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Abstract

Many methods have been developed for statistical analysis of microbial community profiles, but 

due to the complex nature of typical microbiome measurements (e.g. sparsity, zero-inflation, non-

independence, and compositionality) and of the associated underlying biology, it is difficult to 

compare or evaluate such methods within a single systematic framework. To address this 

challenge, we developed SparseDOSSA (Sparse Data Observations for the Simulation of 

Synthetic Abundances): a statistical model of microbial ecological population structure, which can 
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be used to parameterize real-world microbial community profiles and to simulate new, realistic 

profiles of known structure for methods evaluation. Specifically, SparseDOSSA’s model captures 

marginal microbial feature abundances as a zero-inflated log-normal distribution, with additional 

model components for absolute cell counts and the sequence read generation process, microbe-

microbe, and microbe-environment interactions. Together, these allow fully known covariance 

structure between synthetic features (i.e. “taxa”) or between features and “phenotypes” to be 

simulated for method benchmarking. Here, we demonstrate SparseDOSSA’s performance for 1) 

accurately modeling human-associated microbial population profiles; 2) generating synthetic 

communities with controlled population and ecological structures; 3) spiking-in true positive 

synthetic associations to benchmark analysis methods; and 4) recapitulating an end-to-end 

mouse microbiome feeding experiment. Together, these represent the most common analysis 

types in assessment of real microbial community environmental and epidemiological statistics, 

thus demonstrating SparseDOSSA’s utility as a general-purpose aid for modeling communities 

and evaluating quantitative methods. An open-source implementation is available at 

http://huttenhower.sph.harvard.edu/sparsedossa2.
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Introduction

Microbial community research has increasingly benefited from study designs inspired by 

molecular epidemiology, particularly with the goal of associating features of the human 

microbiome with health and disease [1]. This has enabled discoveries ranging from overall 

ecological dysbiosis in gut community structure during inflammatory bowel disease (IBD) [2] to 

specific microbial species, strains, and gene families linked to colorectal cancer (CRC) [3]. 

However, in almost all cases, existing statistical methods for genetic, transcriptional, metabolomic, 

or other molecular epidemiology cannot be accurately applied directly to microbiome 

measurements, due to their unique measurement error, noise, zero-inflation, compositional, and 

non-independence properties [4, 5]. This has led to inaccuracy issues in the literature, such as 

confounding, uncorrected population structure, batch effects, and a high rate of false positives [6-

9]. There is thus an unmet need for statistical frameworks capable of capturing all aspects of 

microbiome epidemiology, both for the sake of accurately parameterizing and testing real 

community profiles, and for “reversing” parameterized models to simulate controlled, synthetic 

microbiomes for accurate methodology evaluation.

Transcriptional biomarker discovery has a similar history, in which early statistics to associate 

gene expression patterns with human phenotypes were met with challenges of noise, 

dimensionality, and test appropriateness [10]. This led to some of the first models for gene 

expression integrating features of underlying transcriptional biology, different assay platforms, 

and measurement noise [11]. These were in turn also “reversed” to provide simulated expression 

data for methods evaluation under guaranteed, controlled circumstances [12], permitting some of 

the first truly quantitative transcriptional epidemiology and comparative methods evaluation [13].

Models of microbial community structure are similarly important, and both their biological structure 

and measurement technologies are quite distinct from those for other sources of short-read 
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sequence generation [14]. Microbial community profiles can be derived roughly equivalently from 

either amplicon (e.g. 16S rRNA gene) or metagenomic shotgun sequencing, and they consist of 

the (typically compositional) counts or proportions of taxa, genes, pathways, or other features 

derived from the source sequencing data. Like other types of molecular epidemiology profiles, 

they are typically a) high-dimensional (number of features equivalent to or surpassing sample size) 

[1] and b) require both feature-feature and sample-sample biological interactions (i.e. correlations 

or population structure) to be accounted for [15].

Additionally, microbiome data possess further unique properties that prohibit direct application of 

models from other molecular epidemiology research. They are considerably more sparse, i.e. 

zero-inflated, both due to low sequencing depth and biological absence [1]. As a result, in different 

settings, either biological presence/absence of microbial features or their abundances can be 

linked to phenotypes [16]. Microbial abundances from sequencing are also near-universally 

available only on a relative (compositional) scale, thus constrained to sum up to a constant. The 

combination of general high-dimensional statistical challenges with those unique to ecological 

profiles have impeded the development of a single, universal model of microbial feature structure.

As such, most previous strategies for modeling or simulating microbial community profiles 

(typically for methods evaluation) have been relatively simple [5]. Here, we will use “features” and 

“profiles” to refer to the quantification of taxa or other entities (e.g. genes or pathways) as counts 

or relative abundances from microbial community sequencing. McMurdie and Holmes [5] adopted 

deterministic mixing and multinomial sampling for simulating microbial taxa count observations; it 

thus does not allow for interaction between microbial features, nor does it model biological (as 

opposed to technical) absences. Similarly, Thorsen et al. [17] adopted random resampling of real-

world data for simulating “new” microbial features and samples, indirectly violating 

compositionality and, again, excluding possible feature-feature interactions. Only recently, 

metaSPARSim [18] adopted a formal statistical model specifically for simulation of 16S rRNA 
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gene amplicon-sequenced microbial observations (here abbreviated 16S), namely, the gamma-

multivariate hypergeometric (gamma-MHG) distribution. However, the gamma-MHG model, itself 

an over-dispersed version of the multinomial model, still does not allow for biological absences or 

feature-feature interactions. Additionally, the model’s sampling implementation requires iteration 

over read depth for a given sample, which induces impractically high computation burdens to 

achieve realistic sequencing depths [1]. None of these frameworks formally capture microbial 

covariation with real or simulated covariates. In addition to other uses of such models, this is 

perhaps the most important aspect needed for benchmarking applications, where it enables 

estimation of power, false discovery rates, and effect sizes for microbiome epidemiology.

To address these gaps, we present SparseDOSSA (Sparse Data Observations for the Simulation 

of Synthetic Abundance), a statistical model that can be used to capture and, in turn, simulate 

realistic microbial community profiles. Motivated by the biological and technical data generation 

mechanisms and properties of microbial abundance observations, SparseDOSSA has model 

layers for a) zero-inflated marginal microbial abundances, b) penalized estimation of high-

dimensional feature-feature interactions, c) enforced normalization to address compositionality, 

and d) spiking-in of controlled microbe-microbe and microbe-environment covariation for 

benchmarking. We demonstrate through validations that the current implementation version, 

SparseDOSSA 2, accurately captures microbial community population and ecological structures 

across different environments, host phenotypes, and sequencing technologies, and is capable of 

recapitulating comparable, realistic synthetic profiles. We also show example applications in 

microbiome study design power analysis and in recapitulating a complex end-to-end mouse 

microbiome feeding experiment. An open-source implementation of and documentation for 

SparseDOSSA 2 are available through R/Bioconductor and at 

http://huttenhower.sph.harvard.edu/sparsedossa2.
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Results

A statistical model for microbial community profiles

SparseDOSSA is a hierarchical model for microbial count and relative abundance profiles (Fig. 

1), with components specifically accommodating the major distributional characteristics of such 

data, namely zero-inflation, compositionality (and thus sequencing depth), feature-feature non-

independence, feature-environment interactions, and high-dimensionality. Briefly (Fig. 1A, details 

in Methods), the model a) specifies zero-inflated log-normal marginal distributions for each 

microbial feature to allow for both biological and technical absences, b) imposes distributions on 

the “absolute”, i.e. pre-normalized, microbial abundances to satisfy compositionality (similar to 

models such as the Dirichlet [19] or gamma-MGH [18]), c) models feature-feature correlations 

through a multivariate Gaussian copula [20], and d) adopts a penalized fitting procedure to 

address high-dimensionality [21]. Conditional on feature relative abundances and total read depth, 

count observations are modeled with a standard multinomial sampling procedure, and per-sample 

read depth is modelled with a log-normal distribution. For implementation, we adopted a penalized 

Expectation-Maximization procedure for model fitting, and we have evaluated and provided 

options for cross-validated selection of the optimal penalization parameter (Methods). 

