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Abstract 

Neoadjuvant therapy followed by surgery is the standard of care for locally advanced 

esophageal adenocarcinoma (EAC). Unfortunately, response to neoadjuvant chemotherapy 

(NAC) is poor (<20%), as is the overall survival benefit at 5 years (5%). The EAC genome is 

complex and heterogeneous between patients, and it is not yet understood whether specific 

mutational patterns may result in chemotherapy sensitivity or resistance. To identify 

associations between genomic events and response to NAC in EAC, a comparative genomic 

analysis was performed in 65 patients with extensive clinical and pathological annotation using 

whole-genome sequencing (WGS). We defined response using Mandard Tumor Regression 

Grade (TRG), with responders classified as TRG1-2 (n=27) and non-responders classified as 

TRG4-5 (n=38). We report a higher non-synonymous mutation burden in responders (median 

2.08/Mb vs 1.70/Mb, P=0.036) and elevated copy number variation in non-responders (282 vs 

136/patient, P<0.001). We identified copy number variants unique to each group in our cohort, 

with cell cycle (CDKN2A, CCND1), c-Myc (MYC), RTK/PIK3 (KRAS, EGFR) and gastrointestinal 

differentiation (GATA6) pathway genes being specifically altered in non-responders. Of note, 

NAV3 mutations were exclusively present in the non-responder group with a frequency of 22%. 

Thus, lower mutation burden, higher chromosomal instability and specific copy number 

alterations are associated with resistance to NAC.  
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Introduction 

Esophageal adenocarcinoma (EAC) is a cancer of unmet clinical need. Patients with locally advanced 

EAC suitable for curative treatment receive neo-adjuvant chemoradiotherapy or neo-adjuvant 

chemotherapy (NAC) with or without adjuvant chemotherapy as standard of care. Randomized trials 

of NAC have consistently shown survival benefits for patients  (Ronellenfitsch et al. 2013; Girling et al. 

2002; Cunningham et al. 2006; Allum et al. 2009; Al-Batran et al. 2019). However, this survival 

advantage (5% at 5 years) (Smyth et al. 2017) is not due to an incremental improvement in outcome 

for all patients, but instead driven by a very good response in less than 20% of patients (Noble et al. 

2017; Sjoquist et al. 2011). Primary tumor regression following neoadjuvant therapy (NAT) can be 

measured using the Mandard Tumor Regression Grade (TRG) in resected specimens after surgery 

(Mandard et al. 1994; Tan et al. 2016; Tao et al. 2015) and is informative for both disease-free and 

overall survival (Wong and Law 2017; Tan et al. 2016; Tao et al. 2015). Genetic mechanisms associated 

with tumor response to NAT have been assessed in a variety of different cancer types (Chakiba et al. 

2014; Cramer et al. 2018; Greenbaum et al. 2019; Höglander et al. 2018; Lesurf et al. 2017; Li et al. 

2020; Zhu et al. 2020) including rectal adenocarcinoma, but have not been widely investigated in EAC. 

Predictive biomarkers of response following NAT have been proposed for EAC, including functional 

imaging and expression of genes regulating apoptosis, angiogenesis, cell cycle, and DNA repair as well 

as growth factors and their receptors, but none have approached clinical practice (Tan et al. 2016; Tao 

et al. 2015). 

 

EAC genomes are characterized by a high degree of chromosomal instability (Nones et al. 2014; Secrier 

et al. 2016), and large-scale genomic studies, such as those conducted by the OCCAMs UK consortium 

using whole genome sequencing to contribute the International Cancer Genome effort, have identified 

key driver genes and clinically relevant biomarkers for prognostication (Secrier et al. 2016; Frankell et 

al. 2019). This large cohort with extensive data on treatment and clinic-pathological response provides 

an ideal opportunity to investigate the predictors of response and resistance to chemotherapy. To date, 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted April 23, 2021. ; https://doi.org/10.1101/2021.03.26.437144doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.26.437144


4 
 

only two studies using whole exome sequencing have investigated genetic features associated with 

response to NAC in which genetic bottlenecks, intratumor heterogeneity and early chromosomal 

instability were found to be related to NAC response/resistance in EAC (Findlay et al. 2016; Murugaesu 

et al. 2015). These studies provide key insights into the genomic evolution of EAC through NAC and the 

changes in the genome architecture following clinical response. There is a need for studies to further 

characterize the whole genomic landscape in EAC at the time of diagnosis (pre-treatment) to enable 

identification of predictive biomarkers for response to NAC and to identify the consequences of 

genomic lesions suitable for novel interventions.  

Here, we describe results from whole genome sequencing (WGS) of pre-treatment biopsies from 65 

EAC patients treated with NAC and surgery, alongside RNA-seq, to investigate the genetic features 

associated with NAC response.  We describe a hierarchical approach to the comparative analysis of the 

genomes of EAC responders and non-responders, starting with total mutational burden, continuing 

through large-scale chromosomal events and on to driver gene mutations, before defining the key 

genomic differences between groups and their potential for possible therapeutic intervention.  
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Results 

Patient characteristics and overall study design 

In total, 65 cases from the well-curated OCCAMS consortium multi-center dataset (Secrier et al. 2016; 

Frankell et al. 2019) were classified into two groups based on Mandard Tumor Regression Grading 

(TRG):  27 responders (TRG1 (n=18) and TRG2 (n=9)) and 38 non-responders (TRG4 (n=28) and TRG5 

