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ABSTRACT

We describe a robust, fiducial-free method of drift correction for use in single molecule localization-based super-resolution
methods. The method combines periodic 3D registration of the sample using brightfield images with a fast post-processing
algorithm that corrects residual registration errors and drift between registration events. The method is robust to low numbers of
collected localizations, requires no specialized hardware, and provides stability and drift correction for an indefinite time period.

Introduction
Drift correction is a prevalent problem in microscopy, in which the sample being examined alters its position over time, leading
to distortions for data collected over a series of movie frames. Typically, translational motion is the main significant positional
change, which is what we will consider here, however, others have also examined the issue of rotational movements1, 2.
Drift can be due to a variety of factors, such as temperature variation, vibration and mechanical relaxation of the measuring
instruments3–5, becoming significant for long recording times.

Drift occurs in all varieties of microscopy, for example, scanning electron microscopy (SEM)1, 6, scanning (electron)
tunneling microscopy (STM)7, 8, and scanning probe microscopy9 among others. Here, we are concerned with super-resolution
microscopy of blinking fluorescent particles in which the images are taken over many movie frames10–13.

Various techniques to eliminate drift errors have been developed, such as producing specialized hardware and introducing
fixed fiduciary markers or patterns as reference points14–16. Some researchers have suggested tracking image features, for
example, the center of mass of a cell-like object17. Several techniques involve identifying and extracting image features, then
matching them for global correspondence6, using clusters of those features2, or their nearest (feature) neighbors8 in order to
deduce the drift. These techniques work best with non-pointlike features6.

Active drift correction via continuous brightfield / non-fluorescent imaging with feedback to the stage position has been
used by some18, 19, the latter using circular intracellular vesicles to substitute for fiducial markers. Tang et al.4 minimized the
normalized root-mean-square error between brightfield images over all pixels.

A common technique for estimating drift post experiment is by using multiple localizations from the same source that are
interspersed throughout the data collection. The most common drift correction technique for super-resolution images using
point localization data has been image cross-correlation, in particular, a fast implementation using fast Fourier transforms (FFTs)
known as phase correlation20–22. A variation of this technique involves auto-correlation at time zero and cross-correlation
subsequently3. McGorty et al.23 used cross-correlation for 3D drift estimation.

Two additional extensions involve sum images, in which the sum of a series of frames is used to more reliably indicate
localizations. In Wang et al.24, each frame is assumed to contain an incomplete description of an identical structure. Groups of
frames are combined into sum images. Redundant cross-correlation is then used, considering all possible combinations of the
sum images. The second procedure25 identifies the FFT cross-correlation maximum between a sequential pair of frames. The
estimated drift vector is applied to the later frame, which is then added to the sum image of the earlier shifted frames (or simply
earlier frame on the first iteration). The process then repeats with the earlier frame now being a sum image.

Two techniques directly employing point positions are using a Bayesian statistical framework to calculate the drift
corrections for every image frame26 or per emitter when grouping localizations27. A third technique involves maximizing
the molecular constraint field (MCF) cost function, where the MCF is a function of the distances between the points in two
images5. The MCF cost function, defined as the sum of the negative exponentials of the distances between all points in a fixed
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reference image with respect to all points in a shifted movable image, takes into account the sparseness of points around each
position, and produces near zero contribution when the distances become large. Typical usage involves combining collections
of sequential frames into datasets (i.e., sum images) to which the MCF is applied incrementally while combining previously
drift corrected results with the reference image.

Here, we propose a combination of brightfield registration performed during an experiment before each collection of
super-resolution frames forming a dataset, followed by a post procedure that uses the nearest neighbor distances of the
localizations found to perform drift correction. All software described was written in MATLAB.

Algorithm

Brightfield registration
For brightfield registration, we establish a protocol in which super-resolution imaging is performed for a sequence of movie
frames, which we term a dataset. A z-stack of brightfield reference images is obtained before data collection begins. Before
each dataset is collected, a new brightfield z-stack is obtained and compared with the previous reference z-stack, finding the best
z and (x,y) fits via a scaled cross-correlation, allowing the reference z-stack and the current z-stack to be aligned. The procedure
then repeats with the next dataset. See Fig. 1(a). A complete data collection for one sample typically includes 10–50 datasets.

For a single dataset, registration between the reference z-stack, ref, and the new brightfield z-stack, new, proceeds as follows.
Images in each of the two stacks are individually scaled by the sum of their pixel values:

stackk←
stackk

∑i, j stacki, j,k
,

where stackk denotes a single image taken from either ref or new and stacki, j,k denotes a single pixel in stackk. This process
is done for every image in both ref and new. Scaling each image in this manner reduces biases in the z location of the
cross-correlation maximum that may occur due to differing intensities of images taken at different z positions. The two stacks
are then individually whitened:

stack← stack−mean(stack)√
max(stack? stack)

=
stack−mean(stack)
stdev(stack)

√
N−1

,

where ? denotes cross-correlation, N is the total number of pixels in the z-stack, and mean/stdev(stack) is the mean or standard
deviation of pixel values across the entire z-stack. The whitening procedure will both reduce biases in the location of the
cross-correlation maximum (i.e., for image stacks with a non-zero mean pixel value, the cross-correlation maximum is biased to
correspond to small offsets between the stacks relative to the size of the stacks) and will scale the stacks such that pixel values in
the final cross-correlation stack will range from -1 to 1. A scaled 3D cross-correlation between ref and new is then computed as

(ref?new)scaled = ref?new
max(ones?ones)

ones?ones
= F−1[F (ref)F (new)]

max(F−1[F (ones)F (ones)])

F−1[F (ones)F (ones)]
,

where F (· · ·) indicates the complex conjugate of a fast Fourier transform (denoted by F ) and ones denotes a stack of 1’s the
same size as the stacks ref and new. Each pixel in ones?ones will contain a count of the total number of overlapping pixels
between ref and new that were used to compute each pixel in ref?new. The element-wise scaling of ref?new by ones?ones
will reduce the bias in the location of the cross-correlation maximum introduced by the differing number of overlapping pixels
used to compute each pixel in ref?new. The drift is then independently computed for each of x, y and z by fitting second-order
polynomials to the cross-correlation values along lines of pixels in the dimension being fit which intersect the maximum
cross-correlation pixel in the 3D volume.

