogenized with 1 

stainless steel bead (5 mm) in 1 ml Trizol (Thermo Fisher Scientific) by shaking for 50 s 

at 30 Hz (TissueLyser, Qiagen). 200 μL chloroform was added to homogenize Trizol 

samples, followed by 15 s shaking and centrifugation (15 min, 12000 RCF, 4°C). The 

chloroform phase was collected, shaken for 15 s with 500 μL isopropanol and centrifuged 

(50 min, 12000 RCF, 4°C). The pellet was washed with 70% ethanol twice (10 min, 8000 

RCF, 4°C) and dissolved in 50 μL PCR-grade water. Bone marrows were flushed 

immediately after collection from mouse, cells were spun and loaded onto shredder 

columns (Qiagen). Shredded bone marrow cells were frozen (-80°C) in RLT buffer (1% 

beta-mercaptoethanol) until RNA extraction using RNAeasy mini kit (Qiagen). RNA 

integrity number (RIN) was determined in all samples (Bioanalyzer 2100, Agilent) before 

sequencing. 
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RNAseq sequencing  
The mRNA sequencing was done at the iGE3 Genomics Platform at the CMU of the 

University of Geneva for the bone marrow and spinal cord, while for all other tissues at 

the University Medical Center Göttingen (UMG), Institute of Human Genetics, NGS- 

Integrative Genomics Core Unit (NIG). Libraries for sequencing of bone marrow and 

spinal cord were prepared with the TruSeq stranded mRNA kit and sequenced with read 

length SR50 (Illumina HiSeq 4000). For all other tissues RNA-seq libraries were prepared 

using the NEBNext Ultra RNA Library Prep Kit for Illumina, and were pooled and 

sequenced on an Illumina HiSeq 4000 sequencer generating 50 base pair single-end 

reads as in (Schattling et al., 2019, Di Liberto et al. 2018) with 30 Mio reads/sample. The 

sequencing quality control was done with FastQC v.0.11.5 (http://www.bioinformatics. 

babraham.ac.uk/ projects/fastqc/). The reads were mapped with STAR aligner v.2.6.0c 

(Dobin et al., 2013) to the UCSC Mus musculus mm10 reference. The transcriptome 

metrics were evaluated with the Picard tools v.1.141 (http://picard.sourceforge.net/). The 

table of counts with the number of reads mapping to each gene feature of the Mus 

musculus mm10 reference was prepared with HTSeq v0.9.1 (htseq-count, http://www-

huber.embl.de/users/anders/HTSeq/).  

 

Data analysis 
Raw counts were processed and analyzed by R/Bioconductor package EdgeR v. 3.4.2 

(McCarthy et al., 2012), for normalization differential expression analysis. The counts 

were normalized according to the library size and filtered. Only genes having log count 

per million reads (cpm)>0 were kept for the further analysis. After normalization of the 

counts, transcript abundances were compared in pairwise conditions in a modified 

Fischer exact test (as implemented in edgeR). Two-tailed unpaired Student’s t-test was 

used for pair-wise comparisons, and p <0.05 was considered statistically significant, 

unless otherwise specified. Genes were considered significantly changed if they passed 

a fold change (FC) cutoff of |FC| > 1.5 and a p-value≤0.05, and were further subjected to 

gene ontology analysis, using R/Bioconductor package topGO 

(https://bioconductor.org/packages/release/bioc/vignettes/topGO/inst/doc/topGO.pdf), 

together with Rgraphviz, Pearson correlation similarity analysis, and heatmap 
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visualization. Principal Components Analysis (PCA) and volcano and dot plots were 

generated in R, and the scripts used for the analysis and generating figures are available 

at github.com/Nhadadi/Mouse_AllTissue_Transcriptomics. 

 

Network analysis 
Network analysis of all genes in the tissue-enriched and group-enriched categories was 

done using Cytoscape 3.8 (Shannon et al., 2003). The resulting network includes only 

group enriched nodes with at least two expressed genes. 

 

SUPPLEMENTARY TABLE LEGENDS 
Table S1: Log2FC of 148 potential thermogenic biomarkers combined from literature and 

GO database across 7 studies. Only significantly deregulated genes (P<0.05) are shown. 

Table S2: Log2FC of 292 potential fatty acid metabolism biomarkers from GO database 

across 7 studies. Only significantly deregulated genes (P<0.05) are shown. 

Table S3: Log2FC of significantly (P<0.05) deregulated genes across the ten tissues. 
Table S4: Enriched GO terms across the ten tissues.  
Table S5: Average of the normalized gene expression values of thermogenic and fatty 

acid metabolism biomarkers of mice at RT or cold across the ten tissues. 
Table S6: Deregulation of thermogenic and fatty acid metabolism biomarkers across the 

ten tissues. Only significantly deregulated genes (P<0.05) are shown. 
Table S7: Gene family members. 

Table S8: Summary of the study design. 

 
DATA AVAILABILITY 
The raw counts from the RNA-seq data, and the code for the bioinformatics pipeline 

developed for this study have been made freely available at 

(github.com/Nhadadi/Mouse_AllTissue_Transcriptomics). Prior to the publication, the 

RNAseq data will be also deposited to GEO and given accession number. 
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