Dopaminergic regulation of vestibulo-cerebellar circuits through unipolar brush cells

Jose Ernesto Canton-Josh, Joanna Qin, Joseph Salvo, Yevgenia Kozorovitskiy*

Department of Neurobiology, Northwestern University, Evanston, IL 60208

*Corresponding author: Yevgenia.Kozorovitskiy@northwestern.edu
SUMMARY

While multiple monoamines modulate cerebellar output, the mechanistic details of dopaminergic signaling in the cerebellum remain poorly understood. Here we show that Drd1 dopamine receptors are expressed in unipolar brush cells (UBCs) of the cerebellar vermis. Drd1 activation increases UBC firing rate and postsynaptic NMDA receptor-mediated currents. Using anatomical tracing and *in situ* hybridization, we tested three hypotheses about the source of cerebellar dopamine. We exclude midbrain dopaminergic nuclei and tyrosine hydroxylase-positive Purkinje cells as potential sources, supporting the possibility of dopaminergic co-release from locus coeruleus (LC) axons. Using an optical dopamine sensor GRAB\textsubscript{DA}, electrical stimulation, and optogenetic activation of LC fibers in the acute slice, we find evidence for monoamine release onto Drd1-expressing UBCs. Altogether, we propose that the LC regulates cerebellar cortex activity by co-releasing dopamine onto UBCs to modulate their response to cerebellar inputs. Purkinje neurons directly inhibit these Drd1-positive UBCs, forming a dopamine-sensitive recurrent vestibulo-cerebellar circuit.
INTRODUCTION

Cerebellar activity plays a critical function in fine motor learning (Kalmbach et al., 2010; Raymond and Lisberger, 1998; Woodruff-pak, 1993). The cerebellum is defined by its clearly organized cytoarchitecture; however, important anatomical, molecular, and functional differences between lobules are beginning to emerge. These differences include specialized neuronal classes present only in certain regions of the cerebellar cortex. Electrophysiological and behavioral data indicate that these varying motifs are likely relevant for the function of specific lobules in behavior. One key difference between cerebellar lobules is the distribution of unipolar brush cells (UBCs), a glutamatergic interneuron enriched in the granular layer of vestibulo-cerebellum, which is known to be involved in processing vestibular sensory input (Mugnaini and Floris, 1994). UBCs reside in the granular layer and receive inputs from mossy fibers. Each UBC axon diverges, releasing glutamate onto multiple local granule cells or other UBCs. Since UBCs are recurrently connected, they are poised to amplify and temporally extend the influence of excitatory inputs into the cerebellum (Requarth and Sawtell, 2014). Alternatively, UBCs—receiving a single mossy fiber input—could form a ‘labeled line’ input to the granular layer, helping to distinguish between inputs from semicircular canals and vestibular nuclei (Balmer and Trussell, 2019). The relatively recent discovery of UBCs in the late 1970s (Altman and Bayer, 1977) and characterization in the 1990s (Mugnaini and Floris, 1994), their sparseness in the cerebellum, and the lack of tools to isolate them have limited our understanding of their functional connectivity.

Differences in inputs and expression patterns of neuromodulatory receptors also distinguish cerebellar regions (Cerminara et al., 2015). While it is clear that norepinephrine (NE) regulates cerebellar output, the mechanistic details of neuromodulatory effects for other amines remain poorly understood (Basile and Dunwiddie, 1984; Carey and Regehr, 2009; Lanore et al., 2019; Lippiello et al., 2015). Several previous reports posit the expression of dopamine type 1 receptor (Drd1a) within the granular layer of the cerebellum (Locke et al., 2018; Panagopoulos et al., 1993). Additionally, several groups have previously reported dopaminergic projections from the substantia nigra pars compacta (SNc) and the ventral tegmental area (VTA) targeting the cerebellar cortex of rats and monkeys (Melchitzky, 2000; Panagopoulos et al., 1991). Yet, recent work in mice did not find evidence for projections from midbrain dopaminergic nuclei to the cerebellum (Giovannucci et al., 2017). Another potential source of dopamine to the cerebellum is from a subset of tyrosine hydroxylase (TH) positive Purkinje (Pkj) cells. Vestibulo-cerebellar Pkj cells express tyrosine hydroxylase, the rate-limiting enzyme in the classical dopamine (DA) synthesis pathway (Abbott et al., 1996; Chung et al., 2009, 2010; Huang et al., 2016; Sawada et al., 2004; Takada et al., 1993). One prior report details dendritic release of DA by Pkj cells onto their own dendrites, expressing dopamine type 2 receptor (Drd2) (Kim et al., 2009). It is possible that these Pkj cells could also be the source of dopamine to local UBCs expressing Drd1 receptors. A third potential source of cerebellar DA is the locus coeruleus, recently demonstrated to release dopamine as well as norepinephrine in the hippocampus (Kawahara et al., 2001; Kempadoo et al., 2016; Takeuchi et al., 2016). The proposed
mechanism of action for this dual amine co-release is incomplete conversion of dopamine to norepinephrine in the vesicles. If incomplete conversion also takes place in the cerebellum, then DA release could enhance activity levels in the UBC network or coordinate the timing of their activity.

Altogether, previous research is consistent with the possibility of cerebellar DA signaling, but many unknowns remain. Here, using a combination of anatomical characterization, electrophysiology, two-photon laser scanning microscopy and glutamate photolysis, along with optogenetics and DA sensor imaging, we resolve this uncertainty by characterizing the expression of Drd1a receptors in the cerebellar cortex, defining the role of these receptors and the function of Drd1a-positive UBCs within cerebellar circuits, and revealing the source of cerebellar DA.

RESULTS

Expression of Drd1a receptors in UBCs of lobules IX/X

Analysis of Drd1-EY262-Cre;tdTomato expression in the cerebellar cortex reveals numerous small tdTomato+ (tdT) cells distributed across the cerebellar granular layer (Figure 1A), enriched in lobules IX and X of the cerebellar vermis, lobules VIb and VII, and the paraflocculus. These regions of the cerebellum are known to contain many UBCs. Confocal images confirm that cerebellar tdT+ cells possess the morphological features of UBCs: a single large dendritic brush and a medium sized soma relative to granule cells (Figure 1B). All tdT+ cells in the cerebellum were positive for nuclear protein Eomesodermin (Tbr2), a known marker for all UBCs (Englund, 2006). However, only 35% of Tbr2+ UBCs expressed tdT, suggesting that only a subpopulation of UBCs express tdT driven by Drd1 promoter activity (Figure 1C, Figure 1-S1). Since two primary classes of UBCs have been previously characterized (Kim et al., 2012; Zampini et al., 2016), we relied on known immunohistochemistry markers to characterize tdT+ UBCs. The majority of tdT+ neurons express mGluR1 (Figure 1D) (71%, n=2 mice, 779 cells). The mGluR1+ and tdT+ populations do not completely overlap, as only 65% of mGluR1+ UBCs express tdT. Very few tdT+ UBCs belong to calretinin+ (CR) type: 5.3% of tdT+ UBCs express CR, and 12.5% of CR+ UBCs express tdT (Figure 1E). Given these data, we infer that in the Drd1-Cre;tdT cross, all cerebellar tdT+ cells are UBCs, and that these tdT+ UBCs are a subset of the total UBC population, mostly comprised of mGluR1+ ON UBCs. A prior report using a different Drd1-Cre mouse line reported the expression of Drd1 receptors in deep cerebellar nuclei (Locke et al., 2018). In contrast, we do not see expression of tdT in the cerebellar nuclei in this transgenic cross. Because Cre recombinase lines can show developmentally regulated expression patterns, next we evaluated whether tdT+ UBCs contain Drd1a receptors using fluorescent in situ hybridization (FISH) to label tdT and Drd1a mRNA transcripts. High density tdT transcripts were used to create ROIs in a custom FIJI pipeline (Schindelin et al., 2012; Schneider et al., 2012) to examine colocalization with Drd1a transcripts. We found that up to 76% of tdT+ (Figure 1F) UBCs expressed Drd1a transcripts in low abundance (n=4 animals, 2553 cells) across an age range from P20s to P60s (Figure 1-S1B-C). The density of Drd1a puncta was 40-fold enriched in the volume of tdT+ ROIs, compared to
regions outside the cell bodies (Figure 1-S1D). These data suggest that tdT+ UBCs express modest levels of Drd1a receptors.

Figure 1: Drd1 receptors are expressed in mGluR1+ UBCs.

A. **Left**: A whole brain parasagittal section from a Drd1-Cre;tdT reporter cross. **Right**: A cartoon view of a parasagittal slice of the cerebellar vermis. TdTomato expressing UBCs are abundant in lobules IX/X of the vermis. Scale bar, 1 mm.

B. A confocal image of a tdT+ UBC in the cerebellum of a Drd1-Cre mouse, showing the characteristic dendritic brush morphology of a UBC. Scale bar, 20 µm.
C. **Left:** Confocal images of immunofluorescent labeling of Eomesidermin (Tbr2) in lobules IX/X of the cerebellar vermis. **Right:** Pie chart describing overlap of cerebellar tdT+ cells and Tbr2. All tdT+ cells express Tbr2, and a subpopulation (~35%) of Tbr2 cells expresses tdT (n=2 mice, 510 cells). Scale bar, 50 µm.

D. **Left:** Similar to C, but for mGluR1. **Right:** Out of all tdT+ UBCs 70% expressed mGluR1, 66% of mGluR1+ UBCs were positive for tdT (n=2 mice, 779 cells). Scale bar, 50 µm.

E. **Left:** Similar to C-D, but for calretinin (CR). **Right:** labeling shows little overlap between CR and tdT+ UBCs, 5.3% of tdT+ UBCS express CR, and 12.5% of CR+ express tdT (n=2 mice, 1235 cells). **C-D.** Inverted greyscale, single-channel images; in merged images, red represents tdT signal, grey represents antibody labeling for Tbr2, mGlur1, or CR, respectively. Scale bar, 50 µm.

F. **Left:** Sample confocal images of FISH, labeling tdT and Drd1a transcripts in cerebellar UBCs. Inverted greyscale LUT is used for single-channel images. In merged images, red represents tdT signal, grey represents Drd1 labeling. **Right:** The majority (~76%) of tdT+ UBCs express Drd1 transcripts (n=4 mice, 2553 cells). Scale bar, 10 µm.