Post-processing drift correction
Once all the datasets are collected, the post-processing drift correction procedure is applied to the data. This procedure divides
the problem into intra-dataset and inter-dataset drift correction, both minimizing a cost function that is simply the thresholded
sum of the nearest neighbor distances for all the predicted emitter positions in a dataset, either with respect to itself for
intra-dataset drift correction (noting that different sets of localizations over time are coming from the blinking fluorophores), or
the first dataset for inter-dataset drift correction. Intra-dataset drift correction is performed first, with the results saved for the
next phase. For inter-dataset drift correction, the datasets are drift corrected in sequence against the first dataset. Note that the
inter-dataset drift correction is really a dataset registration process. Figure 1(b,c,d) illustrates the basic concepts of these two
procedures.
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Figure 1. Concept of (a) brightfield registration and examples of (b,c) intra-dataset and (d) inter-dataset post-processing drift
correction scenarios. (b,c) The red lines represent the true drift curves for two emitters (red circles) at different time points. The
black dots are the nearby emitters’ observed localizations, which are projected by a particular model into the x− y plane via the
dashed lines. (b) models no drift, while (c) models quadratic drift. The isolated dashed lines demonstrate the model used. The
black circles represent the intra-dataset nearest neighbor distance threshold around instances of the x− y projected localizations.
(d) The blue dots represent dataset 1 localizations. The hollow red squares are dataset 2 localizations. The red dots are
predictions from a drift model where the dataset 2 localizations are assumed to have undergone a lateral shift and now their
original locations in dataset 1 are estimated from the drift model. Note that the corrected positions are offset from the dataset 2
localizations by the constant vector expressed by the arrow on the right. The ringed symbols on the right side of the plot
represent emitters that are on in only one dataset (which one indicated by their color). The dotted gray lines connect the nearest
dataset 1 neighbor of each drift model corrected position. The dashed circles represent the inter-dataset nearest neighbor
threshold around the drift model corrected positions. Note that the nearest neighbor of the drift model corrected position of the
upper right highlighted dataset 2 localization exceeds the threshold.
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k-nearest neighbor search
The core of these processes involves k-nearest neighbor searches in which the image is partitioned by a data structure called a
k-d or k-dimensional tree. Each step in the k-d algorithm splits a region of the image space by a hyperplane, dividing the points
into one of two half-spaces. The regions are formed by earlier splits. k-d trees are typically constructed by cycling through the
dimensions (x then y then x then . . . in 2D) as regions are split further and further, and choosing a median splitting plane that
evenly divides the points between the two half-spaces. In this situation, the k-d tree is considered balanced. Nearest neighbor
distances are quickly computed once a k-d data structure is produced. MATLAB implements balanced k-d trees for nearest
neighbor searches28.

Inter-dataset drift correction
To understand what is happening in more detail, consider Fig. 1(d), depicting the situation for inter-dataset drift correction
(in 2D), which is easiest to explain first. The emitters in dataset 1 are assumed to undergo a lateral shift, that may occur
between datasets because of small residual errors in the brightfield registration process, in the transition to dataset 2. Brightfield
registration is performed in the interval, and it is assumed that the intra-dataset drifts have been removed during application of
the first part of the post-processing drift correction algorithm. What is left then is simply a constant offset between dataset 1
and dataset 2 due to residual errors from the brightfield registration, actual sample drift during the typically short time interval,
and other errors due to the dynamic behavior of the system. For each localization in dataset 1, the nearest neighbor in dataset 2
of the predicted location of the localization under assumptions of a lateral shift can be determined. For the sake of efficiency
(see Methods; Post-processing drift correction), the model we actually use is the predicted location of dataset 2 localizations
when unshifted to dataset 1. A sum of all the thresholded nearest neighbor distances (indicated by the connecting dotted
lines) between the model (derived from dataset 2 and an assumed lateral shift) and the actual dataset 1 localizations is then
constructed, which will become the cost function for an optimization routine. The minimum value of this sum, corresponding
to the best correspondence between the model predictions and dataset 1 is searched for by the optimizer, yielding a model of
lateral x- and y-shifts (and z-shifts in 3D) between these two datasets. The process then repeats using dataset 1 and dataset 3,
etc.

Intra-dataset drift correction
The intra-dataset algorithm, depicted in Fig. 1(b,c), is similar in many ways to the inter-dataset procedure. Here, the localizations,
instances of true emitters, in all the frames in a single dataset are related. The drift model now assumes a polynomial dependence
on time, so given the model parameters, each localization in the entire dataset is projected to t = 0 using the motion model. The
constant in the polynomial fit is set to zero in order to match the model with the initial locations in the dataset. The first figure
shows the situation in the case of no drift model, while the second provides an example using a quadratic time model. Once
again, the nearest neighbor of each shifted localization in the entire dataset is determined, but this time with respect to the same
model dataset (here, nearest neighbor means a different localization than the original one). Thus, minimizing the sum of the
thresholded nearest neighbor distances minimizes the dispersion of the localizations throughout the dataset. In other words, we
are trying to get the localizations to move as a group between frames and not spread out as would typically happen for poor
drift models. This then carries over to the true emitters.

Thresholding and initial guesses for the optimizer
The threshold for the nearest neighbor sums is chosen to de-emphasize nearest neighbors not likely to have been generated by
the same emitter > lintra (= 1 pixel) away in the intra-dataset analysis, and > linter (= 2 pixels) away in the inter-dataset portion
of the algorithm. Mathematically, if di is the nearest neighbor distance to the estimated localization i, the thresholded nearest
neighbor sum is then

sumNND = ∑
i

min(di, l) = ∑
i

{
di if di ≤ l
l if di > l (1)

where l = lintra or linter is the threshold. For intra-dataset movement, fluorophores are constantly blinking on and off and are
also sparsely represented, so this threshold tries to prevent bad neighbor pairings with false large contributions to the nearest
neighbor sum. For example, when the nearest neighbor of a fluorophore blinks off in one frame of a dataset, this can result in a
totally different and potentially distant nearest neighbor for the same fluorophore in the next frame. If distant, this can produce
a huge contribution to the nearest neighbor sum if no threshold was present. In the inter-dataset drift procedure, this is less
of a problem because the data is much denser, however, a threshold can be important for sparse datasets (see Supplementary
Fig. S4). See also Fig. 1(d) for an example of a threshold coming into play when an emitter only present in dataset 2 (red
ringed square) has a predicted dataset 1 position that is far away from any actual dataset 1 localizations. For intra-dataset
drift correction, an initial guess of zero for all coordinates is used for the optimizer; for inter-dataset drift correction, an initial
guess based on the accumulation of the drift of those datasets that have been corrected in previous iterations is used (or zero if
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without brightfield registration with brightfield registration

a b c d

Figure 2. The effect of performing only brightfield registration. (No post-processing drift correction was employed here). (a)
Alpha tubulin in HeLa cells imaged without employing brightfield registration between datasets. (c) The same cell imaged with
brightfield registration performed before the acquisition of each dataset. 6 datasets containing 2,000 frames apiece were
collected. (b,d) Zoomed in view of the selected region in the image to the left. All scale bars measure 1 µm.

brightfield registration has been employed between datasets). The polynomial fits for drift correction are a function of frame (or
dataset) number; in other words, time. By default, we use a linear fit intra-dataset and a constant fit inter-dataset, but these can
be easily changed if desired.

This procedure runs in both 2D and 3D. See the Methods for additional details.

Results
The drift correction procedure consists of two phases: brightfield registration before the acquisition of each dataset, and a
post-processing drift correction algorithm (driftCorrectKNN).

Application to 2D imaging
Figure 2 shows an example of the effects of not performing versus performing brightfield registration for alpha tubulin in
HeLa cells using 2,000 frame datasets. Only brightfield registration took place; the post-processing drift correction algorithm
was not applied here. In general, brightfield registration is not this dramatic, but for our day-to-day usage, frequently our
post-processing drift correction algorithm has little work to do because the brightfield registration works so well.