(n=10)) (Fig. 1A). We excluded TRG3 classified cases because of their prognostically heterogeneous 

behaviour (Mancini et al. 2018). A summary of the clinicopathological data for the cohort is shown in 

Table 1 with full details available in (Table S1). Median follow-up in the cohort was 56.7 months (1.5 

- 78.8 months). In line with our previous multi-centre cohort study (Noble et al. 2017), TRG defined 

responders had favourable prognosis compared to non-responders with a significantly longer overall 

survival (78.5 vs. 33.8 months, P < 0.001, Fig. 1B). As expected, following NAC, non-responders had 

higher pathological TNM stage (ypT and ypN) compared to responders (χ2 test, P = 0.001, Table 1) but 

there was no difference in pre-NAC TNM stage (Rice et al. 2017). All 65 patients had WGS data 

generated from endoscopic biopsies and matched germline DNA taken at the time of cancer diagnosis 

and before any treatment. In total, 9 responders and 21 non-responders had matched RNA-seq data 

to complement the WGS dataset according to the availability of tissue. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted April 23, 2021. ; https://doi.org/10.1101/2021.03.26.437144doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.26.437144


6 
 

 

Figure 1. Outline of the cohort and analyses performed. (A) Description of the study design. (B) 
Kaplan–Meier of overall survival (n=64) for responders (blue line) and non-responders (red line). 
Number of cases at risk are detailed in the table. 
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 Table 1: Clinicopathological data for the study cohort according to response to NAC. 
 

 
Data presented as absolute number (%) and median (IQR), *P<0.05. ¶ indicates a Mann–Whitney U 
test p-value. 
  

Variable Category 

Non-
responders 
(n=38) 

Responders 
(n=27) 

Overall 
(n=65) P (X2 test) 

      
Age  66.25 64.30 65.00 0.739¶ 
Gender Female 5 (13.2) 2 (7.4) 7 (10.8) 0.741 

 Male 33 (86.8) 25 (92.6) 58 (89.2)  
cT Stage T1 0 (0.0) 1 (3.7) 1 (1.5) 0.485 

 T2 5 (13.2) 5 (18.5) 10 (15.4)  
 T3 31 (81.6) 19 (70.4) 50 (76.9)  
 T4 2 (5.3) 1 (3.7) 3 (4.6)  
 Missing 0 (0.0) 1 (3.7) 1 (1.5)  
cN Stage N0 8 (21.1) 7 (25.9) 15 (23.1) 0.494 

 N1 24 (63.2) 12 (44.4) 36 (55.4)  
 N2 5 (13.2) 6 (22.2) 11 (16.9)  
 N3 1 (2.6) 1 (3.7) 2 (3.1)  
 Missing 0 (0.0) 1 (3.7) 1 (1.5)  
Tumor 
Location GOJ 19 (50.0) 16 (59.3) 35 (53.8) 0.627 
 Esophagus 19 (50.0) 11 (40.7) 30 (46.2)  
ypT Stage T0 1 (2.6) 17 (63.0) 18 (27.7) <0.001* 

 T1 3 (7.9) 5 (18.5) 8 (12.3)  
 T2 4 (10.5) 1 (3.7) 5 (7.7)  
 T3 24 (63.2) 4 (14.8) 28 (43.1)  
 T4 6 (15.8) 0 (0.0) 6 (9.2)  
ypN Stage N0 9 (23.7) 17 (63.0) 26 (40.0) <0.001* 

 N1 6 (15.8) 4 (14.8) 10 (15.4)  
 N2 14 (36.8) 2 (7.4) 16 (24.6)  
 N3 8 (21.1) 0 (0.0) 8 (12.3)  
 Missing 1 (2.6) 4 (14.8) 5 (7.7)  
ypM Stage M0 35 (92.1) 27 (100.0) 62 (95.4) 0.371 

 M1 3 (7.9) 0 (0.0) 3 (4.6)  
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Mutational profiles associated with response to NAC 
 
In order to establish an overview of the mutational landscape associated with response to NAC, we 

compared the genomes of responders and non-responders. We performed assessment of somatic 

copy number variations (CNVs), small insertions/deletions (indels) and variant calling of somatic single 

nucleotide variants (SNVs) as previously described (Frankell et al. 2019; Li et al. 2018; Noorani et al. 

2017; Secrier et al. 2016). Two non-responders were found to have microsatellite instability (MSI) 

(Patient 27, score= 5.63 and Patient 29, score= 3.44) and these were excluded because MSI-High 

tumors are known to respond to immune checkpoint blockade, providing a potential treatment 

pathway for these patients (van Velzen et al. 2020). 

Initially, we investigated overall mutation burden in responders and non-responders on a genome-

wide level. We identified a median of 104 (3-286) non-synonymous mutations per tumor genome in 

responders, compared to 85 (1-171) mutations in non-responders and the mutation frequency per 

megabase (Mb) was higher in the responder group (2.08 (range: 0.14–3.66) vs 1.7 (range: 0.02–3.42); 

Fig. 2A, Wilcoxon rank sum test, P = 0.036).  