SparseDOSSA 2 is implemented as an R/Bioconductor package 

(http://huttenhower.sph.harvard.edu/sparsedossa2) and can be accurately fit to a wide variety of 

different microbial community structures to capture both (inferred) absolute and relative count 

observations (Fig. 1B-C, details below).
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Figure 1: A hierarchical model for microbial community feature profiles. A) SparseDOSSA comprises a 

hierarchical model to capture the generation mechanism of microbial sequencing counts, including components for 

“hidden” absolute abundances, sequencing depth (and thus compositional relative abundances), zero inflation, and 

feature-feature and feature-environment interactions. B) SparseDOSSA can be fitted to varied microbial community 

types using cross-validation procedures by users; the software also provides pre-trained models are provided for human 

microbiome template datasets. This allows for C) simulation of either null or "true positive" association spiked-in 

synthetic datasets, to facilitate microbiome benchmarking or power analysis studies.

SparseDOSSA accurately recapitulates real-world microbial community structures

We validated SparseDOSSA's ability to accurately capture realistic microbial community feature 

profiles by quantifying its performance across a variety of real-world datasets (Fig. 2, 

Supplemental Table 1). The studies used include: 1,2) taxonomic profiles from shotgun 

sequenced metagenomes of healthy human stool and posterior fornix samples from the HMP1-

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 26, 2021. ; https://doi.org/10.1101/2021.03.26.437146doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.26.437146
http://creativecommons.org/licenses/by/4.0/


II, hereafter referred to as “Stool” and “Vaginal” [22], 3) shotgun sequenced stool metagenomes 

of inflammatory bowel disease (IBD) patients from the HMP2 Inflammatory Bowel Disease Multi-

omics Database (IBDMDB, abbreviated as “IBD”) [2], and 4) 16S rRNA gene sequenced murine 

distal gut communities after diet perturbation [23]. By evaluating the model in different cohorts, 

we established its robustness under different community phenotypes, habitats (i.e. body sites), 

overall ecological structures, and sequencing technologies (Supplemental Table 1).

SparseDOSSA 2 captured community parameters and re-simulated microbial profiles with overall 

community structures that accurately reflected those of the original, real-world ecologies, better 

than alternative methods (Fig. 2A-B), across all human datasets (murine study results reported 

in separate section). Overall, simulated communities yielded the same patterns of global beta-

diversity as were contained within each modeled dataset (Fig. 2A). This was quantitatively 

compared against alternative models (Dirichlet-multinomial, DMM [19] and gamma-MGH, namely 

metaSPARSim [18]) with the PERMANOVA 𝑅2 statistic [24] (Methods). We calculated ecological 

Bray-Curtis dissimilarities between real-world microbial profiles and those simulated by each 

evaluated method. We then quantified the total variability in the combined dissimilarities that could 

be attributed to real-world versus simulation difference, expressed as the PERMANOVA 𝑅2. 

Smaller 𝑅2s thus indicate less deviation of the simulated community structures from the real-world 

target and better performance of the model. 

Across almost all evaluated community types, SparseDOSSA 2 generated significantly smaller 

𝑅2 statistics over 25 simulation iterations than existing methods (Mann-Whitney tests p < 0.05), 

indicating better fit to and recapitulation of the targeted communities (Fig. 2B, testing results in 

Supplemental Table 2). Notably, this was consistent in both the human gut (Stool, IBD), where 

community structure forms continuous “gradients” of microbial composition [9], and the human 

vaginal environment (Vaginal), where communities are often characterized by a few discrete types 

with dominant species [25]. Only for the Stool dataset did SparseDOSSA 2 slightly underperform 
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when compared to metaSPARSim in terms of 𝑅2 statistic, while still outperforming with respect to 

per-feature distributions (Fig. 2D). Additionally, metaSPARSim’s simulation procedure can take 

as much as ~10x longer than SparseDOSSA 2 (Supplemental Fig. 1), which is prohibitive for 

realistic data sizes (especially for benchmarking or power-analysis efforts requiring multiple 

simulations per parameter configuration, or for Monte-Carlo calculations). We thus conclude that, 

when evaluated for overall community structures, SparseDOSSA is capable of capturing microbial 

feature profiles that closely resemble those of real-world microbiomes.

The SparseDOSSA model also provided the best recapitulations of individual features’ relative 

abundances (Fig. 2C-D). For representative features in each environment, the empirical 

cumulative distribution function (CDF) curves of samples show that SparseDOSSA 2 simulated 

abundances closely resemble those of the real-world data (Fig. 2C). Quantitatively, for each set 

of microbial features, we measured the difference of distributions between re-simulated and real-

world (modeled) relative abundances with the Kolmogorov-Smirnov test statistic (K-S, see 

Methods). The resulting K-S statistic provides a distance between the distribution of each 

feature’s relative abundances across simulated vs. modeled real-world communities. Smaller K-

S statistics thus indicate better performance of the model. SparseDOSSA 2 better approximated 

the targeted real-world per-feature distributions than existing methods across all evaluated 

datasets (Fig. 2D), reaching statistical significance in each case (Supplemental Table 3, Mann-

Whitney tests p < 0.05). In addition to simulating existing microbial features, SparseDOSSA 2 

also provides the functionality to simulate new features that resemble the targeted environment’s 

ecological characteristics (Methods) and was validated to generate “Stool-like”, “Vaginal-like”, or 

“IBD-like” new features in terms of prevalence, abundance, and variability for each of the tested 

datasets (Supplemental Fig. 2). Thus both in overall community structure modeling and in per-

feature models, SparseDOSSA 2 was able to accurately capture and re-simulate realistic 

microbial observations better than alternative approaches.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 26, 2021. ; https://doi.org/10.1101/2021.03.26.437146doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.26.437146
http://creativecommons.org/licenses/by/4.0/


Figure 2: SparseDOSSA accurately recapitulates different microbial community structures. We compared 

SparseDOSSA 2 simulated microbial counts versus those of three human microbiome training template datasets (Stool, 

Vaginal, and IBD). A) Bray-Curtis ordination shows global agreement between SparseDOSSA 2 simulated microbial 

abundance profiles and those of their originating real-world populations. B) This was quantified by PERMANOVA 𝑅2 

statistics, showing that SparseDOSSA 2 simulated samples were significantly less systematically differentiated from 

their targets than existing DMM and metaSPARSim methods in almost all cases (p-values included in Supplemental 

Table 2). 𝑅2 compared against randomly split original real-world data are included as baseline controls. C) 

Representative features from each environment are similarly distributed between real-world and SparseDOSSA 2 

simulated samples, as shown in empirical cumulative distribution functions (CDFs) of log-10 relative abundances (with 

pseudo value 1e-6 to visually represent zeros). D) Per-feature Kolmogorov-Smirnov statistics quantify that 

SparseDOSSA 2 outperforms existing methods in simulating realistic feature-level relative abundance distributions (p-

values are significant and included in Supplemental Table 3).

SparseDOSSA captures covariation among microbes and with real or simulated 

“phenotypes”

Once the SparseDOSSA model is fit to a real-world microbial community profile, the “reversed” 

version of the model can be used not only to simulate similar, controlled ecologies, but to spike 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 26, 2021. ; https://doi.org/10.1101/2021.03.26.437146doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.26.437146
http://creativecommons.org/licenses/by/4.0/


them with known feature-feature or feature-covariate associations (i.e. metadata “spike-ins”). This 

is implemented by first capturing the “null” state of targeted real-world studies as described above 

and by subsequently modifying the fit model parameters to induce artificial associations. 