Figure 3 shows the results of applying our post-processing drift correction algorithm to two different 2D examples, one
involving nanorods labeled via DNA-PAINT in which brightfield registration was not used, and the other consisting of actin
microfilaments in HeLa cells labeled with fluorescent particles which did use registration. The first image in each sequence
is the raw result from localization identification to which frame connection has been applied to consolidate emitters (see
Supplementary Methods). The second image is the result of applying the drift correction algorithm. In each example, a
small selected area of the entire region of interest (ROI) is also displayed. In the two examples, the drift correction algorithm
considerably sharpens the observed details.

The estimated drift plots for the above examples are displayed in Supplementary Fig. S1. The computed drift for each
dataset taken for a super-resolution image is plotted with a tapering line segment indicating increasing frame number (so
increasing time), while all the frames in the entire image are color coded from blue to red, again indicating the direction of
increasing time. The DNA nanorods example did not employ brightfield registration, while the actin example did, therefore, the
inter-dataset fitting optimization for each dataset was initialized with either the computed drift correction determined for the
last frame in the previous dataset or zero, respectively. These initializations mimicked the drift correction results. The plot
for the DNA nanorods example shows a connected series of drift corrections, while the actin example shows drift corrections
initially scattered about (0, 0), then slowly increasing in x over time.

The improvements in average resolution can be quantified using a measure based on Fourier ring correlation (FRC)29.
Supplementary Figure S2 shows the results of applying Q-corrected FRC (which removes spurious correlations) to the two
example datasets where the resolution is defined as the inverse of the spatial frequency when the FRC drops below the black
line representing the 1

7 threshold. See Methods for more details. Drift correction improved the resolution of the the DNA
nanorods example (over the entire ROI) with respect to the uncorrected result from 97.2 nm to 28.7 nm, while for the actin
example, the resolution improved from 72.5 nm to 60.9 nm.

In Supplementary Fig. S3, we plot cost function landscapes explored by the optimizer for the two 2D examples presented in
Fig. 3. The cost functions for the default fits, linear with zero constant term intra-dataset or constant separation inter-dataset,
depend on only one x and one y parameter, and so can be plotted as 3D surfaces as a function of these parameters. The two 2D
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Figure 3. 2D drift correction for examples of DNA-PAINT and reversibly binding Lifeact localizations. (a,b) 80 nm nanorods
with spots 40 nm apart produced by DNA-PAINT. (e,f) Zoomed in view of the selected region in the previous images. (c,d)
Actin microfilaments in HeLa cells. (g,h) Zoomed in view of the selected region in the previous images. (a,c,e,g) Pre-drift
corrected (pre-DC) image. (b,d,f,h) Drift corrected (DC) image. All scale bars measure 1 µm.

examples are displayed in separate rows, exhibiting the initial intra- and inter-dataset landscapes. In all cases, the cost function
landscape is funnel shaped with a broad plateau at the top. For the intra-dataset figures, the tip of the funnel is sharp and very
near (0, 0), while for the inter-dataset figures, the funneling behavior is more gradual and broad. These landscapes imply that
the initial guess should not be too far from the coordinates of the funnel’s bottom, but if it is anywhere close, the funnel will
lead the optimizer to the global minimum very quickly.

Dependence on labeling density and blinking statistics
To better understand the behavior of our drift correction algorithm, we evaluated the performance of estimating artificial drift
under varying numbers of particles per dataset. Supplementary Figure S4 shows the results for two studies, one involving
randomly generated emitters confined to a 2D star-shaped domain, and the second involving a uniform distribution of random
emitters over the entire 2D ROI. The mean drift computed by the algorithm matches within 0.1 (0.05) nm/frame the actual
lateral shift imposed upon the emitters in the two scenarios down to about 102 (103) emitters per dataset for star (uniformly)
distributed data. The variability of the results, however, broadens dramatically for sparser and sparser datasets around these
values. Supplementary Figure S5 provides a set of typical examples for the 2D star shaped domain undergoing artificial drift
and then being corrected for a subset of the particle numbers per dataset displayed in Supplementary Fig. S4. The last row in
this figure shows the corresponding estimated drift plots for this data as described earlier.

The intra-dataset drift correction procedure depends on nearest neighbor pairings of “on” fluorophores that lie within a
distance threshold. We performed a series of simulations for various emitter properties on single 1,000-frame datasets of uniform
randomly distributed sets of 2D emitters over a fixed size region in which only intra-dataset drift correction occurs, applying a
constant drift per frame. The first two graphs in Supplementary Figure S6 plot the root-mean-square error (RMSE) between
the true and the estimated drift curves against the number of blinking event pairs in the dataset, NpNe, where < Np >= λ 2/2
(see Methods) is the expected number of pairs of blinking events per emitter, λ is the expected number of blinking events
per emitter, and Ne is the number of emitters in the dataset, all calculated from the simulated data. The first simulation series
holds Ne fixed with λ increasing, while the second holds λ fixed with Ne increasing. As the number of pairs of blinking
events increases in either situation to 102–103, the RMSE drops precipitously to about 1 nm. See also Supplemental Methods;
RMSE analysis for additional details.

Plotting the theoretical product (see Methods; Fluorophore pairings for intra-dataset drift correction) of < Np > Ne
over a range of λ and Ne produces a three-dimensional surface (Supplementary Fig. S6), which can also be displayed as a
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contour plot with contours of constant < Np > Ne. This coupling of the plots in Supplementary Fig. S6 constrain the values of
λ and Ne for producing a desired RMSE under this particular intra-dataset model.

In Supplementary Fig. S6, the simulations considered a linear model for the drift and applied a linear polynomial fit for
the correction estimation procedure. In Supplementary Fig. S7, the results for other studies are shown. A linear drift was
approximated, using about 103–104 pairs for 1 nm accuracy, by a quadratic fit (but was about 5× slower than the case for a
linear fit), a quadratic drift was approximated by a quadratic fit also using approximately 103–104 pairs for nanometer accuracy,
and a quadratic drift was less well approximated by a linear fit, achieving asymptotic 3–5 nanometer accuracy starting at
102–103 pairs.

3D simulations
A more complex example is provided in Fig. 4. Here, two 3D rings of diameter 40 nm containing localizations are separated by
80 nm. A simulated astigmatism point spread function (PSF) was used to generate the localizations. Smooth, slowly oscillating
drifts are applied in the x, y and z directions for 50,000 frames, maximally varying approximately 200 nm over about 12,500
frames. The simulated data is broken up into 100 datasets of 500 frames apiece. Applying the post-processing drift correction
algorithm to the drifted data reproduces the rings with some slight scatter in the z-direction (see Fig. 4(a,b,c)). The computed
drift curves almost perfectly overlap the simulated drift. Figure 4(j,k) show, respectively, the differences between the computed
and simulated drift curves, and the overlapped y-drift curve. The greatest differences tend to occur around steep changes in the
derivative of the drift curve. A second study in which 10 ring pairs were centered at different x,y,z-locations was performed
using the same drift curves. The results are nearly identical to those for the single ring pair (see Fig. 4(d,e,f,l)), even for a
zoomed-in set (Fig. 4(g,i)). The estimated drift plot, Fig. 4(h), is comparable in shape to the drifted dataset from the first study,
Fig. 4(b).