To investigate the mutational profile of SNVs in the trinucleotide context in our cohort, we performed 

mutational signature extraction using SigProfiler (Alexandrov et al. 2020). Nine mutational signatures 

were defined in our cohort (Fig. 2B). We hierarchically clustered our cases and in agreement with prior 

studies (Secrier et al. 2016), three main subgroups were observed corresponding to predominant 

signatures: these are classified as C>A/T dominant (SBS1/5 and SBS18); DDR impaired (SBS3); and 

mutagenic (SBS17A/B) subgroups. There was no significant difference in the proportion of responders 

and non-responders between subgroups (Chi square test, P = 0.4). However, the DDR impaired 

subgroup is defined by signature 3 mutations, and the majority of these tumors (3/4) were non-

responders. Signature 3 is associated with failure of DNA double-strand break-repair by homologous 

recombination, which could lead to chromosomal instabilities. Consequently, we assessed the 

dysregulation of DDR pathways using gene expression data of available RNA-seq samples (n=9 

responders, n=21 non-responders) and created a pathways dysregulation score (PDS) using Pathifier 
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(Drier et al. 2013).  Non-responders exhibit greater dysregulation in DDR pathways compared to 

responders (Fig. 2C, Wilcoxon rank sum test, P = 0.002). 

Having observed higher mutational burden in responders, we hypothesised that this would also be 

correlated with a greater neoantigen load. We used NeoPredPipe (Schenck et al. 2019), a predictive 

tool, to identify tumor neoantigens using binding affinity for patient-specific class I human lymphocyte 

antigen (HLA) alleles. We next calculated the neoantigen recognition potential by quantifying the 

peptides that displayed high affinity binding in tumors, but had no predicted binding in the matched 

normal sample (Luksza et al. 2017). Considering only those samples with recognition potential value 

above 1, responders had a significantly higher neoantigen recognition potential score (Wilcoxon rank-

sum test, P < 0.001, Fig. 2D), possibly supporting previous associations between CD8+ tumor 

infiltrating lymphocyte levels and improved survival in EAC following NAC (Noble et al. 2016; Secrier 

et al. 2016). 
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Figure 2. Mutational landscape of NAC response. Responders have a higher mutation burden and 
neoantigen recognition potential. (A) Group dot plot of mutation per megabase. Each dot 
represents a patient with the red line marking the group median. (B) Clustering of the 9 mutational 
signatures in our patient samples as previously described by Secrier et al (2016). (C) Pathway 
Deregulation Scores (PDS) calculated using gene expression values (log2 normalized) of available 
RNA-seq samples for DDR pathways. (D) Neoantigen recognition potential scores. Only neoantigens 
with recognition potential above one are shown.  
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Non-responders have more chromosomal instability and unique copy number alterations 

We next moved to consider chromosomal and copy number events and correlate these with mRNA 

expression, where possible, before considering point mutations. To investigate correlations between 

chromosomal instability (CIN) and response to NAC, we measured the proportion of the genome 

affected by copy number alteration. Non-responders exhibited a higher level of CIN as evidenced by 

a higher Genomic Instability Index (GII) (Do Canto et al. 2019) (Wilcoxon rank sum test, P < 0.001, Fig. 

3A). To confirm these findings, we evaluated the CIN70 signature in matched RNA-Seq data, a gene 

signature whose expression was consistently correlated with total functional aneuploidy across 

multiple cancer types (Carter et al. 2006). We found a higher CIN70 signature in non-responders, but 

this was not significant (P = 0.064), likely due to the small size of the RNA-Seq cohort. 

We then identified recurrently amplified or deleted regions using GISTIC2.0 (Mermel et al. 2011). In 

responders, a total of 3,626 CNVs were detected (median 136/patient, range: 0-292) including 2,961 

amplifications (median 115/patient, range: 0–286) and 665 deletions per case (median 28/patient, 

range: 5–53). In non-responders, there were a total of 9,637 CNVs (median 282/patient, range: 5-504) 

including 6,198 amplifications (median 185.5/patient, range: 0-382) and 3,439 deletions (median 

99.5/patient, range: 0-239). The total CNVs and the number of amplifications and deletions were 

higher in non-responders (Wilcoxon rank sum test, P-values < 0.001, 0.025 and 0.001 respectively, Fig. 

3B). At the chromosomal arm level, we found recurrent amplifications of chr 20q in 48% of responders 

(FDR < 0.1), while we identified no significant amplification in non-responders (Supplemental Tables 

S2, S3). Furthermore, we found 13 and 20 significant deletions of chromosomal arms in responders 

and non-responders respectively. Deletion of 14p was unique to responders, and deletions of 8p, 9q, 

9p, 10q, 15q, 16p, 19q, and 22q were unique to this cohort of non-responders, showing a higher level 

of large-scale deletion in non-responders.  
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Figure 3. Non-responders have less stable genomes and unique patterns of copy number change in 
EAC driver genes. (A) Proportions of the genome affected by copy-number changes (Genomic 
Instability Index, GII). Non-responders showed a higher level of genomic instability (P=2.5e-13). (B) 
Violin plots depicting the frequency of all amplifications and deletions in responders and non-
responders. (C) Amplified peak regions across the genome plotted for responders versus non-
responders (n=63) using GISTIC2.0 (FDR < 0.1). Amplifications unique to each group are labelled. (D) 
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Oncoplot of recurrently amplified/deleted EAC drivers among responders and non-responders 
identified by GISTIC2.0 (FDR < 0.1). 
 

 

We next looked at copy number alterations in 76 previously validated EAC driver genes (Frankell et al. 