Functional characterization of Drd1a activation in UBCs

To evaluate the consequences of Drd1a receptor activation we used current clamp recordings of tdT+ UBCs within lobules IX/X of the cerebellar vermis (**Figure 2A-F, Figure 2-S1A-D**). Puff application of selective Drd1 agonist SKF81297 increased the firing rate of tdT+ UBCs (**Figure 2C-D**) (2.48 Hz increase, 110% increase from baseline, n=13 cells, paired Wilcoxon signed rank test, p=0.02). We also observed increases in resting membrane potential and input resistance (**Figure 2F**). In a separate data set, we applied SKF81297 in the presence of Drd1 antagonists SKF83566, SCH39166, and SCH23390, blocking the increases in firing rate, membrane potential, and input resistance (**Figure 2E-F**) (n=13 cells, paired Wilcoxon signed rank test, p=0.49). Puff application of ACSF likewise elicited no changes in firing rate (n=13 cells, paired Wilcoxon signed rank test, p=0.33). Thus, UBCs respond to Drd1a activation with an enhancement in activity, consistent with previous experiments on the effects of Drd1a activation in the striatum and medial prefrontal cortex (mPFC) (Aosaki et al., 1998; Chen et al., 2007; Hernandez-Lopez et al., 1997).

Prior research shows an increase in N-methyl-D-aspartate receptor (NMDAR) currents during the activation of Drd1 receptors in mPFC neurons (Chen et al., 2004). Using electrical stimulation of mossy fibers, we found an increase in peak amplitude of NMDAR currents after the flow in of 10 µM SKF81297 (**Figure 2I-K**) (15% increase in peak current, n=9 cells, paired t-test, p=0.0251). These experiments were done in the presence of blockers for fast neurotransmission, 1 µM NBQX, 1 µM gabazine, and 1 µM strychnine. In a subset of experiments, we verified that the measured currents were fully blocked by the application of NMDAR antagonist CPP (10 µM, n=5 cells) (**Figure 2-S1E**). Since UBCs are recurrently connected, the increase in NMDAR currents may be due to a postsynaptic mechanism or a consequence of increased excitability in presynaptic UBCs. To distinguish between pre- and post-synaptic mechanisms, we used two-photon focal uncaging of MNI L-glutamate to bypass presynaptic terminals (**Figure 2L-M**) (Kozorovitskiy et al., 200...
In the presence of 1 mM MNI L-glutamate for uncaging, 1 µM TTX to silence spontaneous release, and drugs to isolate NMDAR currents, we uncaged glutamate near the dendritic brush of voltage clamped UBCs held at +40 mV. NMDAR mediated currents in response to 1 ms long pulses of 725 nm laser light were compared for experiments with and without 10 µM SKF81297. Current amplitudes increased with Drd1 activation, suggesting a post synaptic mechanism of action (Figure 2 N-O) (51% increase of average amplitude, n=13 cells, unpaired t-test, p=0.0068). These experiments support an NMDAR-mediated component to Drd1 activation in UBCs, although given findings from striatum and mPFC it is likely that additional mechanisms account for changes in excitability we have observed (Gorelova and Yang, 2000; Surmeier and Kitai, 1993).

Figure 2. Drd1 activation increases the firing rate and NMDAR currents in UBCs.

A. Diagram of experimental setup with tdT+ UBCs recorded in whole-cell current clamp configuration. Firing rate was measured during baseline period, followed by application of Drd1 agonist SKF81297 (500 µM) with 300 ms-long puffs from a proximally located pipette.

B. Voltage traces from an example cell which increased its firing rate in response to SKF81297 application.
C, D. Group comparison, mean firing rates during the baseline period and application of SKF81297 (n=13 cells, paired Wilcoxon signed rank test, p=0.02, *p<0.05).

E-G. Changes in firing rate (FR) in E, resting membrane potential (mV) in F, and input resistance (Rin) in G. The SKF81297 group, as in in C-D. Comparisons are between three independent data sets. Antagonist group: SKF81297 was applied in the presence of Drd1 blockers 1 µM SKF83566, 1 µM SCH39166, and 1 µM SCH23390. ACSF group: puff application ACSF instead of SKF81297 (Kruskal-Wallis test, FR p=0.0044, Vm p=0.0024, Rin p=0.02; Dunn's multiple comparison test, *p<0.05, **p<0.01).

H. Schematic of experimental setup. Voltage clamp recordings were performed in tdT+ UBCs, paired with stimulation mossy fiber inputs to evoke NMDA receptor mediated currents (inter-trial interval, ITI, 5 seconds), in the presence of blockers for AMPA, GABA and glycine receptors (1 µM NBQX, 1 µM gabazine, 1 µM strychnine).

I. Sample traces show an increase in NMDAR current amplitudes during the application of SKF81297.

J. Trace of normalized peak amplitude of NMDAR currents across cells (n=10 cells). Shaded region, ±SEM.

K. Summary plot of average evoked NMDAR current amplitudes before and after application of 10 µM SKF81297 (n=10 cells, paired t-test, p=0.0251).

L. Top: Schematic of two-photon uncaging MNI-L-glutamate uncaging experiments. TdT+ UBCs were voltage-clamped and imaged using a two-photon laser scanning microscope. Laser pulses (725 nm) directed near the dendritic brush (10-20 mW, 1 ms, 60 s ITI) were used evoked NMDAR mediated currents. Bottom: Example current trace.

M. Two-photon imaging Z-projection of a tdT+ UBC. Arrows represent separate uncaging site locations. Scale bar, 10 µm.

N. NMDAR current amplitudes in ACSF vs 10 µM SKF81297 (unpaired t-test, p=0.0068, **p<0.01). Each data point is the average amplitude of NMDAR currents evoked by glutamate uncaging from one cell (ACSF n=14 cells, SKF81297 n=13 cells).

O. Cumulative distribution of uncaging-evoked NMDAR current peak amplitudes for ACSF and SKF81297 groups.

Defining the source of cerebellar DA

Three TH+ populations are poised to serve as the source of DA to the cerebellum based on prior data: the midbrain dopaminergic cells of the Substantia Nigra pars compacta (SNc) and the Ventral Tegmental area (VTA), local TH+ Pkj cells of the cerebellum (Takada et al., 1993), and nearby locus coerules (LC) neurons that release DA as well as norepinephrine in other brain regions (Takeuchi et al., 2016). First, to evaluate whether Drd1+ UBCs could receive inputs from midbrain DA neurons, we carried out retrograde tracing from lobules IX/X of the vestibulo-cerebellum in a Dat-Cre;tdT mouse cross. We found no support for the existence of this projection (Figure 3A-C), despite the abundance of Dat-Cre;tdT axonal fibers in the cerebellum (Figure 3B, inset). Retrograde labelling confirmed that these tdT+ axons originate from a...
pre-cerebellar brainstem nucleus, the lateral reticular nucleus (LRN), and not the SNC/VTA. LRN neurons
are glutamatergic, forming mossy fiber rosettes within the cerebellum (Rajakumar et al., 1992; Wu et al.,
1999). There are no prior reports of LRN expressing proteins required for DA synthesis or packaging. To
evaluate the expression of transcripts required for DA release, we performed FISH labeling of LRN neurons
and found that few neurons express mRNA for either tyrosine hydroxylase or vesicular monoamine
transporter type 2 (Vmat2/Slc18a2) (n=3 mice, Th,19/135 LRN cells, Vmat2 2/135 LRN cells) (Figure 3-S1B-D).

Next, using FISH and antibody labeling, we confirmed previous reports of TH expression in Pkj cells of
vermal lobules IX and X (Figure 3D-F, Figure 3-S1A) (Austin et al., 1992; Sakai et al., 1995; Takada et al.,
1993). Despite the presence of Th, these neurons lacked the transcripts for Dopa Decarboxylase (Ddc), the
enzyme responsible for converting L-DOPA to dopamine (Figure 3E-F) (n=2 mice, 163 cells). Similarly, we
found minimal expression of Vmat2 or dopamine active transporter (Dat/Slc6a3), in contrast to Th+
neurons of the SNC (Figure 3D, F). Thus, DA release from TH+ Pkj cells is unlikely. Exclusion of the first
two hypothesized DA sources left the nearby monoaminergic LC as a candidate. To verify that the LC
projects specifically to cerebellar regions enriched in Drd1+ UBCs, we used a TH-FIpo mouse line. We
injected a retrograde AAV (AAV2/retro-CAG-fDIO-Cre-EGFP) into lobules IX/X and found EGFP+ LC
neurons (Figure 3G). Consistent with TH expression in lobule IX/X (Figure 3D-E, Figure 3-S1A), local Pkj
cells were also labelled by the injection. The SNC and VTA did not express EGFP, further confirming the
absence of a TH+ projection from VTA/SNC. Given these data, the most likely source of dopamine to the
Drd1+ UBCs is the LC.
Figure 3. Interrogating potential dopamine sources for cerebellar lobules IX/X.

A. Top: Parasagittal slice of a mouse brain immunolabelled for tyrosine hydroxylase (TH). Three hypothesized sources of dopamine include Purkinje cells in lobule X of the vermis, locus coerulescent neurons, and VTA DA neurons. Scale bar, 1 mm. Bottom: Close-up of regions of interest. Scale bar, 200 µm.

B. Example retrograde labeling experiment with CTB-488 injected into the cerebellum of a Dat-Cre;tdT reporter mouse (n=3 mice). Scale bar, 1 mm. Inset: TdTomato expressing cerebellar fibers are morphologically consistent with mossy fiber terminals and are restricted to the granule layer. Scale bar, 50 µm.
C. Close-up images from a retrograde CTB-488 injection. No labeling is observed in the tdT+ neurons in the ventral tegmental area (VTA), in contrast to tdT+ neurons in the lateral reticular nucleus (LRN), a glutamatergic pre-cerebellar brainstem nucleus. Scale bars, 200 µm and 500 µm.

D. Top: Confocal images of FISH labeling for Th and Ddc transcripts in Pkj cells in lobule X. Bottom, images of SNc neurons co-labeled for Th and Ddc transcripts (n=2 mice). Scale bar, 20 µm.

E. Comparison of TH+ Pkj cells and SNc neurons co-labeled for dopamine active transporter (Dat) and vesicular monoamine transporter type 2 (Vmat2) (n=2 mice). Scale bar, 50 µm.

F. Quantification of transcripts involved in synthesis and release of DA. Top: Few TH+ Pkj cells express transcripts for Ddc, Vmat2 or Dat. Bottom: The few TH+ Pkj cells that express Ddc, Vmat2, and Dat express low transcript numbers in comparison to SNc neurons (n=2 mice). Grey bars represent counts from SNc DA neurons, red bars represent Th+ Pkj cells.