The results with the above 3D localizations were quite good. However, we decided to perform a pair of studies with noisier
simulated data, in which the localizations were fit and thresholded (see Methods) after applying drift to them in order to
mimic more realistic results. The first set of localizations were generated as a pair of 80 nm separated rings using a simulated
astigmatism PSF and the same drift curves as before. The results are shown in Supplementary Fig. S8(a,b,c,g,h). The data is
much more scattered, but ring separation is still clear. However, if we used an experimental PSF for simulation and fitting
(Methods), 80 nm separation was not sufficient to distinguish the rings, so the results shown in Supplementary Fig. S8(d,e,f,i)
are for a pair of rings separated by 120 nm. The differences in computed versus simulated drift curves are also larger for the
imperfect data, especially when using the experimental PSF (Supplementary Fig. S8(g,i)).

Breaking up datasets
Finally, sometimes it is beneficial to reorganize the acquired datasets when no brightfield registration has occurred. Supple-
mentary Figure S9 shows an example of ATTO655 20 nm nanorulers in which the post-processing drift correction procedure
was applied with varying dataset organizations. Here, 15,000 frames in a single dataset provided only one opportunity for the
intra-dataset and no opportunities for the inter-dataset portions of the drift correction algorithm to be applied, so the results were
very smeared out like the raw super-resolution image, while 100 frames per dataset provided too few localizations per dataset
for clean sum images to be used by the algorithm. 1,000 frames per dataset produced the sharpest results. We find 500–1,000
frames per dataset to be a good choice for typical drift correction on single molecule localization microscopy (SMLM) data.

Discussion
To correct super-resolution drift, we propose a combination of brightfield registration performed after each dataset acquired,
and a post-processing algorithm based on nearest neighbor distances, combining intra-dataset and inter-dataset processing. No
extra hardware is required. This methodology can produce a significant improvement in sharpness as indicated by FRC results
for real data, while theoretical results and simulations show under what fluorophore conditions nanometer accuracy can be
achieved. The procedure works in both 2D and 3D, the brightfield registration severely curtailing the inter-dataset drift and the
post-processing algorithm then correcting for whatever drift remains.

Our post-processing drift-correction algorithm works for images produced by common super-resolution methods such as
dSTORM and DNA-PAINT in which fluorescent labels blink or dye-labeled DNA strands bind/unbind repeatedly. In this
situation, the nearest neighbors provide a cheap and fast way to produce image feature pairings that remain roughly stable over
a number of frames. Note that a continuous underlying structure is not required, as the algorithm also works for isolated and
randomly distributed fluorophores. However, this idea will not work with single activated probes such as in photo-activated
localization microscopy (PALM)11. Minimizing the thresholded sum of the nearest neighbor distances keeps the localizations,
and thus the emitters, cohesively moving together over time. A bad model would let these distances spread out and the emitters
drift apart contrary to the assumptions of the model.
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Figure 4. 3D drift correction applied to simulated 40 nm diameter rings separated by 80 nm. Simulated PSFs and drift curves
were used. 50,000 frames were generated, divided into 100 datasets of 500 frames each. (a) True image of the original random
emitters confined to the two rings. (b) Drifted image. The emitters are color-coded by frame number. (c) The drift-corrected
image produced by driftCorrectKNN using default settings. (d,e,f) True, drifted and drift-corrected images in which multiple
(10) pairs of rings centered at different x,y,z-positions were simulated. (g,i) Zoomed-in true and drift-corrected ring pair
(lowest one shown in (d,f)). (h) Corresponding estimated drift plot for the multiple ring pair example. (j,l) The differences
between the estimated and simulated x,y,z-drifts as a function of the absolute frame number for (j) the single pair of rings
example, (l) the multiple ring pair example. (k) Estimated versus simulated y-drift for the single pair of rings example.
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The intra-dataset algorithm estimates drift as a function of frame number, while the inter-dataset algorithm computes lateral
shifts between datasets. Increasing the number of blinking events in the intra-dataset algorithm provides more true pairs to
constrain the drift model.

The intra-dataset threshold on nearest neighbor distances minimizes the effect of false fluorophore pairing. A threshold
is less important for inter-dataset fitting as the sum of all the emitters in entire datasets rather than the sparse representation
present in individual frames are considered when computing nearest neighbor distances, however, it can be important for sparse
datasets. Employing thresholds is in contrast to cross-correlation techniques where contributions from different emitters are not
restricted, so that image overlap at a pixel may be due to a combination of near and far away emitters. The nearest neighbor
thresholds restrict contributions to local entities. Note that Eq. 1 is reminiscent of the MCF function5, but with a simpler
structure and thresholding present, so significantly faster computationally. The threshold paradigm allows up to nanometer
accuracy (for the intra-dataset portion of the algorithm) under practical conditions.

Methods
Sample preparation
HeLa cells (ATCC) were cultured as described in detail previously30. All labeling and washing steps were carried out at room
temperature. Cells were seeded onto 25 mm glass (#1.5) coverslips in 6 well chambers (LabTek) to adhere for 24 h. For alpha
tubulin, we used PBS as a buffer, while a PEM buffer (80 mM PIPES + 5 mM EGTA + 2 mM MgCl2, at pH 7.2) was used for
actin filaments. The first fixation step was in 0.6% paraformaldehyde + 0.1% glutaraldehyde + 0.25% Triton diluted in buffer
for 60 seconds, followed by a hard fixative buffer including 4% paraformaldehyde + 0.2% glutaraldehyde diluted in buffer for
an hour. Cells were washed 2x in PBS and kept in NaBH4 for 10 min to quench the autofluorescence within the cells resulting
from glutaraldehyde in the fixation buffer, followed by a 2x wash with PBS. To quench reactive crosslinkers, the samples were
kept in 10 mM Tris for 10 min, followed by 2 washes with PBS. Finally, samples were blocked in 5% BSA + 0.05% Triton
X-100 for 15 min. At the end, samples were washed 1x with PBS.

For alpha tubulin, fixed cells were immunolabeled using Alexa Fluor 647 conjugated primary antibody (Novus Biologicals,
CO) at 10 µg/mL for 1hr, followed by washes using PBS. For actin filaments in HeLa cells, the sample was imaged while it
was labeled by Lifeact + Atto 655 with 0.1% BSA to minimize non-specific intracellular binding of the Lifeact + Atto 655. The
labeling and imaging buffer was 3 nM of Lifeact + Atto 655 in 50 mM Tris, 10 mM NaCl, 10% (w/v) Glucose (TNG) at pH 8.
GATTA-PAINT nanoruler slide sample (40R, GATTAquant DNA Technologies) was used as purchased.

Imaging
For alpha tubulin in HeLa cells and the DNA-PAINT nanorods sample, imaging was done on a custom-built inverted wide
field fluorescence microscope setup as described previously30. Fluorescence excitation of the sample was done using 642
nm laser diode (Thorlabs, HL6366DG). The laser beam was collimated and passed through a single mode fiber (Thorlabs,
P1-488PM-FC-2) before being focused on the back focal plane of a 1.45 NA oil objective (UAPON 150XOTIRF, Olympus
America Inc.). TIRF excitation of the sample was achieved by translating the laser close to the edge of the objective back
aperture. Fluorescence emission collected from the sample was passed through a quad band dichroic/emission filter set
(Semrock, LF405/488/561/635-A) and a bandpass filter (Semrock, FF01-446/523/600/677-25) before being detected using
an electron-multiplying charge-coupled device (EM CCD) camera (Andor Technologies, iXon 897). Data collection and
instrument control on the microscopes here and below was controlled by custom-written MATLAB software31.