2019). We restricted our initial analysis to these 76 genes as they have been comprehensively analysed 

and verified in contemporaneous and clinically relevant cohorts in addition to downstream functional 

biological assessment. We identified significantly amplified or deleted peaks for the two groups (FDR 

< 0.1, Fig. 3C&D, Supplementary Tables S4-5). Distinct focal amplifications and deletions in EAC driver 

genes are illustrated in Figure 3D. The responders contained two unique amplification peaks: 17q12, 

containing ERBB2 (FDR < 0.001) and 19q12, containing CCNE1 and TSHZ3 (FDR = 0.003) (Supplemental 

Table S4). These focal amplifications contrast with observed chromosome arm deletions in 19q 

observed in non-responders. Meanwhile, the non-responders contained more unique amplification 

peaks: 18q11.2 containing GATA6 (FDR < 0.001); 7p11.2 containing EGFR (FDR = 0.018); 11q13.3.2 

containing CCND1 (FDR < 0.001); 12p12.1 containing KRAS (FDR < 0.001); 6q23.3 containing MYB 

(FDR = 0.085); and 8q24.21 containing MYC (FDR = 0.007) (Supplemental Table S5). Focal 

amplifications in MYC and GATA6 in non-responders contrast with our findings of arm level deletions 

in responders at the same chromosome arm, 18q. We investigated whether copy number changes in 

driver genes were co-occurrent and found that GATA6 and EGFR were co-occurrent in non-responders 

(Fisher’s exact test, P = 0.002, Supplemental Tables S6-7). 

 

mRNA expression level supports the dysregulation of EAC driver genes in non-responders 

We reasoned that if these amplification/deletion peaks played a role in affecting the response to NAC, 

then we would observe corresponding signals in their related downstream pathways and patient 

survival would be affected. To do this we used matched RNA-seq data (n=9 responders, and n=21 non-

responders) and compared the FPKM values (Fragments Per Kilobase of transcript per Million mapped 

reads) of recurrently amplified and deleted EAC driver genes between groups. Consistent with copy 
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number alterations, we observed the upregulation of CDK6 (Wilcoxon rank sum test, P = 0.004), 

CCND1 (P = 0.004), GATA4 (P = 0.037) and MYC (P < 0.001) at the transcript level in non-responders 

(Fig. 4A). Furthermore, patients with amplification at the corresponding chromosomal regions of cell 

cycle regulators had a worse prognosis with a shorter overall survival, including CCND1 (median 

survival 20.8 months in CCND1 amplified samples versus 78.5 months in CCND1 neutral samples, P = 

0.007), CDK6 (median survival 33.8 months in CDK6 amplified samples versus 73.0 months in CDK6 

neutral samples, P = 0.01) and deletion of regions harbouring CDKN2A (median survival 33.8 months 

in CDKN2A deleted samples versus 73.0 months in CDKN2A neutral samples, P = 0.01) (Fig. 4B). Among 

pathways related to these genes, only MYC signalling was significantly enriched in the non-responders 

using Gene Set Enrichment Analysis (GSEA) (FDR = 0.04, Fig. 4C and Supplemental Table S8-9). 

Although we observed a significantly elevated expression of MYC in non-responders, MYC 

amplification was not significantly associated with overall survival (median survival 30.7 months in 

MYC amplified samples versus 73.0 months in MYC neutral samples, P = 0.068). Overall, we found no 

significant influence of these copy number changes on overall survival in responders or non-

responders alone, as our study was underpowered for these comparisons (Supplementary Figure S1). 

However, in responders CDK6 amplification was associated with shorter overall survival (median 

survival 35.4 months in CDK6 amplified samples versus 78.5 months in CDK6 neutral samples, P = 

0.0011). 
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Figure 4. Amplified EAC driver genes are overexpressed in non-responders and copy number 
alterations associate with poor survival.  (A) Violin plots comparing mRNA expression levels (FPKM) 
in matched RNA-Seq data (n=9 responders, n=21 non-responders) for copy number altered EAC 
driver genes in responders and non-responders. P-values were based on one-tailed Wilcoxon rank 
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sum test. (B) Kaplan-Meier plot comparing overall survival of patients with CDK6, CCND1, CDKN2A, 
GATA4 and MYC copy number changes (red) versus neutral patients (blue). (C) Gene Set Enrichment 
Analysis (GSEA) of MYC target genes in available RNA-Seq data (n=30). 

Mutated driver genes differ between responders and non-responders 

Having established the potential importance of chromosomal level structural variation and gene level 

copy number variation in response to NAC in EAC, we next moved to assess SNVs, starting with known 

EAC driver genes (Fig. 5A). WGS data showed that 96.2% of responders and 94.3% of non-responders 

carried at least one non-synonymous somatic mutation in these EAC driver genes. As expected, TP53 

(65%), CDKN2A (16%), SMAD4 (15%) and ARID1A (8%) were highly mutated in this cohort (Frankell et 

al. 2019). NAV3 was exclusively mutated in non-responders (8/36, 22%, Fisher’s exact test, P = 

0.01)(Fig. 5B). We used the Ensembl Variant Effect Predictor (McLaren et al. 2016) to predict 

mutational consequences and found that several mutations, including NAV3 p.V142G and p.D2366N, 

are likely to be functionally deleterious (Supplementary Table S10). We also found mutations in 

KCNQ3 (4/36 patients, 11%), LRRK2 (4/36 patients, 11%), KRAS (3/36 patients, 8%), and PBRM1 (2/36 

patients, 6%) that were unique to non-responders, but these were not statistically significant. 