G. Top: Parasagittal section from a TH-Flpo mouse injected with retrograde Flp-dependent virus expressing GFP (AAV2/retro-CAG-fDIO-Cre-EGFP). Scale bar, 1 mm. Bottom: Close-up of regions of interest. No GFP labeling of VTA/SNc neurons was observed, in contrast to LC neurons and local TH+ Pkj cells that were retrogradely labeled by GFP (n=2 mice). Scale bar, 200 µm.

Tracing inputs of Drd1+ UBCs using trans-synaptic pseudo-typed rabies virus

To assay dopaminergic presynaptic inputs to UBCs we performed trans-synaptic tracing with a modified rabies virus CVS-N2cΔG (Reardon et al., 2016) which allowed us to label all presynaptic partners of neurons expressing Cre recombinase (Figure 4A). The modified rabies construct cannot enter cells that do not express a TVA receptor and lacks the glycoprotein necessary to replicate into mature virus that can travel pre-synaptically. We infected UBCs with both TVA and the glycoprotein by injecting AAVs (AAV1-CAG-Flex-H2B-eGFP-N2cG and AAV1-EF1α-FLEX-GT) into a Drd1a-Cre transgenic mouse line. After 4-6 weeks of expression, we injected the modified rabies virus into the same region of the cerebellum. The rabies virus travels monosynaptically to the pre-synaptic partners of local UBCs. Histology was carried out after 7-8 days of rabies virus expression. The rabies virus includes a transgene for tdTomato, and the AAV viruses contains a GFP tag. UBCs initially infected with rabies express both GFP and tdT, while cells presynaptic to the starter cells express only tdT. To analyze these data, we used FIJI based scripts (Schindelin et al., 2012) to quantify the number of UBC starter cells and their presynaptic partners after immunohistochemistry to enhance GFP and tdT fluorescence. We did not dissect semicircular canals or otoliths, so they are not included in this analysis, although previous research shows that semicircular canals project directly to mGluR1+ UBCs (Balmer and Trussell, 2019). Our data (n=4 mice, starter cells 33.5±3.9/mouse) show presynaptic labelling of Pkj cells, Golgi cells, cerebellar nuclei neurons, vestibular nuclei neurons, and a sparse population of LC neurons (Figure 4B-E). We did not find any labeling in the midbrain dopaminergic nuclei, even though input tracing using pseudo-typed rabies viral vectors has been previously used to label monoaminergic inputs (Schwarz et al., 2015; Wall et al., 2013). It is unknown whether rabies virus labels certain presynaptic inputs preferentially based on properties such as firing...
rates, axonal length and structure, or neurotransmitter identity (Rogers and Beier, 2021). The majority of inputs are from nearby cerebellar nuclei cells, consistent with prior reports on their projections back to cerebellar cortex (Houck and Person, 2015; Judd et al., 2021). Despite low numbers of starter cells, we found sparse labeling of neurons in the LC. These findings are consistent with our anatomical tracing using retro-AAV (Figure 3G), confirming the LC as the likely source of DA for Drd1+ UBCs.

Figure 4. Trans-synaptic tracing of Drd1+ UBC inputs.

A. Cartoon of viral expression for trans-synaptic modified rabies virus tracing. Helper AAV virus expressing two Cre dependent constructs, TVA receptors and glycoprotein. After 4-6 weeks of helper virus expression in UBCs we injected modified rabies (CVS-N2cΔG). The rabies virus only enters UBCs expressing the TVA receptor. Once expressed in a UBC along with the glycoprotein, the virus can create a functional capsid and travel pre-synaptically.

B. Representative image of sagittal cerebellar slice. Cells infected with rabies virus are labelled with tdTomato. Scale bar, 1 mm.

C. Example cells presynaptic to Drd1+ UBCs labelled with tdTomato. Left: Pkj Cell, Center: Golgi cell (GC). Right: LC neuron labeled with tdT from rabies virus and TH antibody labeling. Scale bars, 50 and 100 µm.

D. Number of cells labelled by CVS-N2cΔG rabies virus (n=4 mice). In addition to UBCs, Pkj cells, and Golgi cells, we found tdT labeled cells in the cerebellar nuclei (CbN), vestibular nuclei (VN), pontine central grey (PCG), and locus coeruleus (LC). Starter cells indicate the number of UBCs co-labeled with GFP from helper AAVs and rabies virus driven tdT.
E. Quantification of labeled presynaptic cells normalized to the number of starter UBCs.

Optical measurements of monoamine release from LC fibers onto UBCs

To obtain evidence for functional DA release in the cerebellum, we turned to optical dopamine sensors that can directly measure dopamine dynamics with more sensitivity than fast scan cyclic voltammetry and higher temporal resolution than microdialysis (Patriarchi et al., 2018; Sabatini and Tian, 2020). We injected a Cre-dependent version of GRAB\textsubscript{DA2h} AAV (Sun et al., 2018, 2020) into lobule IX/X of the cerebellum of Drd1a-Cre animals. We then paired electrical stimulation of cerebellar cortical inputs with 2-photon imaging of GRAB\textsubscript{DA2h} fluorescence in UBCs in the acute slice (Figure 5A-B). We found that electrical stimulation of inputs to lobule X (50 stimuli, 50 Hz) elicited an increase in GRAB\textsubscript{DA2h} fluorescence in UBCs (Figure 5C). This increase could be blocked by bath application of Drd2 antagonist, as expected for this sensor (Figure 5D) (1 µM L-741,626, n=10 cells, 4.88-fold reduction in peak amplitude, paired t-test, p=0.002). In a subset of experiments, we validated the maximal response GRAB\textsubscript{DA2h} by bath applying Drd2 agonist (1 µM quinpirole) (Figure 5-S1B). The electrical stimulation protocol lacks specificity, activating all inputs into lobule X. To selectively activate the putative DA inputs, we crossed Drd1-Cre and TH-Flpo mouse lines to express GRAB\textsubscript{DA2h} in UBCs and ChR2 in TH+ inputs to the nodulus (Figure 5E). We confirmed that our injection of AAV1-Flex-FRT-ChR2-mCherry into the LC labelled axons across the entire cerebellum, including the regions which contain Drd1+ UBCs (Figure 5F, Figure 5-S1A). We imaged GRAB\textsubscript{DA2h} fluorescence in UBCs in the acute slice while optogenetically activating LC axons (200 pulses, 39 Hz, 2 ms pulses, 460 nm). In each experiment, the absence of TH+ Pkj cell labeling was confirmed to ensure selective LC targeting without overflow of ChR2 expression into the cerebellum. We found time-locked increases of GRAB\textsubscript{DA2h} fluorescence in UBCs in response to optical stimulation in a subset of UBCs (n=2 mice, 5/20 cells) (Figure 5G-H). Optically evoked GRAB\textsubscript{DA2h} transients had an average success rate of ~40% across responding cells. Responses to stimulation were bimodal, exhibiting either a substantial change in fluorescence (>0.1 F/F), or no detectable change (Figure 5G-H). As a control we interleaved trials where we did not deliver optogenetic stimulation. Altogether, these electrical and optical imaging experiments suggest that LC axons release monoamines onto UBCs in lobules IX/X of the cerebellar vermis.

Electrophysiological recordings of DA release from LC fibers

GRAB\textsubscript{DA} is preferentially activated by dopamine, but it maintains a slight sensitivity to norepinephrine (DA EC\textsubscript{50}=0.13 µM, NE EC\textsubscript{50}=1.7 µM) (Sun et al., 2020). To evaluate whether release of dopamine from LC fibers can activate Drd1 receptors on UBCs we performed acute slice electrophysiology. Since Drd1 receptors activate G\textsubscript{α}\textsubscript{s}-coupled protein cascades (Stoof and Kebabian, 1984; Surmeier and Kitai, 1993), and whole-cell recordings can dialyze cytosolic proteins involved in G protein-coupled receptor (GPCR) signaling (Lahiri and Bevan, 2020), we decided to use cell-attached recordings to measure potential effect of dopamine release from LC axons. First, we performed cell attached recordings of Drd1+ UBCs, collected
data during a baseline period and then applied 10 µm SKF81297 (Figure 5I). Consistent with our whole cell current clamp recordings, we measured an increase in spontaneous firing rate in tdT+ UBCS in response to Drd1 agonist (Figure 5J) (n=10 cells, paired Wilcoxon signed rank test, p=0.002). These flow-in data act as a benchmark for the following experiments where we optogenetically stimulate LC fibers using a Drd1-Cre; Th-Flpo cross transgenic line (Figure 5K). We aimed for maximal pharmacological isolation of DA signaling in these experiments, using a cocktail of receptor antagonists. To avoid activating alpha- or beta-adrenergic receptors with LC stimulation (although their expression in UBCs specifically has not been examined), we applied alpha (10 µM prazosin) and beta (10 µM propranolol) adrenergic receptor antagonists. Additionally, since LC neurons have been shown to release glutamate (Fung et al., 1994; Yang et al., 2021), we blocked AMPAR and NMDAR-mediated excitatory neurotransmission using NBQX (5 µM) and CPP (10 µM). Notably, the blockade of NMDA receptors would be expected to abolish a fraction of Drd1 activation effects (based on our results in Figure 2H-O), providing a strong test of the existence of additional mechanisms altering cellular excitability in UBCs downstream of Drd1 stimulation. GPCR cascades have many downstream targets, and so it is not surprising that several mechanisms could be responsible for changes in firing rate. TRPC3 channels were blocked using Pyr-3 (1 µM), to avoid glutamate opening TRPC3 channels through mGluR1 activation (Borges-Merjane and Trussell, 2015). PKj cells express adrenergic and Drd2 receptors (Basile and Dunwiddie, 1984; Cutando et al., 2019; Kim et al., 2009; Lippiello et al., 2015); to avoid polysynaptic effects from the release of NE or DA from LC fibers we blocked fast inhibitory transmission using gabazine (10 µM) and strychnine (1 µM). For these experiments, to minimize depletion of neurotransmitter from the LC axons, stimulation was delivered at 20 Hz with a 60 second inter-stimulus interval. We measured a small but significant increase in the firing rate of Drd1+ UBCs in response to LC fiber stimulation (Figure 5J) (1.2 Hz increase, 26% increase from baseline, n=8 cells, paired Wilcoxon signed rank test, p=0.02). In a separate set of experiments with Drd1 antagonist (5 µM SCH39166) present in the bath, we measured no statistically significant changes in firing rate.
Figure 5. LC fibers release DA in the cerebellum activating UBC Drd1 receptors.

A. Schematic of experimental setup, Cre-dependent GRAB\textsubscript{DA2h} expressed in UBC, with a monopolar electrode placed in the white matter of Lobule X.