For dSTORM imaging of alpha tubulin in HeLa cells, an xyz piezo stage (Mad City Labs, Nano-LPS100) mounted on an
x-y manual stage was installed on the microscope for cell locating and brightfield registration. To mount the prepared samples
on 25 mm coverslips, an Attofluor cell chamber (Life Technologies, A-7816) was used and a clean 25 mm coverslip was used
to seal the samples. A trans-illumination halogen lamp equipped with the microscope was used for collecting the brightfield
images. The samples were stored at 4◦C and then transferred to the microscope just before starting imaging at room temperature.
This natural heating up of the sample to room temperature was used to create the sample drift, which was observed in the
images. A total of 50,000 256×256 pixel frames were collected using 100 ms exposure time for the GATTA-PAINT nanoruler
super-resolution imaging. For alpha tubulin in HeLa cells, 25,000 frames (256×256 pixels) were recorded in each imaging
experiment using 10 ms camera exposure time.

For actin filaments in HeLa cells, the imaging system was built on an inverted microscope (Olympus). An xyz piezo stage
(Mad City Labs, Nano-LPS100) mounted on a x-y manual stage was installed on the microscope for cell locating and brightfield
registration. A mounted LED with wavelength 850 nm (M850L3, Thorlabs) was used for brightfield illumination. Brightfield
images were collected on a complementary metal-oxide semiconductor (CMOS) camera (Thorlabs, DCC1545M) after reflection
by a short-pass dichroic beam splitter (Semrock, FF750-SDi02) and passing through a single-band bandpass filter (Semrock,
FF01-835/70-25). A 638 nm laser was used (collimated from a laser diode, Thorlabs, L638P200) coupled into a single mode
fiber and focused onto the back focal plane of the 1.49 NA objective lens (Olympus UAPON 100XOTIRF). Emission for
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super-resolution data was collected through a short-pass dichroic beam splitter (Semrock, FF750-SDi02) and a single-band
bandpass filter (Semrock, FF624-Di01) on an iXon 860 EM CCD camera (Andor Technologies, iXon DU-860E-CS0#BV).

Imaging was performed in TNG buffer mixed with Lifeact conjugated with dye. The blinking events for single molecule
localization were due to the binding/unbinding of Lifeact to the actin filaments32, 33. We used the same 25 mm coverslip
chamber as above to mount the samples on the microscope. Imaging was performed with TIRF illumination to reduce the
background noise due to diffusing dyes in the imaging buffer, and images were acquired at 20 ms exposure time. Brightfield
registration was performed to correct for drift after every 3,000 frames as mentioned in Methods; Brightfield registration.

Super-resolution fitting
We used a difference of Gaussians filter to reduce noise and enhance the signal from single emitters to enable identification
of local maxima. Pixel coordinates with local intensity maxima were selected and used as centers of fitting regions of size
16×16 pixels. A given numerical PSF was used in the GPU 3D fitting algorithm to localize emitters. The algorithm fit the
single emitters using maximum likelihood estimation (MLE) and assuming a Poisson noise model34, 35. The algorithm finds
the MLE employing the Newton-Raphson approach to iteratively update parameters, including x, y, z-locations, intensity and
background. The resulting localizations were filtered by thresholding the intensity, background, p-value and Cramer-Rao lower
bound of the estimations.

Brightfield registration
A camera, a stage, and a lamp are the hardware required to perform brightfield registration. At the beginning of the experiment,
a brightfield reference z-stack is produced after turning the lamp on (the lamp is normally turned off during the collection of
movie frames to not interfere with the fluorescent particle emissions). A dataset is then collected, after which a brightfield
image z-stack is produced to be compared with the reference z-stack, again turning the lamp on during its production. The
z-stack in our setup consists of 2D images taken at an odd number (typically 21) of different z positions reachable by the stage.
Aligning the current z-stack with the reference z-stack, an (x,y,z) drift is computed for it, which will then be corrected before
the next super-resolution dataset is imaged. The process then repeats until the found shifts in x, y and z are all less than a
selected tolerance (typically chosen to be between 5–50 nm, depending on the minimum step size of the stage). The brightfield
registration procedure typically takes < 30 seconds per super-resolution dataset collected.

The software used to perform brightfield registration is included in the Supplementary Software.

Post-processing drift correction (driftCorrectKNN)
driftCorrectKNN operates by taking (x,y) or (x,y,z) coordinates from a sequential series of image frames of super-resolution
observations collected together in datasets and computes the drift correction over the frames.

The intra-dataset drift correction is computed by optimizing a polynomial fit as a function of frame number (so really time)
using Eq. 1 with l replaced by lintra = 1 pixel. In practice, a linear polynomial fit was sufficient to get an accuracy of 0.0001
pixel/frame (∼0.01 nm/frame) for the drift rate. Finding more than one nearest neighbor did not noticeably improve the results.

The inter-dataset drift correction is computed by optimizing a constant fit to the positions of all localizations in each dataset
relative to corresponding drift-corrected positions computed for the initial dataset in the intra-dataset analysis. Eq. 1 with l
replaced by linter = 2 pixels applies once again in computing the sum. This is done rather than considering the nearest neighbor
distances between the predicted positions in the current dataset (derived from the initial dataset and the modeled drifts) and
the actual positions. The two points of view are very similar, however, the former requires only one k-d decomposition (of
the initial dataset), while the latter viewpoint requires a k-d decomposition of every dataset but the first, so is much more
computationally demanding. If no other phenomena but drift is happening and the drift model is accurate, this nearest neighbor
sum should be zero.

The values chosen for lintra (1 pixel) and linter (2 pixels) were the result of a parameter study involving drift correction on
the images and simulations presented in this paper. We found it necessary to make linter > lintra, and the values chosen seemed
to give reasonable overall performance.

The choice of using zero or the ending drift corrected value of the previous dataset, as derived from the intra-dataset and
previous inter-dataset drift corrections, to initialize the inter-dataset optimization depends on how the data was collected. If
brightfield registration was performed, then zero (correct for the first dataset, and the sum of accumulated drifts, so theoretically
zero, in subsequent datasets) is appropriate. If the datasets were not collected using registration, then the ending frame of
the previous dataset adjusted for accumulated drift is the better choice for initializing the inter-dataset optimization. The
intra/inter-dataset optimizations, which use the thresholded/simple nearest neighbor sums above as cost functions, search for
the global minimum of these costs using the MATLAB function fminsearch.

If each dataset in an experiment contains a large number of frames in which drift changes are significant and the datasets
have not been registered, breaking up the datasets into smaller chunks can sometimes help to produce better results. The user
can specify the total number of datasets or number of frames per dataset desired while calling driftCorrectKNN and the code
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will internally reorganize the datasets as specified, perform the drift correction calculation, and then reassemble the results back
into the original dataset scheme at the end (see, for example, Supplementary Figure S9).

driftCorrectKNN is implemented in MATLAB (see Supplemental Methods; Post-processing drift correction algorithm
for a MATLAB pseudocode description) and is included in the Supplementary Software.