We then determined which mutations might be pathogenic by cross-referencing them with the 

database of curated mutations (Ainscough et al. 2016). We identified 33 and 54 curated pathogenic 

mutations in 74% of responders and 75% of non-responders (Supplementary Tables S11-12) including 

three exonic mutations in KRAS (p.G12C, p.G12D and p.G13D). In non-responders KRAS was 

significantly co-mutated with SMAD4 (Fisher’s exact test, two-sided, P = 0.006). Evidence from 

pancreatic cancer suggests that expression of oncogenic KRAS and loss of SMAD4 cooperate to induce 

the expression of EGFR and to promote invasion (Zhao et al. 2010). 
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Figure 5. Non-responders have more EAC driver alterations of all types, including exclusive mutation 
of the tumor suppressor NAV3. (A) Oncoplot of SNVs, indels and CNVs combined in responders versus 
non-responders (n=63). Genes shown are the subset of the 76 EAC driver genes described in 
Frankell et al (2019) that were mutated in at least 5% of either group. Percentages of responders or 
non-responders with driver gene mutations are shown next to the corresponding row. (B) Protein-
level diagram of mutations in the coding sequence of NAV3, which was exclusively mutated in non-
responders. Domains are labelled as follows: CH – Calponin Homology; CC – Coiled Coil; AAA – ATPase 
Associated with diverse cellular Activities. Mutational sites are shown as lollipops color-coded 
according to the type of mutation. (C) Violin plots comparing frequency of all alterations (SNVs, indels 
and CNVs) in EAC driver genes per sample in responders versus non-responders. (D) Oncoplot of SNVs, 
indels and CNVs combined in TARGET database genes, which are associated with a clinical action in 
cancer (n=63). Genes that were mutated in at least 5% of either group are shown. 
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Potentially targetable alterations in non-responders 

To make sense of the complex genomic aberrations observed in this study and in EAC in general, we 

combined recurrent CNVs and non-synonymous mutations with the aim of identifying unique genomic 

aberrations in responders or non-responders. Overall, the mean number of EAC drivers carrying any 

alteration (SNVs, CNVs and Indels) was higher in non-responders (6.4/patient vs 4.4/patient, Wilcoxon 

rank sum test, P = 0.007, Fig. 5C). We observed that the majority of differentially altered genes were 

found in non-responders (Fig. 5A). Many of these genomic lesions are potentially targetable, and to 

investigate this further we focused on somatically altered cancer genes which are directly linked to a 

clinical action in the TARGET database (https://software.broadinstitute.org/cancer/cga/target) 

(Supplemental Table S13, S14). Non-responders displayed exclusive focal alterations of genes in this 

list (Fig. 5D), including: amplification of AURKA (16/36 non-responders, 44%); GNAS (20/36 non-

responders, 56%) and RARA (12/36 non-responders, 33%); and deletion of ERFFI1 (12/36 non-

responders, 33%), in addition to the previously identified EAC drivers CDKN2A, CCND1, EGFR and KRAS 

(Supplementary Table S14). However, we observed chromosome arm amplifications of 20q, 

containing GNAS and AURKA, in responders. We also found potentially targetable genes exclusively 

amplified at the focal level in responders: CEBPA (13/36 responders, 37%) and AKT3 (13/36 responders, 

37%) were amplified in addition to EAC drivers ERBB2 and CCNE1 (Fig. 5D). These findings are in 

contrast to chromosome arm deletions at 19q, containing CCNE1 and CEBPA, which were found in 

non-responders.  We examined the levels of evidence for biomarker-drug associations for our targets 

using the OncoKB database (Chakravarty et al. 2017). ERBB2, EGFR and KRAS have FDA-approved 

drugs for use in cancer therapy, whereas CDKN2A has biological evidence for targetability, but 

associated drugs are not yet standard-of-care. 
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Discussion  

In this study we analyzed whole-genome sequencing data from endoscopic biopsies prior to 

neoadjuvant chemotherapy in EAC and compared the genomes of responders to non-responders to 

identify potential genomic determinants of response. We comprehensively profiled CNVs, SNVs and 

mutational signatures in a cohort powered to identify differences between responders and non-

responders. We detected distinct mutational characteristics of EAC between responders and non-

responders across the spectrum from large-scale chromosomal alterations to point mutations. Our 

work characterises pre-existing genomic alterations that have potential as biomarkers for resistance 

or sensitivity to NAC.  

 

We found that responders have higher mutational burden, in agreement with a previous published 

study (Findlay et al. 2016). Using a neoantigen prediction pipeline, we predicted that an increased 

mutational burden could lead to more abundant neoantigen recognition in responders. This could 

serve to bolster anti-tumor immunity as observed in the mutagenic subset of EACs reported previously 

(Secrier et al. 2016).  Unfortunately, this study was not powered to resolve differences in NAC 

response between mutational signature subtypes. Although we reliably identified these mutational 

subtypes, there was not a clear distinction in this cohort. Consistently, we found that non-responders 

had impaired DNA damage response pathways and had more frequent driver gene mutations and 

genomic instability, despite having a lower mutation burden. The presence of an immune response 

related to DNA damage is known to improve survival outcomes and might contribute to this effect, as 

neoadjuvant therapies are genotoxic and known to stimulate anti-tumor immunity (Turkington et al. 