Compared to existing spiking-in paradigms [5, 17, 18], the model includes two important 

improvements (Methods). First, SparseDOSSA can model a wide variety of covariates - discrete, 

continuous, or any combination thereof - with multivariable linear modelling, and can thus 

accommodate simulations of realistic microbiome population study designs with multiple 

phenotypes, exposures, or confounders [1]. Second, associations with both non-zero (abundance) 

and zero-inflated (prevalence) components of microbial features can be captured, along with 

clearly defined effect sizes (fold change or odds ratio, see Methods). This enables rigorous 

evaluations of, for example, differential abundance testing methods for their statistical 

performance (e.g. power or false positive rates).

Based on models fit to the Stool and Vaginal communities, SparseDOSSA 2 accurately introduced 

associations for control “phenotypes” in a new, simulated population (Fig. 3, Supplemental Fig. 

3). Specifically, for the Stool dataset, we introduced a binary covariate (similar to e.g. a case / 

control contrast) with non-zero effects on 16 (5% of the total 332) microbial features’ abundances 

(Fig. 3A) and prevalences (Fig. 3B). Features were selected to ensure the highest effective 

sample size (Methods). For simulated associations of the “phenotype” with feature abundances, 

log fold change of non-zero relative abundances largely agreed with the target effect sizes within 

95% confidence levels (Fig. 3A). Prevalence log odds ratios were also as targeted (Fig. 3B), with 

effects in relative abundances mostly agreeing with the prescribed effect sizes. Similar abundance 

and prevalence results were consistently reproduced in the Vaginal environment (Supplemental 

Fig. 3).

In addition to modeling associations between microbial features and external covariates, 

SparseDOSSA can also model community ecological interactions (i.e. correlations between 
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microbial features, or feature-feature “spike-ins”, Fig. 3C). This is captured by extending the 

feature-covariate spiking process above to synthetically associate multiple features with the same 

hidden covariate (Methods). First, a null model fit to the Stool community contains no true feature-

feature associations, only those that manifest spuriously due to compositionality (Fig. 3C). 

Starting with this, we modified the model to induce increasingly large feature-feature “ecological” 

interactions (Supplemental Fig. 4). SparseDOSSA 2 produced both only and exactly the 

expected true feature-feature associations among absolute abundance components, and the 

correct induced compositional correlations after simulating the sequencing assay process (Fig. 

3C). These results support SparseDOSSA’s ability to modify baseline, null community structures 

by the introduction of interactions among features or with controlled covariates, which together 

enable the evaluation of a wide range of statistical approaches to microbiome analysis [15, 26, 

27].

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 26, 2021. ; https://doi.org/10.1101/2021.03.26.437146doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.26.437146
http://creativecommons.org/licenses/by/4.0/


Figure 3: SparseDOSSA can add feature-phenotype and feature-feature associations to modeled microbial 

community simulations. A,B SparseDOSSA 2 correctly simulated feature-phenotype associations targeting the 

prescribed non-zero relative abundance (A) and prevalence (B) effect sizes of the spiked features, while maintaining 

non-associations of null features. C SparseDOSSA 2 can also prescribe feature-feature associations, as initially defined 

in unobserved absolute abundances, which induce correlation structures in simulated relative abundances that correctly 

include expected spurious correlations caused by compositionality. TP: true positives.

Modeling environment-specific benchmarking and power estimation

Since most microbiome analysis methods make simplifying assumptions that may or may not be 

suited to particular ecologies, SparseDOSSA's flexible model enables power and accuracy 
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estimation in a habitat-specific manner (Fig. 4). Specifically, by spiking only a limited set of known 

feature-phenotype associations into an otherwise guaranteed-null model, differential abundance 

methods can be compared directly to each other in a controlled setting (more details in [28]), 

enabling targeted method benchmarking (Fig. 4A) or power analysis (Fig. 4B).

To demonstrate SparseDOSSA's use for benchmark comparison of microbial community 

statistical tests, we again simulated synthetic datasets based on the Stool profiles with 

"phenotypic" associations spiked-in for 5% of features at varying effect sizes (as in Fig. 3A). 

Multiple replicates of the same parameter set were performed to provide performance metric 

mean and standard errors (Methods). Using the resulting gold standards, the performances of 

three different association tests – limmaVOOM [29], ANCOM [30], and MaAsLin 2 [28] - were 

similar for power, but false discovery rates varied strikingly (Fig. 4A). Notably, the MaAsLin 2 

generalized linear model showed good FDR control at small to moderate effect sizes. At higher 

effect sizes, non spiked-in (“null”) features are also called by MaAsLin 2 as differentially abundant. 

Interestingly, this is because SparseDOSSA’s spike-in effects are imposed on features’ simulated 

absolute abundances (Methods), and high effect size spike-ins thus also induce relative 

abundance change in null features due to compositionality. This highlights the important 

difference between true differential abundance effects corresponding to microbes’ biological 

variation, versus changes post normalization that are driven by other features.

In contrast, ANCOM [30] was designed to account for compositionality and draw inference about 

hidden absolute abundances; it successfully and maintained FDR under moderate to strong effect 

sizes. Arguably as a result, however, its performance suffered for small to null effects, presumably 

because in such cases it is difficult to distinguish between “driver” microbial features with true 

absolute effects versus those with changes in their relative abundances due to compositionality. 

Lastly, limmaVoom [29], designed primarily for RNA-Seq data, had inflated FDRs across all cases.
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To demonstrate SparseDOSSA's use for power analysis during microbial community study design, 

we focused targeted simulation datasets with spiked-in effects on a feature modeled on 

Escherichia coli, as a microbe commonly associated with dysbiosis in the human gut [2]. Using 

this approach, SparseDOSSA 2 can be used to estimate each association method's expected 

power for similar biomarkers and populations. In this example, MaAsLin 2 has high power to 

detect a two-fold abundance change in "E. coli" for a sample size of at least ~500 individuals, but 

greatly reduced power for smaller fold-changes (Fig. 4B). Since model power for differential 

abundance testing in sparse, compositional data is extremely difficult to determine parametrically, 

SparseDOSSA thus provides a way to do so by simulation tailored to any community type or 

feature of interest.

Figure 4: SparseDOSSA enables comparative benchmarking and power analysis of microbial community 

statistical association tests. For any originating community type of interest, datasets simulated based on a 

SparseDOSSA model fit can be spiked with known "phenotypes" and feature effect sizes to estimate methods 

performance (power, FPR, etc.) during (A) benchmarking as well as (B) power analysis, across controlled combinations 

of potential effect sizes and sample sizes. Points indicate average performance across simulation repetitions and error 

bars indicate standard error (Methods).

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 26, 2021. ; https://doi.org/10.1101/2021.03.26.437146doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.26.437146
http://creativecommons.org/licenses/by/4.0/


SparseDOSSA reproduces an end-to-end diet-microbiome analysis

In many cases, SparseDOSSA thus captures the properties of microbial community ecologies 

well enough to reproduce surprisingly specific aspects of their membership and distributions, 

which we next demonstrated by reproducing an end-to-end example from a longitudinal, 

interventional diet study investigating the effects of diet on the murine gut microbiome [23] (Fig. 

5). Carmody et al. [23] used 16S rRNA gene sequencing to profile changes in the mouse distal 

gut microbiome under different dietary treatments (chow, raw and cooked tuber, and meat). To 

determine whether SparseDOSSA could accurately model the microbes, phenotypes, and 

associations observed over time in these settings, we fitted model parameters for each sample 

type at different time points and under different treatment assignments (Methods).

After re-simulating communities based on these models fits, ordinations of SparseDOSSA 2 

results closely mimic the originally observed clustering structure of dietary effects, and even the 

longitudinal effects of time under treatment (Fig. 5A). For quantitative differential abundance 

effects, based on the observed difference of raw diet (TRF) samples when compared against 

cooked/free-fed (TCF) and cooked/restricted (TCR) within the tuber diet group [23], we 

additionally applied SparseDOSSA 2’s spike-in procedure to simulate a ~2x fold increase in the 

abundance of Bacteroidetes OTUs in TCF/TCR when compared to TCF samples, and a ~2x fold 

decrease in Firmicutes OTUs (Methods). Consequently, the simulated samples displayed similar 

differential outcomes in community diversity as measured by Shannon index, as well as 

Firmicutes/Bacteroidetes ratios, as seen in the original study (Fig. 5B-C).