B. Two-photon image of UBCs expressing Cre-dependent GRAB\textsubscript{DA2h} in a Drd1-Cre cerebellum.

C. Sample trace from one cell (5 trial average) in response to electrical stimulation before and after application of Drd2 antagonist (1 µM L-741,626). Shaded regions, SEM.

D. Group data of peak amplitude of ΔF/F in response to 50 Hz stimulation of axonal cerebellar input before and after flow in of Drd2 antagonist (1 µM L-741,626) (n=10 cells, paired t-test, p=0.002, **p<0.01).

E. Experimental design using dual virus injection to express ChR2 (Flpo-dependent) in LC axons and GRAB\textsubscript{DA2h} (Cre-dependent) in UBCs. Light pulses were delivered with 460 nm LED (2 ms pulse width, 200 pulses, 39 Hz).

F. Anterograde labeling of axons from the LC to the cerebellum. Image from an injection of AAV1-FLEX-FRT-ChR2-mCherry into the LC shows axons spreading broadly across all layers of the cerebellum (n=2 mice). Scale bar, 1 mm.

G. Sample traces of the changes in GRAB\textsubscript{DA2h} fluorescence in response to optical activation of ChR2+ LC axons from a single cell. The three traces correspond to trials with an evoked response, trials with no response, and control trials where no light stimulation was given. Lines represent the mean of 3 trials, shaded regions are ±SEM.
H. Summary data from several experiments, 5/20 cells responded to optogenetic activation (6 acute slices, n=2 mice). Error bars represent SEM.

I. Diagram of experimental setup, with tdT+ UBCs recorded in a cell-attached recording configuration. Inset: Traces from an example cell showing action potential recordings before (black) and after (orange) bath application of 10 µM SKF81297.

J. Summary data from cell-attached recordings before (white) and after (orange) the application of a Drd1 agonist. (n=10 cells, paired Wilcoxon signed rank test, p=0.002, **p<0.01).

K. Schematic of cell-attached recordings paired with selective optogenetic activation of LC fibers. After a baseline period light stimuli were delivered every 20 seconds (460 nm, 50 pulses, 20 Hz, 1 ms pulse width).

L. Mean firing rates before (white) and during (orange) optogenetic stimulation period. Right, same but with Drd1 antagonist in the bath.

Activation of UBCs can pause Pkj cell firing

In order to evaluate the function of Drd1+ UBCs within Lobule X of the cerebellar vermis we transfected Drd1-Cre mice with ChR2-EYFP AAV virus (AAV5-EF1a-DIO-ChR2-eYFP) and performed cell attached recordings from Pkj cells (Figure 6A-B). We stimulated UBCs with a train of LED pulses (460 nm, 10 Hz, 50 pulses, 1 ms pulse width). Each pulse caused a small burst of action potentials (2-5 APs). UBCs were more likely to respond with multiple spikes to a pulse at the beginning of the train than at the end (Figure 6B-C). Pkj cells did not significantly alter their average firing rate on trials with optogenetic stimulation (Figure 6D). However, in a subset of Pkj cells, stimulation caused a brief pause in firing during the 500 ms period after the beginning of the optogenetic stimulus (Figure 6E). Firing rate was normalized using a z-score. If a cell’s firing changed by 0.5 z-score SD during the 500 ms period after initial pulse, it was considered changing. Cells were classified into ‘Bursters’, ‘Pausers’, or ‘No response’. The majority of Pkj cells (18/28) did not significantly change their firing rate, ~28% of cells were ‘Pausers’ (8/28) and 7% of Pkj cells qualified as ‘Bursters’ (2/28) (Figure 6F-G). In a separate group of cells, we performed tight seal recordings from Pkj cells and measured their responses to 5 pulses of optogenetic activation of UBCs. Immediately afterwards, we broke into the cell and recorded EPSCs (~70 mV) and IPSCs (0 mV) in whole cell voltage clamp mode (Figure 6H). We calculated the EPSC/IPSCs charge ratio and plotted it against change in firing rate z-score (Figure 6I). Neurons with lower EPSC/IPSC ratios were more likely to pause after the onset of stimulation, suggesting that in these cells the relatively larger inhibitory current favored the pause. These data demonstrate that simultaneous activation of Drd1+ UBCs induces a decrease in Pkj cell firing.
Figure 6. Optogenetic activation of UBCs can modulate Pkj cell activity.

A. Diagram of experimental setup highlighting the two pathways (On-beam, Off-beam) through which UBCs can modulate Pkj cell firing. Cre-dependent AAV5-EF1a-DIO-ChR2-eYFP was expressed in UBCs using a Drd1-Cre mouse line. Pkj cells were recorded in cell-attached and/or whole-cell voltage clamp configuration.

B. Top: Example trace from a cell-attached recording of a ChR2+ UBC which increased its firing rate during light stimulation (460 nm, 10 Hz, 50 pulses, 1 ms pulse width). Bottom: Cell attached recording from Pkj cell.

C. The number of action potentials evoked in ChR2+ UBCs by a train of light pulses in response to the 1st, 25th and 50th individual pulse (n=8 cells).

D. A comparison of average firing rate of Pkj cells for trials before optogenetic stimulation of UBCs (Pre) and for trials with optogenetic activation (Stim) shows no significant difference.
E. The average firing rate (5 trials) of a single Pkj cell during the activation of nearby UBCs. Example cell transiently decreased its firing rate in response to UBC activation.

F. Histogram of average z-scores of firing rates during the 500 ms period following the first optogenetic pulse. Dashed lines indicate cut-off for categorization of response as either ‘Burster’ z-score > 0.5 or ‘Pauser’ z-score < -0.5.

G. Average z-score of firing rates across cells. ‘Pausers’ (n=8 cells) indicates data for cells that had z-score < -0.5, ‘Bursters’ (n=2 cells) indicates data for cells that had z-score>0.5, ‘No response’ (n=20 cells) include all other cells. Shaded regions represent SEM.

H. Cell-attached and postsynaptic current recordings from example Pkj cells; left ‘Pauser’, right ‘Burster’. Top traces show cell-attached recordings before break-in. After break-in IPSCs (blue trace) and EPSCs (red) were recorded.

I. Firing rate z-score after optogenetic activation of UBCs plotted against EPSC/IPSC total charge ratio. Data show a correlation between relative inhibitory input and pausing in Pkj cells (Linear regression, R²=0.63, F₁,₅=8.82, p=0.0312).

Lobule X Pkj cells directly inhibit UBCs

Previous work showed that in the vestibulo-cerebellum Pkj cells make inhibitory connections with nearby granular cells (Guo et al., 2016). This connection has implications for how Pkj feedback can alter the activity of their own inputs. Given the high density of UBCs in these same regions and the labeling of Pkj cells in our presynaptic rabies virus tracing (Figure 4B-E), we evaluated the possibility of direct synaptic connectivity between Pkj cells and UBCs. We used the Drd1-Cre mouse-line to label UBCs with a flexed GFP reporter virus and selectively activated Pkj cells using a viral vector expressing ChR2-mCherry, driven by the Pcp2 promoter (El-Shamayleh et al., 2017) (Figure 7A). We used epifluorescence to target and patch UBCs with a high chloride ion concentration internal solution. This allowed us to measure IPSCs (Figure 7B, F) while holding cells at -80 mV. GABA$_A$ currents were isolated using pharmacological blockers of AMPA, NMDA, glycine and GABA$_B$ receptors (5 µM NBQX, 2 µM CPP, 1 µM strychnine, 1 µM CGP54626). In order to distinguish between direct inhibition from Pkj cells and any indirect inhibition from nearby Golgi cells, an mGluR2 agonist was included in the bath to silence Golgi cells (2 µM LY354740) (Guo et al., 2016; Watanabe and Nakanishi, 2003). To verify that the LED stimulation protocol effectively drove Pkj cell activity we performed cell attached recordings. We could reliably increase Pkj cell firing rate during light stimulation (n=8 cells, 71 Hz +/- 6.7) (Figure 7C). In UBC voltage clamp experiments we found that 11/24 UBCs received short latency synaptic input from Pkj cells (Figure 7D). Cells with successful evoked IPSCs had a per trial success ratio of 0.64 on average (Figure 7D). There was significant variability in the amplitude (91 pA, +/- 24) (Figure 7H) and timing (9.4 ms +/-2.4) (Figure 7E) of optically evoked IPSCs, with some cells exhibiting large currents over the entire stimulation period and others responding with a single large IPSC at the onset of stimulation. However, many UBCs exhibited short latency IPSCs in response to stimulation of Pkj cells (Figure 7E-F), on the background of minimal spontaneous IPSCs (Figure 7-S1A). In a subset of UBCs (n=9 cells) (Figure 7F-G) we flowed in 10 µM gabazine to ensure the
measured currents were due to GABA_A channel opening. Application of gabazine abolished all evoked currents (Figure 7H).

Figure 7. Optogenetic activation of Pkj cells evokes short-latency IPSCs in UBCs.

A. Diagram of experimental setup. Using a Drd1-Cre mouse line a Cre-dependent GFP was expressed in UBCs, Pkj cells were transfected with AAV-Pcp2-ChR2-mCherry. UBCs recorded in whole-cell voltage clamp configuration. Experiments were done with 5 µM NBQX, 2 µM CPP, 1 µM Strychnine, 1 µM CGP54626, 2 µM LY354740 in the bath.

B. Top: Example trace from a cell-attached recording of a mCherry+ Pkj cell which increased its firing rate during light stimulation (460 nm, 100 pulses, 100 Hz, 0.5 ms pulse width). Bottom: Voltage clamp recording of UBC IPSCs.

C. Average firing rate of Pkj cells during light stimulation (n=8 cells).

D. Ratio of successful IPSC responses. Left (cells): Represents the ratio of cells in which IPSCs were evoked in response to optogenetic stimulation of Pkj cells (11/24, n=24 cells). Right (trials): Ratio of trials in which IPSCs were successfully evoked. Each data point represents the mean from each cell (n=11 cells).

E. The average latency to the first action potential in a Pkj cell (n=9 cells) or first evoked IPSC in a UBC (n=11 cells). Latency is calculated from the time of first pulse of 460 nm LED light. Each data point represents the mean (5-10 trials) from one cell.

F. Example data from one UBC shows a near complete inhibition of IPSCs (blue trace) after the application of 10 µM gabazine (black trace).