2019).  
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Our data suggest that responders are dominated by point mutations, whereas non-responders display 

more copy number changes. Non-responders displayed a unique pattern of copy number changes 

characterized by chromosome arm deletions and an increased burden of copy number altered 

segments. This is consistent with an analysis of mutational landscapes in a pan-cancer dataset (not 

including EAC), which suggests that tumors are dominated by either mutations or copy number 

changes, but never both (Ciriello et al. 2013). The extremes of this spectrum are occupied by 

genomically unstable tumors, such as those observed in our cohort of non-responders. Genomic 

instability has been linked to a suppressed anti-tumor immunity during immunotherapy in gastric 

cancer (Jiang et al. 2018), whereas in non-small cell lung cancer and melanoma a higher mutation 

burden is linked to greater neoantigen burden (Rizvi et al. 2015) and an improved clinical response to 

immunotherapy (Van Allen et al. 2015; Snyder et al. 2014; Hugo et al. 2016). Taken together, this 

suggests that responders may be more likely to benefit from immunotherapy than non-responders 

and warrants further investigation. 

 

The unique patterns of copy number changes in driver genes have important implications for 

treatment of chemoresistant EAC patients. These unique amplifications and deletions included 

potentially druggable signaling axes in EAC, and we found that MYC signaling, RTK-RAS and cell cycle 

pathways were preferentially mutated in non-responders. This has implications for future clinical trials, 

as profiling driver mutations prior to neoadjuvant treatment, such as EGFR, CDKN2A and CCND1 copy 

number changes, would be an effective strategy to aid clinical decision-making. This would aid in the 

identification of patients unlikely to respond to NAC, allowing alternative or concurrent targeted 

therapies to be considered to exploit these pathway alterations. 

 

Among altered pathways, we highlight cell cycle regulation as a vulnerability in non-responders. G1/S-

phase checkpoint genes were disrupted, with CCND1 and CDK6 amplification as well as deletion of the 

CDK4/6 inhibitors CDKN2A and CDKN2B.  Abnormal expression of CDKs and their partner cyclins is 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted April 23, 2021. ; https://doi.org/10.1101/2021.03.26.437144doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.26.437144


21 
 

widely reported in esophageal cancer (Kawakubo et al. 2005; Arber et al. 1999; Morgan et al. 1999), 

and CCND1 amplification and nuclear expression have been shown to correlate negatively with 

survival (Miller et al. 2003; Bani-Hani et al. 2000). Abnormal activity of the CDK/cyclin complexes 

in esophageal adenocarcinoma has been shown to be a marker of acquired chemo-radio-resistance 

(Bani-Hani et al. 2000; Milas et al. 2002). CDK4/6 inhibitors could be promising therapeutics for non-

responders to NAC with copy number changes in this axis. In particular, CDK4/6 inhibitors palbociclib, 

ribociclib and abemaciclib have shown efficacy in in vitro models of EAC (Frankell et al. 2019; Kosovec 

et al. 2017) and promising results in breast cancer, non-small cell lung cancer and melanoma patients 

(Patnaik et al. 2016). Similarly, the use of ABT-348, a multitarget Aurora kinase and VEGFR inhibitor 

(Maitland et al. 2018), is currently being explored in phase I and II clinical trials in patients with 

CDKN2A-deficient tumors (Sharma 2015; Hong 2015), suggesting additional targeted therapies to this 

axis are closer to clinical adoption. 

 

Previous genomic analyses suggest that copy number changes to RTKs are pervasive in EAC, with the 

potential for targeting with RTK inhibitors specific to the activated pathways, such as trastuzumab and 

ABT-806 for ERBB2 and EGFR respectively (Secrier et al. 2016; Catenacci et al. 2020). We found that 

EGFR is uniquely amplified in non-responders, suggesting that anti-EGFR antibodies cetuximab or ABT-

806 may be useful therapies in these patients. Cetuximab is well tolerated by EAC patients (Chan et al. 

2011) and has gone through phase III trials as a neoadjuvant therapy in addition to chemotherapy or 

chemoradiation, showing a modest improvement in recurrence-free survival in an unselected 

population (Ruhstaller et al. 2018). EGFR-amplified EAC patients have been shown to particularly 

benefit from cetuximab (Luber et al. 2011). However, KRAS mutations are known to confer resistance 

to cetuximab in colorectal cancer (Van Cutsem et al. 2009; Lièvre et al. 2006), and while this is unclear 

in EAC due to the rarity of KRAS mutations and unselected patient populations (Ruhstaller et al. 2018; 

Richards et al. 2013), KRAS-mutant tumors in our dataset bore the same mutations in codons 12 and 
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13 as the resistant colorectal tumors and were non-responders. This underscores the need for careful 

selection of patient populations to be treated with RTK inhibitors based on KRAS mutation status. 

  

Finally, we report that Neuron Navigator-3 (NAV3), a known tumor suppressor downstream of EGFR 

(Cohen-Dvashi et al. 2015), is mutated exclusively in non-responders. NAV3 is a microtubule-binding 

protein whose expression is regulated by TP73 and induced by EGF in breast cancer cells (Cohen-

Dvashi et al. 2015). In our cohort we observed that NAV3 was co-mutated with CDKN2A, with most 

mutations being missense. Predictions of neoantigen recognition in lung adenocarcinoma suggest that 

NAV3 is one of the most commonly mutated genes with predicted neoantigen recognition in this 

disease as well (Cai et al. 2018). The functional consequences of these mutations in EAC are unclear 

but we predict several to be functionally deleterious.  