Interestingly, even though per-feature absolute abundances are theoretically unidentifiable in the 

SparseDOSSA model (Methods), we note the spiking-procedure recapitulated the decreased 

total cell counts in TRF (Fig. 5D) that [23] also observed via quantitative PCR. The difference 

between chow versus tuber diets, on the other hand, is completely attributable to SparseDOSSA’s 

framework, as one can arbitrarily modify the average absolute abundances of our fit to the chow 
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or tuber diet samples, but still yield exactly the same relative abundance profiles. These real-

world application results highlight SparseDOSSA’s adaptability to community phenotypes and 

treatment effects, as well as demonstrate its performance for amplicon sequence datasets and 

microbial communities associated with non-human hosts.

Figure 5: SparseDOSSA correctly models the effects of diet and time on the murine gut microbiome by 

reproducing effects from amplicon sequencing profiles. A) SparseDOSSA 2 was fitted to subsets of samples from  

[23] that included up to three time points each from collections of mice fed chow, raw or cooked tubers, and meat. The 

resulting models were then used to simulate controlled microbial community profiles, which correctly reproduced the 

beta-diversity structures present in the original study (MDS ordination by Bray-Curtis dissimilarities). The 

SparseDOSSA model was also able to model and synthetically replicate changes in "Bacteroidetes" and "Firmicutes" 

phyla in response to raw vs. cooked diets, including B) overall community alpha-diversity (Shannon index), C) the 

resulting "Firmicutes" vs. "Bacteroidetes" ratio, and D) overall whole-community effective biomass. TRF = raw tuber 

(free-fd); TCF = cooked tuber (free-fed); TCR = cooked tuber (restricted ration).

Discussion

Here, we have developed a statistical model, implemented in the R package SparseDOSSA 2, 

for fitting and/or simulating microbial community profiles. These can comprise taxonomic 

abundances (i.e. relative abundances or counts) from shotgun metagenomic or amplicon 

sequencing; although not evaluated here, the model is in principle also appropriate for other 
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microbial feature abundances (e.g. genes or pathways). The model can be fit to communities with 

different host-associated or environmental ecological structures, and it accurately captures their 

fundamental characteristics, including the distribution of abundances across community members 

and the diversities of microbial composition across populations. In addition, to support quantitative 

benchmarking of new methods for microbial community statistics and epidemiology, 

SparseDOSSA is able to reliably induce user-specified correlation structures involving feature-

covariate or feature-feature associations in simulated ecologies. This was demonstrated not only 

in silico, but by end-to-end reproduction of results paralleling those in an interventional mouse 

feeding study. The underlying generative model thus efficiently and effectively summarizes real 

microbial communities and recapitulates their latent structure in a manner that is both 

computationally efficient and statistically principled.

The SparseDOSSA model assumes that the characteristics of a template (real) microbial 

community are well-captured by the distributions it includes for each component (individual 

features, feature-feature relationships, sparsity, etc.) More specifically, this requires that 1) the 

non-zero component of absolute abundances is approximately log-normal, 2) that feature-feature 

association structure is sparse (as captured by the penalized estimation procedure), and 3) that 

intrinsic population substructure among samples are absent in the template dataset (i.e. before 

SparseDOSSA 2 itself optionally spikes-in any such structure). The last assumption 4) that 

sequencing depths within study are themselves log-normal typically has minimal impact on model 

fitting or usage. The third assumption holds reasonably well even when any correlation structure 

originally present is weak or rare relative to overall microbial variance, or affects only a small 

proportion of features, similar to the assumption of “few differential transcripts” used in most RNA-

seq models [31]. Second, inasmuch as the read count of each feature depends on its own 

observed mean, variance, and sparsity, SparseDOSSA 2’s simulated data will replicate the 

marginal distribution of the originating template community. This guarantee on the null distribution 
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of subsequently generated communities allows correlation structure (with samples or among 

features) to be optionally added in isolation for evaluation of microbial community analysis 

methods. The first assumption is most approximate - it is generally true for ecologically diverse 

communities, which empirically follow power-law or log-normal behaviors (with a few abundant 

organisms and a long tail representing the increasingly rare biosphere). However, as discussed 

above, its violation leads to small residual systematic biases (<0.5%) in communities where tails 

of rare organisms are more truncated than expected.

Perhaps the greatest strength of the model is its application in simulating microbial community 

profiles, which we have emphasized and validated here. Most previous methods for associating 

microbial features with covariates [30, 32-34] or with each other [15, 27, 35, 36] have relied on 

heterogeneous, one-off models not necessarily reflective of any one “real” microbial community 

type, or of the diversity of ecological configurations observed in the wild (e.g. the human gut vs. 

vaginal microbiome vs. soil). By providing a model that can accurately capture many different 

community types, remove any existing structure through null distributions, and re-introduce known, 

controlled structure (microbial or covariate), we hope to provide a convenient, unified framework 

with which statistical methods can be validated specifically for their environments of interest (e.g. 

human microbiome epidemiology vs. environmental ecological interactions). In addition to this 

application, while not emphasized here, the model’s parameterization can be used to directly 

inspect or compare microbial communities. For example, the estimates of absence probabilities 

𝜋𝑗 for important microbes 𝑗 of interest in specific human populations (e.g. Prevotella in the 

Westernized vs. non-Westernized gut [37]), or the relationships between 𝜋𝑗 vs. mean log-

abundance 𝜇𝑗 across microbes (i.e. prevalence vs. abundance) are directly informative as to their 

neutral dispersal vs. selection [38]. To some degree this is evident from the murine feeding 

example above, but most such applications remain to be demonstrated in broader “real-world” 

datasets.
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Relatedly, SparseDOSSA successfully reproduced reported dietary effects on the mouse gut 

microbiome [23], without assuming such differences a priori (Fig. 5). By fitting our model on 

microbial observations of separate treatment groups and time points, we allowed SparseDOSSA 

to adapt to each subset independently, but without assumptions on the existence or magnitude 

of differences between them. The emergent reproduction of differentiation by diet in the resulting 

synthetic communities and features (Fig. 5A) exemplifies SparseDOSSA’s utility in capturing 

environment- or treatment-specific dynamics of real-world microbial communities. In parallel, by 

introducing effects within each dietary group, SparseDOSSA’s per-feature spike-in procedure was 

able to reproduce structural microbial community changes such as overall diversity and whole-

phylum abundance trade-offs. Together, this end-to-end real-world case study highlights 

SparseDOSSA’s two key functionalities while also testing a non-human, amplicon-sequenced 

application context: generating realistic microbial community profiles that closely mimic the 

targeted environment, and introducing covariate spiked-in microbial perturbations to simulate 

treatment effects.

With respect to this second use case (covariate effects spike-in), existing simulation models often 

adopt the simplistic approach of modifying the abundances of taxa in the null community to 

introduce known associations [5, 18]. SparseDOSSA, in comparison, utilizes rigorous 

perturbation models to explicitly specify the marginal means of taxa as functions of chosen 

covariates. This a) enables much more flexible applications such as the inclusion of confounders 

or random effects (by incorporating them as covariates), and b) yields spiked-in datasets that are 

strictly compatible with the standard assumptions of (generalized) linear models. Alternatively, 

differentiation between simple binary (case-versus-control) contrasts could be achieved with our 

current model by training SparseDOSSA separately on the two corresponding population subsets, 

given that each was sufficiently large to serve as a template.
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Our modeling and simulation procedure for generating feature-feature correlations is, in turn, 

directly based off the feature-covariate model and comparatively more restrictive; we expect to 

explore more rigorous and flexible approaches in future work, since any one “correct” way to 

model ecological associations in absolute vs. relative abundance space is not clear a priori [35]. 