Fluorophore pairings for intra-dataset drift correction
The intra-dataset drift correction algorithm computes the sum of nearest neighbor distances (within a threshold) produced by
the pairings of nearby “on” fluorophores over an entire dataset. The sum of these distances is the cost function, which when
minimized, produces an estimate of the drift as a function of the frame number. To understand this pairing phenomenon in
more detail, consider for a dataset how one might compute the expected number of pairs of blinking events per emitter, < Np >,
given the number of expected blinking events per emitter, λ , which, for example, can be directly computed in simulations. We
examined simulations exhibiting a uniform distribution (see Methods; Simulations), where single datasets of 1,000 frames
were used, so that only intra-dataset drift correction was performed. The number of blinking events post-frame connection was
computed for the various emitter densities averaged over N = 100 runs.

Let P(k;λ ) be the probability of exactly k blinking events (k ≥ 0) per emitter occurring given an expected value of λ

blinking events per emitter. This quantity can be represented by the Poisson distribution P(k;λ ) = λ ke−λ/k!. The number of
blinking event pairs per emitter, Np(k), given k blinking events, is simply the number of ways of choosing two blinking events

from a total of k available, Np(k) =
(

k
2

)
. Therefore, the total number of pairs of blinking events per emitter expected in the

dataset is
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∞
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Fourier ring correlation (FRC)
FRC29 is a measure of the average resolution over a super-resolution image. It works by dividing the set of single-emitter
localizations in the super-resolution image into two statistically independent subsets. The Fourier transforms of subimages
generated from each of these subsets are then statistically correlated over pixels on the perimeters of circles of constant spatial
frequency. The image resolution is defined as the inverse of the spatial frequency when the FRC curve drops below a threshold,
taken to be 1

7 in Nieuwenhuizen et al.29. See Supplementary Fig. S2. Spurious correlations (for example, due to repeated
photoactivation of the same emitter) are removed by estimating the number of times an emitter is localized on average (Q)
assuming Poisson statistics. All analyses were accomplished using the software developed by Nieuwenhuizen et al. found at
http://www.diplib.org/add-ons.

Simulations
2D simulations of simple artificial drift were performed for (noisy) emitters randomly distributed in a star-shaped domain and
over the entire 6400×6400 nm2 ROI. Localization uncertainties around the true emitter locations varied by up to ±10 nm.
Seven different initial fluorophore densities were specified ([10, 5, 2, 1, 0.5, 0.25, 0.125] ·10−4fluorophore/nm2) from which
the number of emitters per dataset were computed. A constant drift of ∆x = 0.3 and ∆y = 0.4 nm/frame was imposed upon each
emitter, after which driftCorrectKNN was applied to the drifted results. N = 100 simulations per condition were performed and
the mean resulting drift calculated was compared to the true drift. The standard deviations of the results were also computed.

To produce the RMSE vs. fluorophore pairings plot (Supplementary Fig. S6(a)), we performed simulations in which emitters
were randomly distributed uniformly over a 25,600×25,600 nm2 ROI using single 1,000 frame datasets, allowing for only
intra-dataset drift correction. The following two series were run for linear and quadratic drifts. The first varied λ , the number
(via a Poisson distribution) of expected blinking events per emitter per dataset over the range 0.01–10 while fixing the number
of emitters, Ne, to 105. The second series varied Ne over 103–106 while setting λ = 0.2. True cumulative drifts were defined by
α f +β f 2, where f is the frame number. Linear drifts were αx = 0.05 nm/frame and αy = 0.02 nm/frame, while quadratic
drifts had the above linear terms as well as quadratic terms βx = 10 nm/frame2, βy =−20 nm/frame2. driftCorrectKNN was
run with the appropriate intra-dataset polynomial order. The results were averaged over N = 100 runs.

A second series of simulations involved constructing more realistic artificial drift curves, and in general mimicking real, 3D
experimental conditions. Simulated drift curves for x, y and z, designed to resemble realistic drift curves, were produced by
generating a set of approximately 35 nodes over 50,000 frames (the exact number of nodes selected from a Poisson distribution),
each node representing a point on a graph of drift component value (in units of nm) versus frame number. The intervals between
the nodes randomly varied in width with respect to an average of Nframes/(Nnodes +1). The drift curves were fit by passing a
cubic spline through the nodes in which the component values ranged approximately between -100 to +100 nm (-1 to +1 pixel).
See Fig. 4(k) for an example of one such drift curve, the y-component.
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In the first simulations, two 40 nm diameter rings separated in the z-direction by 80 nm were produced to mimic a DNA-
PAINT labeled nanorod in which the center and the two ends were visible under super-resolution. The 2D sample structure, a
ring in this case, was given as a binary image template, where the nonzero portion was filled with emitters of a uniform density
ρ = 1,000 fluorophores/pixel unit of length. A trace of blinking events for each emitter was then generated using the input duty
cycle parameters, Kon = 0.0005/frame and Koff = 1/frame, which are the rate of emitters turning from off to on and from on to
off. The random durations for the emitters to turn on and the on-durations were taken from exponential distributions with mean
values of, respectively, Kon and Koff. The density of the on-emitters was then given by

ρon ≈ ρ
Kon

Kon +Koff
.

The simulated structures were produced at specific z-positions, which allowed separated pairs of rings to be made. A second
set of simulations involved 10 pairs of 80 nm separated rings randomly distributed in (x,y) around the simulation region. A
theoretical astigmatism point spread function (PSF) was used for the 80 nm separated sets, while a spiral experimental PSF was
given as input for a third set of simulations in which a single pair of rings separated by 120 nm was studied. Localizations
in the third set of simulations were further fit and thresholded (see Methods; Super-resolution fitting for additional details).
For all simulations, an interpolated PSF was generated according to the z-position of the emitter and placed in (x,y, t) in the
absence of drift. Drift was added as discussed above. If an emitter was on for the entire exposure time of a frame, it was taken
to be at maximum intensity (12,000 photons), otherwise dimmer based on the fraction of the frame in which it was on. The data
was produced with a fixed offset background (1,000 photons) corrupted with Poisson noise.

Data availability
The DNA-PAINT 80 nm nanorods example is included in the Supplementary Software. All datasets analyzed during the current
study are available from the corresponding author on reasonable request.
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Figure Captions
Figure 1. Concept of (a) brightfield registration and examples of (b,c) intra-dataset and (d) inter-dataset post-processing drift
correction scenarios. (b,c) The red lines represent the true drift curves for two emitters (red circles) at different time points.
The black dots are the nearby emitters’ observed localizations, which are projected by a particular model into the x− y plane
via the dashed lines. (b) models no drift, while (c) models quadratic drift. The isolated dashed lines demonstrate the model
used. The black circles represent the intra-dataset nearest neighbor distance threshold around instances of the x− y projected
localizations. (d) The blue dots represent dataset 1 localizations. The hollow red squares are dataset 2 localizations. The red
dots are predictions from a drift model where the dataset 2 localizations are assumed to have undergone a lateral shift and now
their original locations in dataset 1 are estimated from the drift model. Note that the corrected positions are offset from the
dataset 2 localizations by the constant vector expressed by the arrow on the right. The ringed symbols on the right side of the
plot represent emitters that are on in only one dataset (which one indicated by their color). The dotted gray lines connect the
nearest dataset 1 neighbor of each drift model corrected position. The dashed circles represent the inter-dataset nearest neighbor
threshold around the drift model corrected positions. Note that the nearest neighbor of the drift model corrected position of the
upper right highlighted dataset 2 localization exceeds the threshold.