 

NAV3 is primarily implicated as a metastasis suppressor in multiple cancer types. NAV3 is upregulated 

in response to DNA damage in colon carcinoma cells and is involved in the suppression of migration 

and invasion in vitro (Uboveja et al. 2020). Loss of heterozygosity occurs in colorectal cancer and this 

associates with lymph node metastasis (Carlsson et al. 2012). NAV3 expression is attenuated 

in metastatic colon cancer (Uboveja et al. 2020), breast cancer and lung cancer (Cohen-Dvashi et al. 

2015) and its knockdown promotes invasive behaviours (Cohen-Dvashi et al. 2015; Uboveja et al. 

2020), platinum drug resistance (Pink et al. 2015) and epithelial mesenchymal transition in 

vitro (Uboveja et al. 2020) and enhances metastasis in vivo (Cohen-Dvashi et al. 2015). The inhibitory 

effect of NAV3 on invasion and metastasis may be due to its promotion of slower, directional cell 

migration as opposed to the random migration observed in NAV3 knockdown cells, which enhances 

their ability to explore their environment (Cohen-Dvashi et al. 2015). Silencing of NAV3 in vitro also 

leads to upregulation of IL-23R in colorectal (Carlsson et al. 2012) and glioma cell lines (Carlsson et al. 

2013), linked to proinflammatory JAK-STAT signalling.  A sizeable proportion of EAC non-responders 

(22%) carry mutations in NAV3, and its status as a unique genetic lesion to this group suggests that 
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NAV3 mutation could be used as a biomarker to identify some of the patients who fail to respond to 

NAC. This warrants validation in a larger cohort of patients, including further study of NAV3 expression 

and the functional consequences of NAV3 mutation in EAC. 

 

This study is not without shortcomings. With 63 patients we were able to resolve genomic differences 

between responders and non-responders at the copy number and mutational level, but had 

insufficient sample size to fully study the impact of mutational signatures on NAC response. As EACs 

accrue many genetic alterations and very few are recurrent (Frankell et al. 2019), we lack the power 

to resolve the significance of rarer mutations on survival and to determine rarer co-mutations. 

However, even with limited sample size, WGS was able to identify KRAS mutations in non-responders, 

which are frequently associated with treatment resistance in colorectal cancer (Van Cutsem et al. 2009; 

Lièvre et al. 2006), demonstrating the robustness of our approach. Despite these shortcomings, our 

dataset of responders and non-responders to NAC is the largest of its kind in EAC and represents a 

step forward in our understanding of the genetic determinants of NAC resistance.  

 

In summary, we identified genetic features and mutations that are uniquely associated with response 

to NAC. This indicates the presence of a subset of patients harboring pre-existing mutations that 

confer resistance to NAC. Importantly, these mutations are potentially clinically actionable, with a 

variety of drugs in clinical trials to support a targeted therapy strategy - an approach that has 

previously met with success in metastatic EAC patients (Catenacci et al. 2020).  We envision a 

treatment pipeline that incorporates driver mutation profiling in EAC, combining response prediction 

with targeted therapies to enhance response to NAC and improve survival outcomes.  
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Methods 

Overview of patients and sequencing strategy 

EAC patients in this study are presented in Figure 1A & Table 1. Sample collection and processing were 

performed as previously described (Noorani et al. 2017) as part of the OCCAMS (Oesophageal Cancer 

Clinical and Molecular Stratification) Consortium. Pathological tumor response was assessed in the 

resection specimens by tumor regression grading (TRG) (Mandard et al. 1994) with responders defined 

as TRG ≤2 and non-responders as TRG ≥4. Mandard grade was scored by a specialist gastrointestinal 

pathologist blinded to the clinical data at the treating cancer centre.  

Whole-genome sequencing analysis 

WGS, single nucleotide variant (SNV) and small insertion or deletion (Indel) calling has been performed 

using Strelka (Saunders et al. 2012) (version 2.0.15) against the GRCh37 reference genome as 

described by Secrier et al. (2016), with 94% of the known genome being sequenced while achieving a 

PHRED quality of at least 30 for at least 80% of mapping bases. 

Functional annotation of the resulting variants was performed using ANNOVAR (Yang and Wang 2015) 

and the Ensembl Variant Effect Predictor (VEP) (https://www.ensembl.org/Tools/VEP). Furthermore, 

536 false positive genes (Mourikis et al. 2019) were removed from subsequent analysis. Data 

visualisation including oncoprints and lollipop plots were performed by maftools (version 2.4.15) 

(Mayakonda et al. 2018). Mutually exclusiveness or co-occurrence analysis of genes was also 

performed by maftools using pair-wise Fisher’s Exact test to detect significant pairs of given genes. 

Copy number and clonality analysis 

Absolute genome copy number following correction for estimated normal-cell contamination was 

called using ASCAT package (version 2.3) in R (Van Loo et al. 2010). Cellularity and ploidy estimates 

were also obtained using ASCAT and samples with estimated cellularity <20% were removed from 

further analysis. Significantly amplified/deleted regions in the cohort were identified using GISTIC2.0 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted April 23, 2021. ; https://doi.org/10.1101/2021.03.26.437144doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.26.437144


25 
 

(Mermel et al. 2011). Copy number variations (CNVs) were corrected for ploidy (= total copy number 

of the segment / average estimated ploidy of each sample) and GISTIC was run on an input defined as 

the log2 of the CNV with gain (-ta) >= 1.0 and loss (-td) <= 0.4 respectively.  