Another related area for future work is in the specific model used for absolute abundances, which 

are not well-understood from currently available data; our current assumption holds if the total 

biomass of “typical” communities does not change under “typical” circumstances, but this is 

obviously quite qualitative. Direct measurements of microbial biomass in some environments such 

as the human gut have sometimes shown this within approximately one fold change [39, 40], but 

not in all cases, and certainly not during extreme perturbations such as antibiotics [41].

Thus the SparseDOSSA model simultaneously provides a conceptual framework with which to 

capture key aspects of microbial ecologies and their members, a simulation system for 

benchmarking statistical methods that assess correlation structure in microbial community profiles, 

and a set of marginal parameters for each community and community type of lower dimensionality 

and potentially reduced noise relative to raw data. The last, while again not yet explored, could 

allow sample metadata covariates to be more accurately tested for association with microbial 

features, or tested for association with microbial community features indirectly (e.g. via their 

prevalence or mean when present). In addition to the areas discussed above, future expansions 

of the model might include longitudinal structure or other interdependencies among samples (i.e. 

population substructure), as well as diversifying the application areas for the model (e.g. for power 

calculations during study design). As currently implemented, SparseDOSSA 2 provides an end-

to-end system that enables reproducible and efficient validation of quantitative methods applied 

to microbial community taxonomic profiles, allowing fair comparisons to be made between 

different methods or studies to establish a consistent baseline for statistical validation.
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Methods

The SparseDOSSA model

SparseDOSSA uses the following data generation mechanism to parameterize microbial 

community profiles: a) environments/samples contain microbes with absolute abundances 𝐴, b) 

these are normalized to relative abundances 𝑋, which c) can be measured via sequenced counts 

𝐶. As detailed in Fig.1A, our model specification for these components is:

● For the unobserved absolute abundances 𝐴 = (𝐴1,𝐴2,⋯,𝐴𝑝), we specify a Gaussian copula 

model [20] with zero-inflated log normal marginal distributions. Specifically, this involves 

assuming hidden multivariate Gaussian variables 𝑔 = (𝑔1,𝑔2,⋯,𝑔𝑝) for the microbial features 

and a mapping of these variables to the corresponding absolute abundances (𝐴1,𝐴2,⋯,𝐴𝑝):

○ 𝑔 ∼ 𝑀𝑉𝑁(0, 𝛺―1). That is, each 𝑔𝑗 is a standard 𝑁(0, 1) variable and their correlation 

matrix is 𝛺―1.

○ Each 𝑔𝑗 is mapped to 𝐴𝑗 such that 𝐴𝑗 follows a zero-inflated log-normal distribution, 

parameterized by absence probability (𝜋𝑗) and mean and variability of non-zero log 

abundances (𝜇𝑗,𝜎𝑗
2):

■ 𝐴𝑗 = 0 if 𝑔𝑗 < 𝛷―1(𝜋𝑗)

■ 𝐴𝑗 = 𝐹𝐴𝑗
―1(𝛷(𝑔𝑗)|𝜋𝑗,𝜇𝑗,𝜎𝑗

2) if 𝑔𝑗 ≥ 𝛷―1(𝜋𝑗)
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Where 𝛷 is the standard normal cumulative density function and 𝐹𝐴𝑗is the cumulative 

density function of the zero-inflated log-normal distribution, parameterized by 𝜋𝑗,𝜇𝑗,𝜎𝑗
2.

It follows from our model specification that, marginally, 𝐴𝑗 follows the prescribed zero-inflated 

log-normal distribution exactly:

○ With probability 𝜋𝑗, 𝐴𝑗 = 0

○ With probability 1 ― 𝜋𝑗, log 𝐴𝑗 ∼ 𝑁(𝜇𝑗,𝜎𝑗
2)

Jointly, correlations between microbial features’ absolute abundances are characterized 

through the copula parameter 𝛺. The benefit of adopting a copula model is to separate the 

parameterization and estimation of a joint distribution into its marginal and correlation 

components; this is illustrated in the model fitting subsection below.

● Relative abundances are directly normalized from absolute abundances: 𝑋𝑗 =
𝐴𝑗

∑𝑝
𝑘=1 𝐴𝑘

. This by 

definition satisfies compositionality (∑𝑝
𝑗=1 𝑋𝑗 = 1). Also note that because 𝐴𝑗’s are zero-inflated, 

this directly induces zero-inflation (i.e. biological absence) in 𝑋𝑗’s. 

● For a given sample 𝑖 with sequencing depth 𝐷𝑖, its per-feature read counts (𝐶𝑖1,𝐶𝑖2,⋯,𝐶𝑖𝑝) are 

assumed to follow a multinomial distribution with individual features’ probabilities given by 𝑋𝑖𝑗. 

That is, (𝐶𝑖1,𝐶𝑖2,⋯,𝐶𝑖𝑝) ∼ 𝑀𝑢𝑙𝑡𝑖𝑁𝑜𝑚(𝐷𝑖,𝑋𝑖1,𝑋𝑖2,⋯,𝑋𝑖𝑝), thus also allowing technical zeros.

● Lastly, we assume the sequencing depth 𝐷𝑖 across samples follows a log-normal distribution. 

That is, 𝐷𝑖 ∼ 𝐿𝑜𝑔𝑁(𝜇𝐷,𝜎𝐷
2).

Model likelihood

It is helpful to clarify the likelihood of our model given its parameterization. First, we derive 𝑓𝐴, the 

likelihood for the unobserved absolute abundances 𝐴. The likelihood of observed data, as we 
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show later, is an integration of 𝑓𝐴. For illustration purposes, we first note the special case where 

𝐴𝑗 are not zero-inflated. That is, 𝜋𝑗 = 0 for all 𝑗’s. In this case, we have that:

𝑓𝐴(𝐴1,⋯,𝐴𝑝|𝜋1,𝜇1,𝜎1
2,⋯,𝜋𝑝,𝜇𝑝,𝜎𝑝

2,𝛺) = 𝑓𝑔(𝑔1,⋯,𝑔𝑝|𝛺) ×
𝑗

 𝑓𝐴𝑗(𝐴𝑗|𝜋𝑗,𝜇𝑗,𝜎𝑗
2)

𝜙(𝑔𝑗)

Where 𝑔𝑗 is as defined above: 𝑔𝑗 = 𝛷―1(𝐹𝐴𝑗(𝐴𝑗)) and 𝜙( ⋅ ) is the standard normal density function. 

The equality follows by noting that the second term (the product) is the Jacobian of the mapping 

𝑔→𝐴:𝐴𝑗 = 𝐹𝐴𝑗
―1(𝛷(𝑔𝑗)). When one or more 𝐴𝑗’s are zero-inflated, the mapping 𝑔→𝐴 is not one-to-

one, and the right hand side of the equality requires integration over 𝑔𝑗’s that map to zero-valued 

𝐴𝑗’s:

𝑓𝐴(𝐴1,⋯,𝐴𝑝|𝜋1,𝜇1,𝜎1
2,⋯,𝜋𝑝,𝜇𝑝,𝜎𝑝

2,𝛺) =
𝑔𝑗≤𝛷―1(1―𝜋𝑗), 𝑗∈{𝑗:𝐴𝑗=0}

𝑓𝑔(𝑔1,⋯,𝑔𝑝|𝛺)  𝑑𝑔

×
𝑗∈{𝑗:𝐴𝑗>0}

𝑓𝐴𝑗(𝐴𝑗|𝜋𝑗,𝜇𝑗,𝜎𝑗
2)

𝜙(𝑔𝑗)

To derive the likelihood for relative abundances 𝑋, we note that 𝑋, jointly with the total absolute 

abundance 𝐴𝛴 (𝐴𝛴: = ∑𝑗 𝐴𝑗), forms a one-to-one mapping with the absolute abundances 𝐴 (𝐴 = 𝐴𝛴

𝑋). Thus, the density function for 𝑋, 𝑓𝑋, can be obtained through integration of 𝑓𝐴Σ,𝑋, which is 

simply 𝑓𝐴 multiplied by the Jacobian of the transformation:  