G. Time course of reduction of IPSC amplitude by gabazine (n=9 cells).

H. Population data comparing peak IPSC amplitude before and after gabazine application (n=9 cells, paired t-test, p=0.001).
DISCUSSION

In this study, we characterized the expression and function of Drd1 receptors in mGluR1+ (ON type) UBCs of the cerebellar vermis. We leveraged the ability to genetically target these UBCs for electrophysiological recording using the Drd1-Cre mouse line. We found changes in spontaneous activity of UBCs and their NMDAR mediated currents by combining electrophysiological recordings with 2-photon glutamate uncaging and 2-photon imaging. These effects are consistent with the literature on Drd1 receptor function across multiple brain regions (Chen et al., 2004, 2007; Lahiri and Bevan, 2020). We evaluated several distinct hypotheses for the source of dopamine to the cerebellum and found that neurons in the LC project to cerebellar regions enriched in Drd1+ UBCs. Optogenetic activation of LC fibers elicited strong responses in the dopaminergic optical sensor GRAB\textsubscript{DA2h} which is consistent with local DA co-release from TH+ LC inputs. We found that UBCs receive direct inhibition from local Pkj cells, and that the activation of UBCs can significantly alter the firing rate of Pkj cells, forming a closed reciprocal loop. These findings expand our knowledge about neuromodulation in the cerebellum and reveal a new function for LC inputs in cerebellar processing.

While the cerebellum is known to receive dense innervation from several neuromodulatory nuclei (Li et al., 2014; Nelson et al., 1997; Schweighofer et al., 2004), questions about the role of these neuromodulators have been difficult to address. The function of DA in the cerebellum has been particularly elusive due to disagreement about the location of receptors and potential sources of DA (Hurley et al., 2003; Kim et al., 2009; Locke et al., 2018; Mansour et al., 1991). To evaluate cerebellar DA receptor expression, we used a combination of transgenic tools and FISH, characterizing the distribution of Drd1\textsubscript{a} mRNA in mGluR1\textsubscript{a}+ UBCs from the Drd1-EY262-Cre line crossed to a tdTomato reporter. Most Drd1 UBCs express a low amount of Drd1 transcripts. Since UBCs are compact cells with small somato-dendritic compartments, a low transcript number of Drd1\textsubscript{a} mRNA could produce sufficient receptor levels to impact UBC activity.

We evaluated the consequences of Drd1 activation by recording the activity of Drd1+ UBCs before and after activating Drd1 receptors. Most tdT+ UBCs (70%) increase their firing rate in response to Drd1 activation, as has been reported for Drd1 mediated effects on striatal spiny projection neurons (Lahiri and Bevan, 2020). Quiescent neurons characterized by hyperpolarized resting membrane potential did not initiate activity in response to pharmacological stimulus. This observation suggests several non-exclusive possibilities. First, Drd1 receptor mediated depolarization may be insignificant in some UBCs. Second, the effect of Drd1 agonism is, at least in part, dependent on ionic currents that are not active below a certain membrane potential threshold. Third, the effect of Drd1 activation could be unable to overcome the ionic currents that regulate the ‘down’ state in UBCs. One intriguing possibility is that previously described bimodal states in UBC membrane potential (Diana et al., 2007) map onto distinct responses to neuromodulatory inputs.
Based on previous literature on the mechanisms of dopamine neuromodulation in the mPFC (Chen et al., 2004), we evaluated NMDAR-mediated currents in response to mossy fiber electrical stimulation, finding an increase in NMDAR currents in the presence of a Drd1 agonist. We relied on two-photon glutamate uncaging and imaging combined with electrophysiology to confirm the postsynaptic mechanism for Drd1-dependent increase in NMDAR currents in UBCs. As compact neurons, UBCs have relatively small total NMDA currents, yet this increase could have wide ranging consequences for cellular activity. The enhancement in protein kinase A (PKA) activity, a consequence of Drd1 receptor activation, can promote calcium flux through NMDARs (Skeberdis et al., 2006). Drd1 effects, mediated by Gαs-coupled pathways, have diverse impacts on neuronal channels in other cell types, raising the likelihood that currents in UBCs are also altered by Drd1 activation. Of special note for Drd1+ UBCs, DA might enhance mGluR1 mediated transient receptor potential channel (TRPC3) currents (Sekerková et al., 2013), as has been previously demonstrated for striatal cholinergic interneurons (Chuhma et al., 2018). If so, this mechanism would have synergistic effects with NMDA receptor-mediated current enhancements in response to Drd1 receptor activation.

We next investigated three potential non-exclusive sources of DA to the cerebellum: the SNc/VTA, local TH+ Pkj cells, and the LC. Consistent with some (Wagner et al., 2017), but not all previous reports (Melchitzky, 2000; Panagopoulos et al., 1991), we found no evidence of projections from the SNc/VTA. While we were able to confirm TH expression in nearby Pkj cells (Locke et al., 2020; Takada et al., 1993), FISH analyses of Ddc, Vmat2, and Dat in the Th+ neurons confirm that these neurons lack the molecular machinery for releasing DA. Previous work has found that while Pkj cells expressed TH, this protein is maintained in an unphosphorylated state, unable to produce L-DOPA (Lee et al., 2006; Sawada et al., 2004). Given the absence of L-DOPA synthesis, the function of TH in Pkj cells currently remains unknown. However, there are other neuronal classes that express TH but lack complementary proteins for DA release, including a subpopulation of olfactory bulb neurons (Chand et al., 2015), striatal GABAergic interneurons (Weihe et al., 2006; Xenias et al., 2015), and cortical interneurons (Asmus et al., 2008). As the final potential source of DA for UBCs, we evaluated the LC, known to project to the cerebellum (Bloom et al., 1971; Schwarz et al., 2015) and verified here using retrograde AAV injections. Moreover, LC axons have been previously shown to co-release DA and NE in other brain regions. DA released from LC fibers in the hippocampus increases field excitatory postsynaptic currents (EPSCs) and contributes to memory retention (Kempadoo et al., 2016; Takeuchi et al., 2016). In the paraventricular nucleus of the thalamus, DA released by LC axons activates Drd2 receptors to decrease inhibitory input amplitude (Beas et al., 2018). To test whether LC projections release DA onto UBCs, we used 2-photon imaging of genetically encoded DA sensor GRAB\textsubscript{DA2h}. Electrical or optogenetic activation of cerebellar LC axons increased GRAB\textsubscript{DA2h} fluorescence in UBCs. Additional studies are needed to examine whether UBCs also express multiple GPCRs that can be concurrently activated by LC inputs. Although GRAB\textsubscript{DA2h} is highly specific for DA over NE (DA EC\textsubscript{50}=0.13 µM, NE EC\textsubscript{50}=1.7 µM) (Sun et al., 2020), we cannot exclude the possibility of mixed monoamine release from LC axons with the results from optical dopamine sensors. To address this
ambiguity we performed cell-attached recordings in UBCs, pharmacologically isolating Drd1 receptors, and found an increase in firing rate after stimulation of LC fibers. To avoid effects of co-release of glutamate from LC axons in these experiments, we had to block NMDAR, removing one downstream mechanism of Drd1 activation in UBCs. In agreement with experiments examining Drd1 activation across different brain regions, the persistence of Drd1 receptor mediated effects suggests that there are likely multiple intracellular mechanisms governing UBC’s response to dopamine.

The Drd1-Cre mouse line is one the few tools that allow us to selectively label subpopulations of UBCs. Using ChR2, we took advantage of this mouse line to interrogate the potential function of UBCs within vestibulo-cerebellar circuits. Despite the utility of acute slice preparation as a tool in electrophysiology, the approach has important limitations, undercounting axonal inputs and impacting neural activity in polysynaptic neuronal circuits. For this reason, we focused on Pkj cell firing rate changes on a short time scale following optogenetic activation (500 ms), aiming to evaluate proximal effects downstream of activating a small neuronal ensemble. The results from our experiments demonstrate that activation of UBCs can induce pausing in a subset of local Pkj cells. Given our data examining Pkj cell E/I balance during UBC optogenetic stimulation, changes in Pkj activity are likely explained by differential activation of On and Off parallel fiber beams (Dizon and Khodakhah, 2011). ‘On beam’ parallel fibers, originating from the granule cells directly below a Pkj neuron, make excitatory synapses onto that Pkj cell. Meanwhile, granule cells that are not directly below a Pkj cell form ‘Off beam’ parallel fibers, activating molecular layer interneurons and disynaptically inhibiting adjacent Pkj cells (Figure 5A). Both ‘On’ and ‘Off’ beam excitation is likely to occur simultaneously; due to the spatial distribution of UBCs in the granular layer with whole-field optogenetic activation protocol, ‘Off beam’ parallel fiber excitation is favored in the slice configuration.

How likely is it that similar concurrent activation of UBCs occurs in vivo? The majority of UBCs express mGluR1 receptors and fire bursts of action potentials in response to glutamate release from mossy fibers (Zampini et al., 2016). One possibility is that due to recurrent connections between UBCs, a burst of action potentials in one UBC could cause a chain of activity leading to near simultaneous granular layer activity across a large area. Future experiments are necessary to define the effects of UBCs activation in vivo, but Pkj neuron recordings with optogenetic stimulation of UBCs can serve as a partial readout of the circuit effects of neuromodulatory release of dopamine or other neuromodulators that enhance cerebellar UBC activity.

In addition to functionally evaluating the evidence for Pkj-UBC connectivity to understand the placement of Drd1+ UBCs within vestibulo-cerebellar circuits, our transsynaptic rabies virus tracing data confirmed the labeling of Pkj cells, while also revealing the neuromodulatory inputs from the LC. Recent work has found that Pkj cells in the vestibulo-cerebellum synapse onto nearby granule cells (Guo et al., 2016), but it remained unknown whether local UBCs receive feedback input from Pkj cells. Notably, Pkj cell feedback to granule cells appears to be restricted to the vestibular regions of the cerebellar cortex, with important implications for the recurrent activity of Pkj cells in these lobules. Our findings expand the recurrent...
vestibulo-cerebellar circuit to include UBCs. Since UBCs diverge in the granular layer, any circuit level
effects from feedback inhibition via Pkj cells is likely to be amplified. These inhibitory connections have also
been described in parallel work by another lab (Canton-Josh et al., 2021; Guo et al., 2021a, 2021b) for
mGluR1+ UBCs. There is longstanding evidence of the LC modulating Pkj cell activity through the release
of norepinephrine (Basile and Dunwiddie, 1984; Lippiello et al., 2015) and recent work shows adrenergic
signaling in Golgi cells as well (Lanore et al., 2019). Our findings suggest that the LC could release
dopamine onto other cells in the cerebellum, such as Drd2 expressing Pkj cells (Kim et al., 2009; Mengod
et al., 1989), in addition to UBCs. Although no past research has focused on adrenergic receptor
expression in UBCs, it is possible that LC axons could mediate their effect on UBCs through
norepinephrine, in addition to dopamine.