Figure 2. The effect of performing only brightfield registration. (No post-processing drift correction was employed here). (a)
Alpha tubulin in HeLa cells imaged without employing brightfield registration between datasets. (c) The same cell imaged
with brightfield registration performed before the acquisition of each dataset. 6 datasets containing 2,000 frames apiece were
collected. (b,d) Zoomed in view of the selected region in the image to the left. All scale bars measure 1 µm.

Figure 3. 2D drift correction for examples of DNA-PAINT and reversibly binding Lifeact localizations. (a,b) 80 nm nanorods
with spots 40 nm apart produced by DNA-PAINT. (e,f) Zoomed in view of the selected region in the previous images. (c,d)
Actin microfilaments in HeLa cells. (g,h) Zoomed in view of the selected region in the previous images. (a,c,e,g) Pre-Drift
corrected (pre-DC) image. (b,d,f,h) Drift corrected (DC) image. All scale bars measure 1 µm.

Figure 4. 3D drift correction applied to simulated 40 nm diameter rings separated by 80 nm. Simulated PSFs and drift curves
were used. 50,000 frames were generated, divided into 100 datasets of 500 frames each. (a) True image of the original random
emitters confined to the two rings. (b) Drifted image. The emitters are color-coded by frame number. (c) The drift-corrected
image produced by driftCorrectKNN using default settings. (d,e,f) True, drifted and drift-corrected images in which multiple
(10) pairs of rings centered at different x,y,z-positions were simulated. (g,i) Zoomed-in true and drift-corrected ring pair (lowest
one shown in (d,f)). (h) Corresponding estimated drift plot for the multiple ring pair example. (j,l) The differences between the
estimated and simulated x,y,z-drifts as a function of the absolute frame number for (j) the single pair of rings example, (l) the
multiple ring pair example. (k) Estimated versus simulated y-drift for the single pair of rings example.
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ABSTRACT

We describe a robust, fiducial-free method of drift correction for use in single molecule localization-based super-resolution
methods. The method combines periodic 3D registration of the sample using brightfield images with a fast post-processing
algorithm that corrects residual registration errors and drift between registration events. The method is robust to low numbers of
collected localizations, requires no specialized hardware, and provides stability and drift correction for an indefinite time period.
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Figure S1. 2D estimated drift plots. Each dataset is represented by a separate line segment. Frames are color coded from blue
to red to indicate the passage of time. Within each dataset, passage of time is also indicated by the segment width tapering from
large to small (like an arrowhead). (a) 80 nm nanorods with spots 40 nm apart produced by DNA-PAINT. The initial guess used
for the inter-dataset optimization procedure was the drift-corrected values from the last frame (2500) of each previous dataset.
(b) Actin microfilaments in HeLa cells. The initial guess used for the inter-dataset optimization procedure was zero.
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Figure S2. Fourier Ring Correlation plots. (a) 80 nm nanorods with spots 40 nm apart produced by DNA-PAINT. (b) Actin
microfilaments in HeLa cells. The blue lines represent raw (uncorrected) data, while the green lines are the results given data
drift corrected through the post-processing algorithm. The black horizontal line at FRC = 1

7 is the threshold that when crossed
by the FRC curve defines the spatial resolution of the image, as the inverse of the spatial frequency at the crossing point. For
(a), the estimated resolutions of the uncorrected data compared to the corrected results were 97.2±0.9 nm versus 28.7±0.1
nm, while for (b), these numbers were 72.5±1.4 nm and 60.9±0.6 nm, respectively.
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Figure S3. Cost function landscapes for driftCorrectKNN when fitting a linear polynomial with zero constant term to the
intra-dataset drift correction and a constant lateral shift to the inter-dataset drift correction. (a,b) Dataset of 80 nm nanorods
with spots 40 nm apart produced by DNA-PAINT. (c,d) Dataset of actin microfilaments in HeLa cells. (a,c) Intra-dataset
landscape for the first dataset. The (x,y) coordinates refer to the coefficients of the linear (and only) term in the polynomial fit
of the intra-dataset drift correction. sumNND (defined by Eq. 1) is the cost. (b,d) Inter-dataset landscape for the first dataset
processed (dataset 2 which is shifted relative to dataset 1). The (x,y) coordinates refer to the constant lateral x/y shifts of the
inter-dataset drift correction.
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Figure S4. Results of drift correction for true constant shifts applied to noisy random emitters occupying two differently
shaped domains as a function of the number of emitters per dataset. (a) 2D star-shaped domain. (b) 2D uniformly distributed
domain. 10 datasets of 100 frames each were generated per simulation. A drift of ∆x = 0.3 and ∆y = 0.4 nm/frame was then
applied. The solid black and blue lines are simulation means, while the dashed black and blue lines define one standard
deviation about the means. The results were averaged over N = 100 simulations for each condition.
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Figure S5. Actions of driftCorrectKNN on a drifted 2D star-shaped domain for various densities of (noisy) emitters per
dataset. (1st row) True images of the original random emitters confined to a star-shaped domain. 10 datasets of 100 frames each
were generated. (2nd row) Drifted images where a drift of ∆x = 0.3 and ∆y = 0.4 nm/frame was applied. (3rd row) The
drift-corrected images produced by driftCorrectKNN using default settings. (4th row) Estimated drift plots. The black dashed
lines depict the true drifts. All scale bars are 1 µm.
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Figure S6. Fluorophore pairings for intra-dataset drift correction. (a,b) RMSE (and x and y components) between the true and
the estimated drift curves plotted versus the number of pairs of blinking events, NpNe, for noisy 2D uniform randomly
distributed emitters with (a) λ increasing from 0.01–10 and fixed Ne = 105, (b) Ne increasing from 103–106 and fixed λ = 0.2.
The imposed drift was linear and the intra-dataset fitting was also linear. Results were averaged over N = 100 simulations. The
red dotted lines correspond to RMSE = 1 nm. (c) Theoretical 3D plot of < Np > Ne versus the number of expected blinking
events per emitter, λ , and the number of emitters, Ne, for a dataset. (d) 2D contour plot of the surface in which lines of constant
< Np > Ne are displayed.
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Figure S7. Fluorophore pairings for intra-dataset drift correction. RMSE (and x and y components) between the true and the
estimated drift curves plotted versus the number of pairs of blinking events, NpNe, for noisy 2D uniform randomly distributed
emitters with (a,c,e) λ increasing from 0.01–10 and fixed Ne = 105, (b,d,f) Ne increasing from 103–106 and fixed λ = 0.2. The
imposed drift was (a,b) linear / (c,d,e,f) quadratic, and the intra-dataset fitting was (c,d) linear / (a,b,e,f) quadratic. This is also
indicated by L/Q (linear imposed drift/quadratic intra-dataset fitting), etc. above. Results were averaged over N = 100
simulations. The red dotted lines correspond to RMSE = 1 nm.
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Figure S8. 3D drift correction applied to simulated 40 nm diameter rings separated by 80 nm (a,b,c,g,h) or 120 nm (d,e,f,i). A
simulated/experimental PSF for the 80 nm/120 nm separated rings was used, along with simulated drift curves in both cases.
50,000 frames were generated, divided into 100 datasets of 500 frames each. To make the simulation more realistic, the
simulated localizations were fit and thresholded after being drifted. (a,d) Drifted image. The emitters are color-coded by frame
number. (b,e) The drift-corrected image produced by driftCorrectKNN using default settings. (c,f) x,y perspective of the
drift-corrected image. (g,i) The difference between the estimated and simulated x,y,z-drifts as a function of the absolute frame
number for the (g/i) 80 nm/120 nm separated rings. (h) Corresponding drift correction plot for the 80 nm separation example.
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Figure S9. Example of internally reorganizing the datasets from an experiment examining ATTO655 20 nm nanorulers. The
data was initially collected in a single dataset consisting of 15,000 frames. (a) Raw super-resolution image. (b) Post-processing
drift correction was applied to one 15,000-frame dataset. (c) Post-processing drift correction was applied to 15 1,000-frame
datasets. (d) Post-processing drift correction was applied to 150 100-frame datasets. All scale bars measure 1 µm.
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Methods
Frame connection
A blinking event often produces localizations across a sequence of frames. These localizations can be recognized as a single
fluorophore and connected together to produce better precision. Frame connection takes the time-ordered localizations computed
from a super-resolution dataset and attempts to combine them via a single emitter model in which the maximum distance and
maximum frame gap between two localizations are specified (defaults are 1 pixel and 4 frames). The level of significance (LoS,
default is 0.01) represents the minimum probability for which the null hypothesis that the two localizations come from a single
emitter is not rejected. If the value computed for the probability is greater than the LoS and the other conditions hold, then the
two localizations are combined. This process examines all localizations that satisfy the distance and frame gap constraints.