𝑓𝑋(𝑋1,⋯,𝑋𝑝|𝜋1,𝜇1,𝜎1
2,⋯,𝜋𝑝,𝜇𝑝,𝜎𝑝

2,𝛺) = ∫ 𝑓𝐴(𝐴𝛴𝑋|𝜋1,𝜇1,𝜎1
2,⋯,𝜋𝑝,𝜇𝑝,𝜎𝑝

2,𝛺) × (𝐴𝛴)|{𝑗: 𝐴𝑗>0}|―1𝑑𝐴𝛴             

(1)

Lastly, for the observed microbial count data 𝐶, the proper likelihood is:

𝑓𝐶(𝐶1,⋯,𝐶𝑝|𝜋1,𝜇1,𝜎1
2,⋯,𝜋𝑝,𝜇𝑝,𝜎𝑝

2,𝛺) = 𝑓𝐶|𝑋(𝐶|𝑋)𝑓𝑋(𝑋|𝜋1,𝜇1,𝜎1
2,⋯,𝜋𝑝,𝜇𝑝,𝜎𝑝

2,𝛺) 𝑑𝑋
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Where 𝑓𝐶|𝑋(𝐶) is the multinomial likelihood for microbial counts given their relative abundances. 

In practice, to simplify computation, during model fitting we replace this likelihood with 

𝑓𝐶(𝐶1,⋯,𝐶𝑝|𝜋1,𝜇1,𝜎1
2,⋯,𝜋𝑝,𝜇𝑝,𝜎𝑝

2,𝛺) ≈ 𝑓𝑋(𝑋|𝜋1,𝜇1,𝜎1
2,⋯,𝜋𝑝,𝜇𝑝,𝜎𝑝

2,𝛺) × 𝑐𝑜𝑛𝑠𝑡    (2)

Where 𝑋 is the multinomial MLE for 𝑋 given observed 𝐶, i.e., 𝑋 =
𝐶

∑𝑗 𝐶𝑗
, 𝑐𝑜𝑛𝑠𝑡 is a normalizing 

constant not involving the parameters. The approximation is acceptable because with modern 

sequencing depth [1], 𝑓𝐶|𝑋(𝐶|𝑋) (as function of 𝑋) is highly concentrated around 𝑋. The right-hand 

side of (2) is what we aim to maximize for estimation of our model’s parameters, 𝜋1,𝜇1,𝜎1
2,⋯,𝜋𝑝,𝜇𝑝,

𝜎𝑝
2, and 𝛺.

Identifiability

It is important to note that likelihood (1) is unidentifiable. That is, there exist different values of the 

parameter set (𝜋1,𝜇1,𝜎1
2,⋯,𝜋𝑝,𝜇𝑝,𝜎𝑝

2,𝛺) that yield the same likelihood 𝑓𝑋 (and consequently 𝑓𝐶). 

Intuitively, this is because 𝑋 are normalized from absolute abundances 𝐴, and different 𝐴 values 

can map to the same normalized relative abundances 𝑋 - this is thus typical of any compositional 

setting. Regarding the identifiability of our parameters, we build on the results of [42], which is a 

special case of our model where 𝜋𝑗 = 0 for all 𝑗’s. Specifically, we note that:

● 𝜋𝑗’s are identifiable, as 𝑋𝑗 = 0⇔𝐴𝑗 = 0

● 𝜇1,⋯,𝜇𝑝 are identifiable up to a constant. That is, 𝜇1,⋯,𝜇𝑝 and 𝜇1 +𝑐,⋯,𝜇𝑝 +𝑐 lead to the 

same likelihood, for any constant 𝑐. For this reason, in our model estimation we impose 

the (arbitrary) constraint that ∑𝑗 𝜇𝑗 = 0.

● 𝜎1
2,⋯,𝜎𝑝

2 are identifiable, given 𝜇1,⋯,𝜇𝑝 and 𝛺. One can note that when 𝜋𝑗 = 1 for all 𝑗’s, 

our likelihood degenerates to that in [42] with explicit analytical forms.
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● 𝛺 is not identifiable. Again, consider the special case that 𝜋𝑗 = 1 and 𝜎𝑗 = 1, the form of 𝑓𝑋 

is explicit and involves 𝛺 ―
𝛺𝟏𝑝1𝑝′𝛺

1𝑝′𝛺1𝑝
, which is a multiple-to-one mapping from 𝛺. The issue 

of non-identifiable correlation matrices for microbiome abundance data has been noted 

and addressed in many previous works; refer to {25950956; 28489411; 29140991; 

doi.org/10.1080/01621459.2018.1442340} for a partial list. We adopt the technique used 

in many of these previous works, namely 𝐿1 penalization on 𝛺, to simultaneously address 

the identifiability issue as well as high-dimensionality for generic estimation of large 

covariance matrices [21].

Model fitting

Given our model specification and its (non-)identifiability, we propose to minimize the following 

penalized negative log-likelihood function for solving the parameter set 𝛩 = (𝜋1,𝜇1,𝜎1
2,⋯,𝜋𝑝,𝜇𝑝,𝜎𝑝

2

,𝛺) (the sequencing depth parameters (𝜇𝐷,𝜎𝐷
2) can be fitted independently on per-sample read 

depths with maximum likelihood):

𝑛

𝑖=1
― 𝑙𝑜𝑔𝑓𝑋(𝑋𝑖|𝜋1,𝜇1,𝜎1

2,⋯,𝜋𝑝,𝜇𝑝,𝜎𝑝
2,𝛺) + 𝜆||𝛺||1

Subject to the constraint for 𝜇𝑗 as specified above: ∑𝑗 𝜇𝑗 = 0. As such, 𝜆 > 0 is a penalizing tuning 

parameter, which we choose with cross-validation in practice. 𝑋𝑖 can be either existing relative 

abundance estimations or, as specified above, normalized from count observations (𝑋𝑖𝑗 =
𝐶𝑖𝑗

∑𝑗 𝐶𝑖𝑗
).

As specified in (1), the likelihood function 𝑓𝑋 involves integration over 𝐴𝛴 and is not analytically 

tractable. Numerically, we propose the following penalized expectation-maximization algorithm 

[43] for model fitting: 
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1. Initialize 𝛩(0) = 𝜋1
(0),𝜇1

(0),𝜎1
(0),⋯,𝜋𝑝

(0),𝜇𝑝
(0),𝜎𝑝

(0),𝛺(0) by fitting a multivariate log-normal 

distribution on  𝑋𝑖’s.

2. During the 𝑟-th iteration:

a. E-step: calculate expectation 𝑙(𝑟)(𝑋|𝛩) =

∑𝑖 𝐸𝐴𝛴
𝑖|𝑋𝑖;𝛩

(𝑟―1)𝑙𝑜𝑔𝑓𝐴(𝐴𝛴
𝑖𝑋𝑖|𝛩) × (𝐴𝛴

𝑖)
|{𝑗: 𝐴𝑖𝑗>0}|―1.

b. Penalized M-step: maximize ―𝑙(𝑟)(𝑋|𝛩) + 𝜆||𝛺||1 with respect to 𝛩 to obtain 𝛩(𝑟). 

Note that 𝜋𝑗’s do not require updates. 𝜇𝑗
(𝑟) and  𝜎𝑗

(𝑟)can be solved analytically. 𝛺(𝑟)

can be solved with standard graphical lasso [21]. 

3. Iterate until convergence.

Generating synthetic microbial observations and simulating new features

Given that our model is fully parametric, synthetic microbial observations, including (hidden) 

absolute abundances, normalized relative abundances, and sequencing counts, can be 

generated following the same specifications as described above. To provide model parameters, 

the user can adopt one of the pre-trained sets included with the software or use the 

SparseDOSSA 2 training procedure to estimate parameters from any microbial template dataset 

suited for their simulation case.