Unipolar brush cells have been found in three distinct brain circuits implicated in the cancelation of self-
generated cues due to an animal’s movement (Requarth and Sawtell, 2014; Singla et al., 2017; Warren
and Sawtell, 2016). Their position in the input layer of the cerebellum means that their activity can
significantly alter mossy fiber signals to the cerebellum. In the mouse cerebellum, Drd1 expressing UBCs
reside in regions involved in processing vestibular signals and eye movements. Since we find that Drd1
receptors are expressed predominantly in ON UBCs, DA release from LC axons could coordinate with
vestibular mossy fiber inputs to enhance signals arising directly from the semicircular canals (Balmer and
Trussell, 2019). Leveraging genetic access to a subpopulation of UBCs we have characterized a new
recurrent subcircuit between Pkj cells and UBCs, which has the potential to significantly regulate the output
of the vestibulo-cerebellum. Altogether, this work expands our knowledge of cerebellar circuitry, resolves
longstanding questions about the ability of TH+ Pkj cells to release DA, and points to the LC as the source
of DA to the cerebellum.

DATA AVAILABILITY
All data and code generated or analyzed during this study are included in the manuscript and supporting
files.

AUTHOR CONTRIBUTIONS
J.E.C and Y.K. conceived the experiments. Anatomical, IHC, and FISH experiments were performed and
analyzed by J.E.C., J.Q, and J.S. Electrophysiology and two-photon imaging experiments were performed
and analyzed by J.E.C. J.E.C. and Y.K. wrote the manuscript, with input from other authors.

ACKNOWLEDGMENTS
This work was supported by the Rita Allen Foundation Scholar Award, NINDS R01NS107539, Searle Scholar Award, the Beckman Young Investigator Award, William and Bernice E. Bumpus Young Innovator Award, NARSAD Young Investigator and P&S Fund Grant (all Y.K.). J.E.C. was supported as a trainee on an NIH/NINDS institutional training grant (T32NS041234) and with a Ruth Kirschstein National Research Service Award (NRSA) Individual Predoctoral Fellowship (NINDS 1F31NS120736). We thank Dr. Tiffany Schmidt and Northwestern University Biological Imaging Facility for the use of their confocal microscopes, and Lindsey Butler for mouse colony management. We are grateful to Dr. Bernardo Sabatini for the gift of retrograde AAV virus, Dr. Horwitz for the gift of Pcp2 promoter ChR2 AAV, Dr. Yulong Li for sharing the GRABDA2h virus, and Dr. Raj Awatramani for the TH-Flpo mouse line. We thank Dr. Michael Priest and Samuel Minkowicz for feedback on this manuscript.

METHODS

Materials and Methods

Mouse Lines

All experiments were performed under the guidelines set by Northwestern University Institutional Animal Care and Use Committee (IACUC). All mice used were on the C57BL/6 background (P20-80). Mice of both sexes were used; sex was tracked for every experiment, and data were analyzed for any differences. Several transgenic lines were used for this project, acquired from Jackson laboratory (Bell Harbor, MA). To visualize Drd1a-positive cells expression we used a heterozygous mouse line with insertion of Cre recombinase at the Drd1a locus (Drd1a-Cre, GENSAT, founder line EY262) (Gong S. Zheng C., 2003). In order to label cells expressing dopamine transporter (DAT) we used knock-in mice expressing Cre recombinase under DAT promoter, B6.SJL-Slc6a3tm1.1(cre)Bkmn/J mice (DATi-Cre)(Jackson Lab, # 006660) (Bäckman et al., 2006). To label tyrosine hydroxylase positive neurons we used a TH-Flpo developed by the lab of Dr. Raj Awatramani (Poulin et al., 2018). Depending on experiments these Cre lines were either injected with a viral vector or crossed with a floxed tdTomato reporter mouse line (Ai14, Jackson Lab, #007914) (Madisen et al., 2010).

Viral vectors

Viruses were acquired from Addgene, UNC vector core, Columbia vector core, Salk Institute, and WZ Biosciences. For stimulation of Drd1-Cre+ UBCs we injected AAV5-EF1a-DIO-hChR2(H134R)-eYFP-WPRE-hGH (7.2x10^{12} vg/ml, Addgene, 20298P). For experiments with optogenetic stimulation of Pkj cells we injected AAV1-PCP2-CHR2-mCherry (7.2x10^{12} vg/ml) (El-Shamayleh et al, 2017) and AAV8-Flex-GFP (6.2x10^{12} vg/ml, UNC vector core). For pseudo-typed rabies tracing experiments, the viruses were AAV1-CAG-Flex-H2B-eGFP-N2c(G) (2.5 x 10^{12} gc/ml, Columbia Vector Core), AAV1-EF1α-FLEX-GT (4.3 x 10^{11} gc/ml, Salk Institute viral vector core), and CVS-N2cΔG tdTomato EnvA (Columbia vector core). For
retrograde labelling of TH fibers to the cerebellum, we used AAV2/retro-CAG-fDIO-Cre-EGFP (a gift from the laboratory of Bernardo Sabatini). For anterograde labeling of LC fibers, we injected AAV1-CAG-FLEXFRT-ChR2(H134R)-mCherry (75470, 7x10^{12}\text{vg/mL}, Addgene). For imaging DA dynamics, we used AAV9-hSyn-DIO-DA4.3, (GRAB\text{DA2h}, 20191018, 2.7x10^{13}\text{vg/mL}, WZ Biosciences; plasmid, gift from the laboratory of Yulong Li).

Surgical procedures

Animals were anesthetized using an isoflurane vaporizer, with oxygen flow rate maintained at 1.00 liter/minute. Induction was done with 2-3% isoflurane and maintenance at 1.5-2%. Tail pinches were used to ensure the effectiveness of anesthesia. Animal was mounted on a stereotaxic frame (David Kopf Instruments, Tujunga, CA), ear bars were inserted, and a chemical depilator as used to expose the skin. Skin was cleaned with iodine followed by alcohol, using aseptic technique. Injections of AAV viral vectors or CTB-488 (Thermo Fisher, C34775) were made using a pulled glass pipette and a UltraMicroPump controller (World Precision Instruments, Sarasota, FL) at a rate of 100 nl/minute. Rabies virus injected were performed in a BSL2 hood. Cerebellar stereotaxic coordinates: AP: -2.5 mm ML: 0 mm, from lambda, DV: -2.5 mm from surface of brain. Coordinates for the locus coeruleus: AP: -0.9 mm ML: 0.9 mm, from lambda, DV: -3.2 mm from surface of brain. All animals received an I.P. injection of ketoprofen (0.1 mg/20 g) 0 hours, 24 hours and 48 hours after surgery, with approved post-surgical monitoring. Mice recovered 1 week for retrograde CTB-488 injections and 2-6 weeks for viral vector injections. For modified rabies virus tracing experiments, we allowed the helper viruses to express for 4-6 weeks before injecting rabies virus.

Immunohistochemistry

Animals were anesthetized using isoflurane and then transcardially perfused with 4% paraformaldehyde. The brain was extracted and post-fixed at 4°C in 4% PFA overnight, transferred to phosphate buffered saline (PBS) and stored a 4 °C. The brain was mounted onto a Leica VT1000s vibratome and 50 µm thick sections were made. Sections were stored in well plates in PBS at 4 °C. Slices were permeabilized in 0.2% Triton-X, then blocked in 10% BSA with 0.05% Triton-X and incubated in primary antibody for 24-48 hours at 4°C in 0.2% Triton-X. the tissue underwent 3 10-minute rinse steps in PBS and was then incubated in a secondary antibody for 2 hours at RT. Primary antibodies: Rabbit anti-Calretinin (1:500, Swant, CR7697), Mouse anti-mGluR1α (1:500, BD Biosciences, G209-2048), Sheep anti-TH (1:1000, Abcam, ab113), Chicken anti-Tbr2 (1:1000, Sigma-Aldrich, AB15894). Secondary antibodies: Goat Anti-Mouse 647 (1:1000, Life Technologies, A-21236), Goat Anti-Rabbit 488(1:1000, Life Technologies A-11034), Donkey-anti-Sheep 647 (1:1000, Thermo Fisher Scientific, A-21448), Goat anti-Chicken IgY (H+L) secondary antibody, Alexa Fluor 488 (1:1000, Life Technologies A-11039). IHC samples were mounted onto Superfrost Plus slides (ThermoFisher Scientific, Waltham, MA) dried and cover slipped under glycerol:TBS (3:1) with Hoechst 33342 (1:1000; ThermoFisher Scientific). Slides were imaged at 10X magnification on a slide scanning microscope Olympus VS120 slide scanning microscope (Olympus, Waltham, MA). For IHC
quantification slides were imaged using a Leica SP5 confocal microscope (Leica Microsystems) with a 40/63X objective. Z stacks at 2-5 µm step sizes were acquired and images were analyzed in ImageJ (FIJI) (Schindelin et al., 2012).

Fluorescence in situ hybridization

Following anesthetization using isoflurane, the mouse was decapitated, and the brain was quickly removed, placed into OCT and frozen on dry ice. Sample was placed in -80°C freezer for at least 1 night. Tissue was sliced on a cryostat (Leica CM1850) at a thickness of 20 µm and mounted onto Superfrost Plus slides (ThermoFisher Scientific, Waltham, MA). Slices were placed in a slide box and in a freezer safe Ziploc bag and placed in a -80 ºC freezer overnight before processing. Samples were fixed with 4% PFA in 0.1 M PBS at 4°C, processed according to RNAscope Fluorescent Multiplex Assay manual for fresh frozen tissue (Advanced Cell Diagnostics, Newark, CA) and coverslipped using ProLong Gold antifade reagent with DAPI (Molecular Probes). Several probes were used including: tdT (ACDBio Cat No. 317041), Drd1a (ACDBio, Cat No. 406491-C2), Th (ACDBio, Cat No. 317621-C2), Vmat2 (Slc18a2, ACDBio Cat No. 425331-C3), Ddc (ACDBio, Cat No. 318681), Dat (Slc6a3, ACDBio, Cat No. 315441). Slides were imaged on a Leica SP5 confocal in two channels using a 63x objective digital zoom 1.5x with 0.5-micron z steps (512 x 512 pixels). FISH images were analyzed using ImageJ (Schindelin et al., 2012). Images were background subtracted and thresholded. We then used 3D objects counter (Bolte and Cordelieres, 2006) to create a 3-dimensional object. The 3D ROI manager (Ollion et al., 2013) plugin was used to create regions of interest. The tdT channel was used to as a label for UBC soma and to establish ROI. Once ROIs was acquired, we quantified the overlap of signals by counting the number of Drd1a puncta within each cell.