Genomic instability analysis 

Copy number burden represents the fraction of bases deviating from baseline ploidy (defined as above 

0.5 or below - 0.5 in log2 relative copy number space and in segments > 1kb length) named as genomic 

instability score (GII). CIN70 score was calculated by averaging the FPKM expression values of CIN70 

signature in each sample from available RNA-seq data. 

Mutational signature and neoantigen analysis 

Tumor Mutation Burden (TMB) in terms of per megabases was measured with 50 MB capture size for 

non-synonymous mutations.  

In order to compare the neoantigen load between two groups, we used binding affinity for patient-

specific class I human lymphocyte antigen (HLA) alleles, constituting potential candidate neoantigens 

by checking for the binding strength for peptides of length 9 using NeoPredPipe (Schenck et al. 2019). 

We then quantified the peptides that displayed high affinity (recognition potential > 1) binding in 

tumor, but no binding in the respective matched normal (Luksza et al. 2017) as recognition potential 

prediction step implemented in NeoPredPipe to obtain recognition potential for each sample. We 

then compared the recognition potential between two groups by Wilcoxon rank sum test. EAC 

mutational signatures were extracted using SigProfiler. We have processed the COSMIC solution to 

remove any artefactual signatures and signatures that contribute on 

average less than 1% of the mutations in the genome. A total of nine mutational signatures were 

identified, of which six have been previously identified in EAC described by Secrier et al. (2016): 

SBS17A and SBS17B dominated by T>G substitutions in a CTT context and possibly associated with 

gastric acid reflux; SBS3, a complex pattern caused by defects in the BRCA1/2-led homologous 

recombination pathway; SBS2, C>T mutations in a TCA/TCT context, an APOBEC-driven hypermutated 
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phenotype; SBS1, C>T in a *CG context, associated with aging processes; An SBS18-like signature, 

C>A/T dominant in a GCA/TCT context, formerly described in neuroblastoma, breast and stomach 

cancers; SBS13 is usually found in the same samples as SBS2; SBS5, linked to tobacco exposure; and 

SBS41 with unknown aetiology. Clustering of mutational signatures was performed with the NMF 

package (version 0.23.0) (Gaujoux and Seoighe 2010) set to three main clusters as previously observed 

in EAC. 

Expression profiling by bulk RNA sequencing (RNA-seq) and Gene Set Enrichment Analysis (GSEA) 

We were able to explore gene expression changes to investigate the expression levels of recurrently 

amplified/deleted genes, between responders and non-responders in 30 RNA-seq samples matched 

with WGS data (responders/9, non-responders/21). For a given EAC known driver identified as 

recurrently amplified or deleted in either group, we compared Fragments Per Kilobase of transcript, 

per Million mapped reads (FPKM) values for that gene by Wilcoxon rank sum test. For GSEA by using 

MSigDB hallmark gene sets, we used normalized values from DESeq2 as input. We used GSEA and 

DESeq2 modules both implemented online (https://www.gsea-msigdb.org/gsea/) (Subramanian et al. 

2005) with default parameters.  

Survival analysis  

For relating CNVs to overall survival, we used a Boolean matrix of CNV status of EAC driver genes. 

Multivariate analyses were performed by Cox proportional hazards regression model using the 

survival package (version 3.2.7) in R. Overall survival was defined as the time interval from initial 

surgical excision to death or last follow-up time (censored) and Kaplan-Meier plots were visualised 

using the ggkm 1.0 R package (https://github.com/michaelway/ggkm ). 

DDR pathway deregulation analysis 

The Pathifier algorithm (version v1.0) calculates for any given pathway a deregulation score (PDS) for 

each cancer sample, based on gene expression data (log2 normalized) (Drier et al. 2013). Only the 

5000 genes with the largest variation over available RNA-seq samples were used as input to the 
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algorithm. PDS score represents the extent to which the activity of the pathway differs in a particular 

sample from the activity in the opponent sample. Here responders and non-responders were used 

as opponent groups of samples. We calculated an average of PDS over sixteen DDR sub-pathways by 

using more than 450 genes associated with DDR, as previously described in a pan-cancer analysis 

(Pearl et al. 2015). 

Classification of genes relevant for genomics-driven therapy 

To identify genes relevant for genomics-driven therapy, we used version 2.0 of TARGET (tumor 

alterations relevant for genomics-driver therapy) database 

(www.broadinstitute.org/cancer/cga/target). We also used OncoKB (Chakravarty et al. 

2017)(https://www.oncokb.org/) for the association of drug-biomarkers of differentially mutated 

genes. 

Identification of specific mutations with therapeutic relevance 

The DoCM (Ainscough et al. 2016) was used to identify mutations with clinical evidence (drug targets 

associated with a mutation; diagnostic or prognostic markers associated with a mutation) or 

functional evidence (disease function described in cell lines; disease function described in animal 

models). The database is available online at docm.genome.wustl.edu. 

Statistics 

Measurements between groups were compared using the Wilcoxon rank-sum test for continuous 

data with non-normal distribution and T-test for data with normal distribution or Fisher’s exact test 

for count data. 

Data Access 

The WGS and RNA-seq data generated in this study are available from the European Genome-
Phenome Archive (https://ega-archive.org/) under accession number EGAD00001007493. 
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