Users may also be interested in generating “new” microbial features from the same ecological 

environment. For this, SparseDOSSA additionally models the per-feature parameters (𝜋𝑗,𝜇𝑗,𝜎𝑗
2) 

with a three-dimensional non-parametric distribution 𝐹. That is, across features, (𝜋𝑗,𝜇𝑗,𝜎𝑗
2) ∼ 𝐹. 

Given a set of SparseDOSSA fitted results (𝜋1,𝜇1,𝜎2
1,…,𝜋𝑝,𝜇𝑝,𝜎2

𝑝), 𝐹 can be estimated with a three-

dimensional normal kernel density estimator [44]. The estimated 𝐹 can then be used to simulate 

new microbial features that follow the ecological characteristics (i.e., prevalence, abundance, and 

variability) of the fitted environment (Supplemental Fig. 2).
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Association spike-in

SparseDOSSA adopts linear and generalized linear models for flexible spiking-in in both microbial 

features’ non-zero abundances and prevalences, based on covariates. Let 𝑍𝑖 be the vector of 

covariate(s) for sample 𝑖 and 𝛽 be the targeted corresponding effect sizes (coefficients). To spike 

in associations between feature 𝑗’s abundance and covariates 𝑍𝑖, we modify the feature’s non-

zero mean log absolute abundance parameter 𝜇𝑗 across samples. Specifically, the post spike-in 

mean log abundance is modified as

𝜇𝑖𝑗 = 𝜇𝑗 + 𝑍𝑖
′𝛽𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒

For the 𝑖-th sample, 𝐴𝑖𝑗 can be generated with 𝑍𝐼𝐿𝑜𝑔𝑁(𝜋𝑗,𝜇𝑖𝑗,𝜎𝑗
2) instead of the original 𝑍𝐼𝐿𝑜𝑔𝑁(𝜋𝑗,

𝜇𝑗,𝜎𝑗
2). This dictates that 𝐴𝑖𝑗’s are associated with 𝑍𝑖 in their mean non-zero log abundances. As 

𝜇𝑖𝑗 are specified on the log scale, 𝛽𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒, by definition, corresponds to log fold changes.

The prevalence spike-in similarly is specified via the logistic model; we modify the presence 

probability parameter (1 ― 𝜋𝑗) across samples:

𝑙𝑜𝑔(
1 ― 𝜋𝑖𝑗

𝜋𝑖𝑗
) = 𝑙𝑜𝑔(

1 ― 𝜋𝑗

𝜋𝑗
) + 𝑍𝑖′𝛽𝑝𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒

And generate 𝐴𝑖𝑗’s correspondingly. This introduces an association between the covariates 𝑍𝑖 and 

feature 𝑗’s prevalence, with 𝛽𝑝𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒 corresponding to log odds ratios of the feature being present. 

The multivariate linear modelling approach for specifying the association effects for both 

abundance and prevalence allows us to flexibly incorporate different variable types (e.g. binary, 

continuous, etc.) and study designs (e.g. existence of confounders).

We note that, importantly, our spiking-in procedure is performed on the absolute abundances, 𝐴, 

which induces differential effects in relative abundances 𝑋 (Fig. 3A-B). The main benefit of this 

approach is that both the spiked-in microbial features and the “null” (i.e. non-spiked features) are 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 26, 2021. ; https://doi.org/10.1101/2021.03.26.437146doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.26.437146
http://creativecommons.org/licenses/by/4.0/


clearly defined. The alternative - specifying effects for 𝑋𝑗 - is conceptually difficult. As 𝑋 is 

compositional (sums to 1), prescribing enrichment effects (higher abundance or prevalence) for 

some microbial features must by definition lead to depletion effects for certain other features. This 

renders it difficult to clearly define and separate the set of "true positive" spiked-in microbial 

features and the set of null features. SparseDOSSA’s definition of effects for absolute 

abundances in its spike-in procedure align with recent efforts to rigorously characterize microbial 

differential abundance effects under the constraint of compositionality [30, 45]. Empirically, we 

note that prescribed log fold changes or odds ratios for 𝐴𝑗 often lead to similar effect sizes in the 

relative abundances 𝑋𝑗 for the spiked-in feature 𝑗’s (Fig. 3A-B).

Lastly, we note that the spiking-in procedure with metadata variables can be used to simulate 

association effects between pairs of microbial features (Fig. 3C). Specifically, we first simulate a 

hidden covariate 𝑍 with standard normal distribution. For a pair of features 𝑗1, and 𝑗2, to enforce 

positive correlations between the two absolute abundances 𝐴𝑗1 and 𝐴𝑗2, we simulate for them to 

be associated with 𝑍 in the same direction:

𝜇𝑖𝑗1 = 𝜇𝑗1 + 𝑍𝑖𝛽𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒

𝜇𝑖𝑗2 = 𝜇𝑗2 + 𝑍𝑖𝛽𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒

𝑙𝑜𝑔(
1 ― 𝜋𝑖𝑗1

𝜋𝑖𝑗1

) = 𝑙𝑜𝑔(
1 ― 𝜋𝑗1

𝜋𝑗1

) + 𝑍𝑖𝛽𝑝𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒

𝑙𝑜𝑔(
1 ― 𝜋𝑖𝑗2

𝜋𝑖𝑗2

) = 𝑙𝑜𝑔(
1 ― 𝜋𝑗2

𝜋𝑗2

) + 𝑍𝑖𝛽𝑝𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒

Where 𝛽𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒 = 𝛽𝑝𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒 = 𝛽 can be viewed here as the effect size specifying the strength of 

correlation between 𝐴𝑗1 and 𝐴𝑗2. To spike in negative correlation between the two, we simply keep 

𝛽 as the effect for one of the features and use ―𝛽 for the other.
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Evaluation with real-world datasets

For evaluation and comparison of microbiome simulation methods, we examined three real-world 

datasets with different host environments and disease statuses (Supplemental Table 1) [2, 22]. 

We subset publicly available species level profiles from [22] (all healthy) to baseline time point 

stool (Stool) and posterior fornix (Vaginal) samples, and those from [2] to baseline time point IBD 

samples (IBD, including Crohn's disease and ulcerative colitis patients). We additionally removed 

samples with lower than ~3,000 reads mapped to identified taxa and features present in less than 

3 samples. The datasets’ dimensions (sample size, number of features), post processing and 

filtering, are included in Supplemental Table 1. 

To evaluate the performance of individual methods, we randomly partitioned each dataset (Stool, 

Vaginal, IBD) into halves for five iterations. For each partitioning, we fit the 

parameterization/simulation methods (DMM, metaSPARSim, and SparseDOSSA 2) on one half 

of the data (training). We then simulated synthetic microbial observations with the same sample 

size using the fitted results. Lastly, we compared the synthetic observations with the other half of 

the partitioned data (testing) in terms of both overall dissimilarity with PERMANOVA [24] and per-

feature distribution differences (methods detailed below). Within each partitioning, this simulation 

was also performed five times for each method. That is, each method was used to randomly 

simulate five synthetic datasets for comparison with the testing half. The partitioning procedure 

allows us to evaluate method performance without a model overfitting effect. The DMM was fitted 

using R package “dirmult” and metaSPARSim was fitted using the implementation referred to in 

its publication [18]. For metaSPARSim fitting, the percent not zero filter for features was set to 0 

instead of the default 0.2. In our evaluation this led to an observed performance increase (thus a 

favorable assessment), likely due to the existence of many highly zero inflated microbial species.
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To evaluate overall dissimilarity between the original and synthetic samples, for each partitioning 

we combined the testing half of the original samples with the simulated datasets (five for each 

fitted method). We calculated the sample-to-sample Bray-Curtis dissimilarity matrix 𝐷 on the 

combined dataset. The univariate PERMANOVA model, 𝐷 ∼ 𝐼{𝑆𝑎𝑚𝑝𝑙𝑒 𝑖𝑠 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑} was fitted. 

The corresponding 𝑅2 statistic quantifies the percentage of variability between samples 

attributable to the difference between original "real-world" as compared to simulated samples. 