Acute slice preparation

Mice (P20-60) were deeply anesthetized with isoflurane, followed by a transcardial perfusion using 34°C (Huang and Uusisaari, 2013) ACSF (artificial cerebrospinal fluid) containing (mM) 127 NaCl, 2.5 KCl, 1.25 NaH2PO4, 25 NaHCO3, 20 glucose, 2 CaCl2, and 1 MgCl2. After perfusion mice were decapitated, brain was removed, blocked, mounted, and placed into a chamber containing 34°C ACSF oxygenated with 95% O2, 5% CO2. Parasagittal 300 µm cerebellar brain slices were made using a vibratome (Leica VT1200s). Slices were transferred to a holding chamber containing 34°C ACSF oxygenated with 95% O2, 5% CO2, and were incubated for 30 minutes before being cooled to room temperature (22-24°C).

Electrophysiology

All recordings were performed on an acute slice electrophysiology system (Scientifica, UK); neurons were visualized using a 60X water-immersion objective (Olympus, Tokyo, Japan) imaged using a QIClick microscope camera (QImaging, Surrey, Canada), under DIC. Slices were placed in the recording chamber and perfused with oxygenated ACSF at a rate of 2 ml/min, with temperature as noted. For UBC recordings, cells expressing tdTomato in a Drd1-Cre; tdT cross were targeted using epifluorescence illumination from a
CoolLED pe4000 system (CoolLED Ltd., Andover, UK). Whole-cell patch electrodes were pulled from borosilicate capillary glass to have a resistance of 2.5-5 MΩ for UBC recordings and 1-2 MΩ for Pkj recordings. All recordings were digitized at 10-20 kHz and filtered at 3-4 kHz using a Multiclamp 700b amplifier (Axon Instruments, Union City, CA), acquired using a version of the MATLAB-based (MathWorks, Natick, MA) acquisition suite, ScanImage (Pologruto et al., 2003).

Current clamp recordings

UBCs were targeted using a Drd1-Cre;Tdt transgenic mouse line (P20-40). Slices were perfused with ACSF at RT (22-24 ºC). For current clamp recording any cells with a series resistance >40 MΩ or an action potential peak below 10 mV were excluded from analysis. Intracellular solution used was (in mM) 135 K-gluconate, 4 KCl, 10 HEPES, 10 Na-phosphocreatine, 4 MgATP, 0.4 Na₂GTP, 1 EGTA, 20 µM Alexa 488 (pH 7.2-7.3, 295-298 mOsm/L). A measured liquid junction potential of ~12 mV was corrected for post-hoc before analysis. Every sweep was 15 seconds long, with a 20 second ITI between each trial. Within each trial, a 500 ms hyperpolarizing step 10-20 pA was injected in order to measure input resistance. In cells that did not have spontaneous firing we injected a 500 ms long depolarizing pulse to assess cell health and ability to fire action potentials. Both the period of hyperpolarizing pulse and the depolarizing pulse were excluded from analysis of spontaneous firing rate. We analyzed spontaneous activity, passive membrane properties, and action potential shape. After break-in we waited ~13 minutes period before acquiring baseline firing properties of the UBCs. The baseline period lasted ~7 min (20 trials) before we applied SKF81297. To activate Drd1 receptors we puff applied SKF81297 (500 µM) using a 300 ms long PicoSpritzer puff (Parker Hannifin, Hollis, NH). The drug was applied once per trial (20 s ITI) for a 10-minute period (30 trials). We continued recording after drug application for a 10-minute (30 trials) washout period. The glass puff pipette was pulled to have a ~5 µm opening. The puff pipette was placed 20-40 µm above tissue surface and 50-75 µm away from cell on the x-axis. Care was taken to ensure there was no movement of the slice due to the puff. After the recording, each UBC was imaged to verify that it was filled with Alexa dye, and then a 10X magnification image was taken to record location within the cerebellum.

Voltage clamp recordings

UBCs were targeted using a Drd1-Cre;tdT transgenic mouse line (P20-40). Voltage clamp recordings were performed in ACSF (32-34 ºC). Cells were excluded if they had a series resistance >25 MΩ or if series resistance changed >20% during the recording. We did not use series resistance compensation. The internal electrode solution contained (in mM): 125 CsMeSO₃, 5 HEPES-Cs, 0.4 EGTA, 10 Phosphocreatine disodium salt, 2 ATP-Mg, 0.5 GTP-Mg, 5 TEA-Cl, 2 QX314-Cl, 20 µM Alexa 488 (pH 7.2-7.3, 295-298 mOsm/L). We corrected for liquid junction potential (~8 mV) before acquiring data. In order to isolate NMDAR currents, 1 µM Gabazine (Tocris, 1262), 1 µM NBQX (Tocris, 0373), 1 µM strychnine (Sigma-Aldrich, S8753) were added to the ACSF bath. Cells were held at +40 mV and we used 0 mM MgCl₂ to minimize the Mg block of NMDA receptors. A tungsten bipolar electrode (CBAPB75, FHC Inc) was
lowered into nearby white matter at least 100 µm away from UBC being recorded. Each electrical stimulation consisted of 5 pulses, 200 Hz, 100-150 µA, 50-80 µs pulse width. Each trial was 7 seconds long, with an intertrial interval of 30 seconds. Every trial included a 500 ms long 20 mV hyperpolarizing pulse to measure series resistance. We acquired current traces during a baseline period of 20 minutes (40 trials), followed by a flow-in of SKF81297 (10µM) for 15 minutes (30 trials) before washing out the drug.

Optogenetic stimulation of Drd1-Cre UBCs

Pkj cells within 100 µm of ChR2-EYFP expressing UBCs were targeted for recording. Recordings were performed in ACSF (32-34 ºC). We recorded baseline firing rate of Purkinje cells in cell-attached mode, loose seal (50-200 M Ohms). To stimulate ChR2 in UBCs we used trains of light pulses (1 ms, 10-20 Hz, 20 pulses, 460 nM, 2-5 mW) delivered through a 60X water-immersion objective (Olympus, Tokyo, Japan) with CoolLED PE4000 widefield illumination (CoolLED Ltd., Andover, UK). Every trial was 15 seconds long, with an ITI of 20 seconds. After a ~7 min (20 trials) baseline period, we stimulated ChR2 for 30 trials. Afterwards a 10-minute (30 trials) recording with no stimulation was acquired. For each slice, we verified that we could reliably evoke action potentials in nearby EYFP+ UBC with this stimulation protocol.

For the experiments with EPSC and IPSC recordings, we used an internal solution consisting of 125 CsMeSO$_3$, 5 HEPES-Cs, 0.4 EGTA, 10 Phosphocreatine disodium salt, 2 ATP-Mg, 0.5 GTP-Mg, 5 TEA-Cl, 2 QX314-Cl, 20 µM Alexa 488 (pH 7.2-7.3, 295-298 mOsm/L). We corrected for liquid junction potential (~8 mV). We first achieved a Giga-Ohm seal on the Pkj cell before recording cell-attached action potentials, to evaluate the response of Pkj cells to UBC optogenetic activation before breaking into the Pkj cell and recording synaptic currents. We recorded EPSCs while holding the cell at -70 mV (5 trials), then slowly increasing the holding voltage to 0 mV and recording IPSCs (5 trials).

IPSC recordings in UBCs

Drd1-Cre animals were injected with AAV1-PCP2-ChR2-mCherry and AAV8-Flex-GFP. Acutely prepared brain slices were perfused with ACSF at RT (22-24ºC) to slow down spontaneous firing rate of Pkj cells. We used epifluorescence to verify expression of mCherry in nearby Pkj cells, with very brief GFP illumination to target UBCs for patch clamping without stimulating ChR2. We used an internal solution with a high concentration of Cl$^-$ ions (in mM): 150 CsCl, 4 NaCl, 0.5 CaCl$_2$, 10 HEPES-Cs, 5 EGTA-Cs, 10 Phosphocreatine disodium salt, 2 ATP-Mg, 0.5 GTP-Na, 2 QX314-Br, 20 µM Alexa 488 (pH 7.2-7.3, 295-298 mOsm/L). We corrected for liquid junction potential (~3 mV). Starting 5 minutes after break-in, we recorded 10 trials/UBC, where every trial was 15 seconds long, with an ITI of 60 seconds. During every trial, we delivered an optogenetic stimulus train (1 ms, 100 Hz, 100 pulses, 460 nM, 2-5 mW) through a 60X water-immersion objective (Olympus, Tokyo, Japan) with CoolLED illumination PE4000. For a subset of experiments, after 5 trials we added 10 µM Gabazine to the bath. For every slice, cell-attached recordings were used to verify efficient optogenetic stimulation of Pkj cell firing.
Cell attached recordings

UBCs were targeted using a Drd1-Cre;tdTomato transgenic mouse line (P20-40). Cell-attached recordings were performed in ACSF (32-34°C). Internal electrode solution contained (in mM): 125 CsMeSO₃, 5 HEPES-Cs, 0.4 EGTA, 10 Phosphocreatine disodium salt, 2 ATP-Mg, 0.5 GTP-Mg, 5 TEA-Cl, 2 QX314-Cl, 20 µM Alexa 488 (pH 7.2-7.3, 295-298 mOsm/L). Every sweep was 15 seconds long, ITI 20 seconds. After a ~16 min (50 trials) baseline period we flowed in 10 µM SKF81297 (Tocris 1447) into the bath. Cells showing spontaneous firing were included in analysis for continual monitoring of cell health. For experiments using LC optogenetic stimulation we included the following in the bath: Prazosin (10 µM), propranolol (10 µM), NBQX (5 µM), CPP (10 µM), Pyr-3 (1 µM), gabazine (10 µM) and strychnine (1 µM). For recording in the presence of Drd1 antagonist, 5 µM SCH39166 was present in the bath. During every trial, we delivered an optogenetic stimulus train (1 ms, 20 Hz, 50 pulses, 460 nM, 2-5 mW) through a 60X water-immersion objective (Olympus, Tokyo, Japan) with CoolLED illumination PE300, with a 20 second inter-trial interval.