If two localizations have positions and localization errors (x1,σ1) and (x2,σ2), then the combined position and error is
given by

x′ =

x1
σ2

1
+ x2

σ2
2

1
σ2

1
+ 1

σ2
2

and σ
′ =

√√√√ 1
1

σ2
1
+ 1

σ2
2

, therefore, logR =−1
2

[(
x1− x′

σ1

)2

+

(
x2− x′

σ2

)2
]

is the log-likelihood ratio (minus a constant term) that the two localizations represent a single emitter. The likelihood ratio is
given by R = L(D|θ ′)

L(D|D) , where the numerator is the likelihood L of the data D given the parameters θ ′ described above for the
single emitter model, and the denominator is the likelihood of D given D, or one. L comes from the product of two Gaussians:

L =

 1√
2πσ2

1

e
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2σ2
1

 1√
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2

e
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=
1

2πσ1σ2
e
− 1

2

[(
x1−x′

σ1

)2
+

(
x2−x′
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)2
]
.

The corresponding p-value (which is compared to the LoS) is

p-value = 1−χ
2
CDF(NDoF,−2logR) = 1− 1

Γ

(
NDoF

2

)γ

(
NDoF

2
,
−2logR

2

)
,

where NDoF is the number of degrees of freedom and hence the spatial dimension, Ndim, in the situation when two localizations
are combined into one (NDoF = Ndata

DoF−Nmodel
DoF ). Γ and γ are the gamma function and the lower incomplete gamma function,

respectively. For NDoF = 1,2,3,

χ
2
CDF(NDoF,x) =


erf
√ x

2 , NDoF = 1
1− e−

x
2 , NDoF = 2

erf
√ x

2 −
√

2
π

e−x/2√x, NDoF = 3

Note that in 2D (NDoF = 2), the p-value is exactly R.

Post-processing drift correction algorithm
MATLAB pseudocode drift correction algorithm operating on (x,y) or (x,y,z) localizations. The drift corrected coordinates, X ,
and the matrix of drift corrections indexed by dataset number and frame number, ∆X , are produced. Pdegree is the degree of the
polynomial fitting the intra-dataset drift correction. Note that the constant term is assumed to be zero. Nframes is the number of
frames per dataset. ∆Xi is the drift correction for each frame of the ith dataset. p•, jT j is the product of the jth column of p with
the vector T , in which each component is raised to the jth power. Xc are drift corrected coordinates.

11/12

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 27, 2021. ; https://doi.org/10.1101/2021.03.26.437196doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.26.437196


Establish problem dimensionality: Ndims = 2 or 3
Initialize optimization parameters
Default lintra = 1 pixel and linter = 2 pixels if not set above
Optionally reorganize dataset scheme
Let ∆X = 0 be an Ndatasets×Nframes matrix
If 3D, convert z units into pixels
Intra-Dataset Drift Correction:
for i = 1 to Ndatasets

Select dataset i coordinate localizations, Xi, and frame numbers, Fi
p0 = 0 where p0 is an Ndims×Pdegree matrix
p = fminsearch(@minD_intra, p0, Xi, Fi, lintra)
[∼,Xi] = minD_intra(p, Xi, Fi, lintra)
T = 1 : Nframes

∆Xi = ∑
Pdegree
j=1 p•, jT j

Inter-Dataset Drift Correction:
for i = 2 to Ndatasets

Either p0 = 0 when employing brightfield registration or
p0 = ∆Xi−1,Nframes otherwise

p = fminsearch(@minD_inter, p0, Xi, linter)
[∼,Xi] = minD_inter(p, Xi, linter)
∆Xi = ∆Xi−1 + p•,0

∆X =−∆X

[sumNND,Xc] = minD_intra(p, X , F , lintra):
Xc = X +∑

Pdegree
j=1 p•, jF j

D = nearest neighbor distances of all localizations Xc in the current dataset
sumNND = ∑D≤lintra

D+∑D>lintra
lintra = ∑min(D, lintra)

[sumNND,Xc] = minD_inter(p, X , linter):
Xc = X + p
D = nearest neighbor distances of all localizations in dataset 1 versus Xc

sumNND = ∑D≤linter
D+∑D>linter

linter = ∑min(D, linter)

RMSE analysis
The RMSE analysis, depicted in Supplementary Fig S6(a,b) and Supplementary Fig S7, plots the root-mean-square error
(RMSE) between the true drift curve, (Xi,Yi)

n
i=1, and the estimated drift curve, (xi,yi)

n
i=1, of simulated uniform randomly

distributed single datasets of 2D emitters, versus the number of blinking event pairs in the datasets. The RMSE was computed
by

RMSE =

√
∑

n
i=1(Xi− xi)2 +(Yi− yi)2

n
,

where a constant drift per frame was applied to the true locations to produce the drifted positions, which were then run through
the intra-dataset portion of the post-processing drift correction algorithm. This definition of the RMSE considers the difference
between the true drift curves at each time frame (as determined by the simulation) and the found (as determined by the
intra-dataset portion of the post-processing drift correction algorithm).
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