Smaller 𝑅2 statistics indicate less difference, and better performance of the simulation method. 

For each method, a total of 25 PERMANOVA evaluations (5 original dataset partitioning ×  5 

simulation) was performed for each real-world dataset. Lastly, we additionally evaluated the 𝑅2 

between the training and testing halves of a dataset for each partitioning; this yields an estimation 

of minimum achievable 𝑅2’s for each dataset.

To evaluate the difference between distributions of individual features in the original and synthetic 

datasets, we simply combined the synthetic datasets generated across all partitioning and 

simulation repetitions. An individual feature was compared for its relative abundance distribution 

between the original real-world data and combined synthetic samples. This was quantified with 

the Kolmogorov-Smirnov (K-S) test statistic, which is defined as the largest absolute difference 

between the empirical cumulative distribution functions of the real-world and synthetic 

abundances. Smaller K-S statistics indicate better approximation of the targeted real-world 

distributions with the simulation method.

Association spike-in evaluation

We simulated spiked-in associations between microbial features and a synthetic case/control 

variable, based on the SparseDOSSA 2 fitted results. A total of 1,000 synthetic samples were 

simulated (500 cases and 500 controls). For non-zero abundance spike-in (Fig. 3A), the top 5% 

(16 total) most prevalent features were selected for spiking-in; this yields the highest effective 
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sample size for the selected features because our abundance spiking-in targets only the non-zero 

component of a feature’s distribution. Half of the features were spiked for a targeted log fold 

change (𝛽𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒) of 1 in cases compared to controls, and the other half were spiked for a log 

fold change of -1. Actual log fold changes in the simulated relative abundances, along with 95% 

confidence intervals, were calculated by performing a linear regression on the log transformed 

non-zero relative abundances for each feature. 

Similarly, for prevalence spiking-in (Fig. 3B), the top 5% features with prevalence closest to 0.5 

were selected; as with abundance spike-ins, this was to ensure the spiked-in features had the 

highest effective sample size, as the association between a binary outcome (presence/absence 

here) and a binary covariate (case/control) is best-powered when the sample distribution is 

balanced across all different outcome/covariate combinations [46]. Again, half of these features 

were spiked for a targeted log odds ratio (𝛽𝑝𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒) of 1 in cases compared to controls, and the 

other half were spiked for a log odds ratio of -1. Actual log odds ratios of the simulated feature 

prevalence, along with 95% confidence intervals, were calculated by performing a logistic 

regression on the presence for each feature. 

For simulation of feature-feature associations, we first set the correlation between feature pairs in 

SparseDOSSA 2 to zero (i.e., 𝛺 = 𝐼 where 𝐼 is the identity matrix). This ensures that feature 

absolute abundances are independent in the “null” dataset (Fig. 3C left panel, bottom right), 

whereas spurious correlation still exists in relative abundances due to compositionality. Two 

random pairs (four features) in the top ten most abundant features were selected for non-zero 

feature-feature association spike-in. As specified in Methods above, we simulated two 

independent normal synthetic hidden metadata variables, one for each feature pair to be 

associated. For the first feature pair, they were spiked in both abundance and prevalence with 

the same effect (𝛽 = 𝛽𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒 = 𝛽𝑝𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒) at varying sizes, for positive association. The second 

pair were spiked with opposing effects (𝛽 for one, ―𝛽 for the other) for negative association. We 
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used Spearman correlation to estimate the empirical association between feature pairs in the 

simulated absolute and relative abundances. Target association effect size was also varied (𝛽 of 

0, 1, 2, and 5) to showcase the relative signals of “true” associations that exist for both absolute 

and relative abundances, and spurious associations that are only induced in relative abundances 

due to compositionality (Fig. 3C, Supplemental Fig. 4)

Benchmarking and power analysis

Since “true” associations with prescribed effect sizes are known for SparseDOSSA synthetic 

datasets, they can be used for benchmarking microbiome analysis methods as well as for power 

analysis of microbiome study designs. For benchmarking analysis (Fig. 4A), we again selected 

the top 5% (16 total) most prevalent features in the Stool dataset to perform abundance spike-in, 

such that the selected features had the highest effective sample size. A total of 200 microbial 

profiles were simulated to be associated with a balanced binary metadata (100 cases, 100 

controls). We varied effect sizes with half spiked features at 𝛽𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒 = (0, 0.5, 1, 2) and the other 

half with 𝛽𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒 = (0, ― 0.5, ― 1, ― 2), correspondingly (in the effect size 0 case no spike-in 

was performed and microbial profiles are generated independently of metadata). A total of 500 

random simulations were performed for each parameter combination. We applied existing 

differential abundance analysis methods to detect the spiked-in features in each simulation 

dataset [28-30], with individual method configurations as reported in our previous benchmarking 

analysis [28]. We summarized the empirical power and FDR of a method in one simulation dataset, 

across the twenty random replicates for each parameter configuration, and reported the mean 

and standard error in Fig. 4A. 

For showcasing SparseDOSSA’s utility in a power analysis, we spiked in non-zero abundance 

associations with a balanced case-control variable for a simulated species parameterized by 

fitting Escherichia coli. This was performed at varying effect sizes (log fold change, 𝛽𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒
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= (0.5, 1, 2)) and sample sizes (100 to 1000). For each parameter configuration, a total of 500 

replicates were simulated. The empirical power and its standard error of using MaAsLin 2 to detect 

the differential abundant effect in "E. coli" was summarized across the 500 replicates and reported 

in Fig. 4B; this was repeated for each effect size/sample size configuration. 

Murine diet microbiome analysis

We applied SparseDOSSA 2 to the longitudinal diet dataset of the mouse gut microbiome in [23], 

to show that our method is capable of reproducing a complex study's findings. To recapitulate the 

longitudinal diet effect as reported in [23]’s Fig. 1a, we fitted SparseDOSSA 2 separately on 1) 

the control Chow diet samples at baseline, 2,3) Tuber diet samples at day 1 and day 5, separately, 

and 4,5) Meat diet samples at day 1 and day 5, separately. This approach allows SparseDOSSA 

2 to independently fit subsets of the data, without assuming a priori the observed differences 

noted in [23]. We then used SparseDOSSA 2 fitted results to simulate synthetic observations for 

each diet/timepoint combination, with five times the original sample size (to reduce variability due 

to random sampling). Bray-Curtis MDS ordination on these synthetic data displayed a striking 

resemblance to that observed in [23] (Fig. 5A), in that a) communities cluster according to dietary 

treatment, and 2) this response is consistent after one day of switching from chow to whole-food 

diets and is strengthened at day 5.

We next reproduced the differential gut microbial profiles observed in mice fed raw versus tuber 

diets as presented in [23]’s Fig. 1f-g. [23] adopted three different types of Tuber diet: the raw/free-

fed (TRF), the cooked/free-fed (TCF), and the cooked/restricted (TCR). This study presented that 

on the phylum level, TRF induced enrichment of Bacteroidetes and depletion of Firmicutes when 

compared to TCF/TCR. We applied SparseDOSSA 2’s feature spike-in procedure to approximate 

this effect. Specifically, we generated a balanced, three category (TRF/TCF/TCR) variable. Based 

on our fitted model of the Tuber diet at day 5, we spiked in a two-fold (𝛽𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒 = log 2) increase 
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in the non-zero abundance of Bacteroidetes OTUs and a two-fold decrease in Firmicutes OTUs 

(𝛽𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒 = ― log 2) in TRF samples when compared to TCF/TCR samples. This roughly agrees 

with the presented results in [23] Fig. 1d. We next simulated SparseDOSSA synthetic datasets 

for both the baseline Chow diet samples (sample size = 20), and the spiked-in Tuber diet samples 

(60 samples total, 20 each for TRF/TCF/TCR). We calculated the Shannon index and 

Firmicutes/Bacteroidetes ratios of these samples, and show in Fig. 5B that they agreed with the 

corresponding findings presented in [23] Fig. 1f-g.
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