Two-photon imaging and glutamate uncaging experiments

Slices were perfused with ACSF at RT (22-24°C). Experiments were done on a modified acute slice electrophysiology Scientifica microscope using a 60X water immersion objective. Two mode-locked Ti:Sapphire lasers (Mai Tai eHP and Mai Tai eHP DS, Newport) were used for two-photon fluorescence imaging and for uncaging, with the wavelengths of 910 nm and 725 nm, respectively (Banala et al., 2018; Chen et al., 2020; Kozorovitskiy et al., 2015; Wu et al., 2021; Xiao et al., 2018). The location of the laser beam was controlled by a two-dimensional galvanometer scanning mirror system (HSA Galvo 8315K, Cambridge Technology). Fluorescence emission was passed through a dichroic beamsplitter (FF670-SDi01-26x38, Semrock) and a bandpass filter (FF02-520/28, Semrock). Emission light was collected by two PMTs (H10770P, Hamamatsu). MATLAB script-based data acquisition software ScanImage (Pologruto et al., 2003) was used to acquire images. Laser intensity was controlled by Pockels cells, with laser power at the sample plane of 10-15 mW. For glutamate uncaging experiments, to isolate NMDAR currents the following drugs were included in the ACSF bath: 1 µM TTX (Tocris, 1069), 1 µM Gabazine (Tocris, 1262), 1 µM NBQX (Tocris, 0373), 1 µM strychnine (Sigma-Aldrich, S8753), 1 µM Pyr-3 (Tocris,3753), 1 mM MNI-caged-L-glutamate. Images were acquired at 2X magnification, sampled at 15.6 Hz continuously, 1 ms dwell time per pixel, 256 x 256. Uncaging was performed using 1 ms pulses at 725 nm power (10-20 mW). Each trial was 15 seconds long with a 60 second ITI between trials. The mean NMDAR current for each cell was calculated across all trials that evoked a response.

For two-photon experiments imaging GRAB_DA2h data were acquired with a 3.9 Hz sampling rate, each trial lasted ~25 seconds with an ITI of 150 seconds. A monopolar stimulating electrode was placed 100-200 µm away from cell being imaged within white matter tracts. The electrical stimulation (50 pulses, 50 Hz, 100 µs pulse width, 100-300 µA) was delivered every 150 seconds. Five to ten baseline trials were acquired before
the flow-in of Drd2 antagonist (1 µM L-741,626). For optogenetic experiments, the same imaging parameters as for electrical stimulation experiments were used. Instead of electrical stimulation, CoolLED pe300 (CoolLED Ltd., Andover, UK) was used to activate ChR2 (200 pulses at 39 Hz, 2 ms pulses, 460 nm, 3-5 mW/cm²). For these experiments we visually verified the expression of ChR2+ in LC axons post hoc, using the fused mCherry fluorophore. To avoid activating TH+ Pkj cells, we excluded acute slices from animals with Pkj cells expressing mCherry.

Pharmacology

All drugs were purchased from Sigma Aldrich (St. Louis, MO), or Tocris (Bristol, UK). SKF 81297 hydrobromide (Tocris, 1447) was applied either as puff (500 µM) or flow in (10 µM) depending on experiment type. All other drugs were bath applied: SCH-39166 hydrobromide (Tocris,2299), SCH-23390 hydrochloride (Tocris, 0925), SKF-83566 hydrobromide (Tocris, 1586), Strychnine (Sigma-Aldrich, 8753), Tetraethylammonium chloride (Sigma-Aldrich, 86614), TTX (Tocris Bioscience, 1069), (RS)-CPP (Tocris Bioscience, 0173), NBQX (Tocris Bioscience, 0373), SR 95531 hydrobromide (Tocris Bioscience, 1262), MNI-caged-L-glutamate (Tocris Biosciences 1490), L-741,626 (Tocris Bioscience, 1003), Pyr-3 (Tocris,3753), prazosin (Sigma-Aldrich, P7791), propranolol (Sigma-Aldrich, 40543), quinpirole hydrochloride (Tocris Bioscience, 1061). For experiments requiring pharmacological agents dissolved in DMSO the total bath concentration never exceeded 0.02% DMSO.

Analysis and statistics

No statistical methods were used to pre-determine sample sizes, but our sample sizes are similar to those reported in previous publications using similar methods. Custom MATLAB (MathWorks, Natick, MA) scripts were used for analysis of electrophysiology data. For current clamp recordings we analyzed membrane voltage, firing rate, input resistance, and action potential half width. Membrane voltage was calculated using a median filter to exclude changes due to action potential firing. Data from cell-attached recordings were used to quantify spontaneous firing rate without perturbing the membrane. Data from voltage clamp recordings were first baseline subtracted and then analyzed for width, peak of evoked current traces and total charge of evoked currents. For all electrophysiological recordings reported mean values from each cell are the average of 10 trials. Fluorescence intensity signals from GRAABDA2h imaging experiments were measured in FIJI (Schindelin et al., 2012), data were then analyzed in MATLAB. Fluorescence signal for each trial was normalized as ΔF/F. Summary values were aggregated in GraphPad Prism 5 (GraphPad, LaJolla, CA) for all statistical tests. All population data were tested for normality using Shapiro-Wilk normality test, D'Agostino & Pearson omnibus normality test, and KS normality test. Paired t-test or paired Mann-Whitney U test were used, as appropriate. For comparisons between current clamp datasets, we used Kruskal-Wallis test with Dunn’s multiple comparison post hoc tests. In all figures, bars represent mean +/- SEM. To compare EPSC/IPSC ratios and changes in Pkj cell firing rates we used a simple linear regression. Group allocation was randomized, as indicated in our methods section under the analysis and
statistics subsection. All data analysis used batch processing with the same code and parameters. For
histological analyses comparing expression of proteins or mRNA between brain regions the same intensity
and size thresholds were applied.

REFERENCES

immunoreactivities in Purkinje cells of the mutant mice, tottering and tottering/leaner. Neuroscience 71,
461–475.

cortex. Exp. Brain Res. 29, 265–274.

M.C., Lundblad, T.M., Martin, J.B., et al. (2008). Neurochemical characterization of tyrosine hydroxylase-
immunoreactive interneurons in the developing rat cerebral cortex. Brain Res. 1222, 95–105.

Austin, M.C., Schultzberg, M., Abbott, L.C., Montpied, P., Evers, J.R., Paul, S.M., and Crawley, J.N.
(1992). Expression of tyrosine hydroxylase in cerebellar Purkinje neurons of the mutant tottering and leaner

Characterization of a mouse strain expressing Cre recombinase from the 3’ untranslated region of the

350.

Basile, A.S., and Dunwiddie, T. V. (1984). Norepinephrine elicits both excitatory and responses from

Beas, B.S., Wright, B.J., Skirzewski, M., Leng, Y., Hyun, J.H., Koita, O., Ringelberg, N., Kwon, H.-B.,

Houck, B.D., and Person, A.L. (2015). Cerebellar premotor output neurons collateralize to innervate the

Supplementary Information

Dopaminergic regulation of vestibulo-cerebellar circuits through unipolar brush cells

Jose Ernesto Canton-Josh, Joanna Qin, Joseph Salvo, Yevgenia Kozorovitskiy*

Department of Neurobiology, Northwestern University, Evanston, IL 60208

*Corresponding author: Yevgenia.Kozorovitskiy@northwestern.edu
Figure 1—figure supplement 1. Co-localization of tdT+ UBCs with UBC subtype markers and Drd1 mRNA.

A. The proportion of cells co-labeled by known immunohistochemical markers of UBC subtypes and tdT in Drd1-Cre; tdT mouse line. Left: A subset of Tbr2+ UBCs were co-labeled by tdTomato, while all tdT+ cells expressed Tbr2 protein. Center: tdT+ and mGluR1+ UBCs show substantial overlap. Right: Few CR+ UBCs express tdT. Ratios represent the population of co-labeled cells divided by the total number of cells expressing a given marker.

B. A comparison of Drd1+ tdTomato+ UBCs between two age groups and across sex show similar proportions of UBCs that express Drd1 transcripts. (n=4 total mice, P25 n=2, P55 n=2, Female n=3, Male n=1).

C. A histogram of the number of Drd1 puncta per each UBC tdT+ soma (n=4 mice, 2553 cells).

D. 3D quantification of Drd1 puncta per unit volume shows 40-fold enrichment within the somata of UBCs expressing tdT, compared to regions outside tdT+ ROIs.
Figure 2—figure supplement 1. Characterization of Drd1 receptor activation effects on UBC firing and postsynaptic currents.

A. Comparison of changes in firing rate in response to SKF81297 application shows no difference across sex (unpaired t-test, Mann-Whitney U test, p=0.42).

B. Comparison of changes in firing rate in response to SKF81297 application across lobules IX and X of the vermis (unpaired t-test, Mann-Whitney U test, p=0.62).

C. Comparison of changes in firing rate in response to SKF81297 application across age (P20-P40) ($R^2=0.099$, ns).

D. Comparison of changes in action potential half-width shows an increase with application of SKF81297, but not ACSF (Kruskal-Wallis test, $p=0.0026$, Dunn’s multiple comparison test, *$p<0.05$, ** $p<0.01$).

E. NMDAR currents modulated by Drd1 activation are largely blocked by flow in of 10 µM CPP.
Figure 3—figure supplement 1. Potential dopamine sources for vestibulo-cerebellum.

A. Example images from the cerebellum of Drd1a-Cre;tdT mouse, immunolabelled for TH, showing TH+ Pkj cells and tdT+ UBCs in lobules IX/X of the cerebellar vermis. Scale bar, 250 µm.

B. LRN neurons, labeled by Vglut1 show little overlap with Th or vesicular monoamine transporter type 2 (Vmat2) Scale bar, 100 µm.

C. Quantification of transcripts involved in synthesis and release of DA. Top: Few LRN neurons express transcripts for Vmat2 or Th.

D. The few LRN neurons (n=3 mice) that express Vmat2 and Th express low transcript numbers in comparison to SNc neurons (n=2 mice). Grey bars represent counts from SNc DA neurons, black bars represent LRN cells.
Figure 5—figure supplement 1. Structural and functional evaluation of DA release from LC fibers in the cerebellum.

A. Images of LC axons in the granular and molecular layer of lobule X after injection of AAV1-CAG-FLEXFRT-ChR2(H134R)-mCherry into the LC. Greyscale LUT for left and middle panels; for overlay image, inverted greyscale (mCherry) and blue (Hoescht). Scale bar, 50 µm.

B. Peak fluorescence change in GRAB\textsubscript{DA} expressing UBCs after a flow-in of Drd2 agonist (1 µM quinpirole).

C. Comparison of changes in firing rate in response to SKF81297, optogenetic activation of LC fibers, and optogenetic LC activation in the presence of Drd1 antagonist.

D. Same as C but for firing rate fold changes.
Figure 7—figure supplement 1. Inhibitory postsynaptic currents in UBCs in response to Pkj optogenetic activation.

A. Single trial example traces from 5 different UBCs show variability in the amplitude of response across cells, on the background of low spontaneous IPSC rate, after optogenetic stimulation of Pkj cells. Scale bar, 20 pA, 1 sec.