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Abstract

Motivation

Seurat is one of the most popular software suites for the analysis of single-cell RNA sequencing

data. Considering the popularity of the tidyverse ecosystem, which offers a large set of data

display, query, manipulation, integration and visualisation utilities, a great opportunity exists to

interface the Seurat object with the tidyverse. This gives the large data science community of

tidyverse users the possibility to operate with a familiar grammar.

Results

In order to provide Seurat with a tidyverse-oriented interface without compromising on

efficiency, we developed tidyseurat, a light-weight adapter to the tidyverse. Cell information is

automatically displayed as a tibble abstraction, which interfaces Seurat with dplyr, tidyr, ggplot2

and plotly packages powering efficient data manipulation, integration and visualisation. Iterative

analyses on data subsets is enabled by interfacing with the popular nest-map framework.

Availability and implementation

The software is freely available at cran.r-project.org/web/packages/tidyseurat/ and

github.com/stemangiola/tidyseurat

Contact

Stefano Mangiola (mangiola.s@wehi.edu.au) and Anthony T Papenfuss

(papenfuss@wehi.edu.au).

Introduction

Nucleotide sequencing at the single-cell resolution level has proven to be a disruptive technology

that is revealing unprecedented insights into the role of heterogeneity and tissue

microenvironment in disease (Xiao et al., 2019; Keil et al., 2018). Single-cell RNA sequencing

data allows the robust characterisation of tissue composition (Abdelaal et al., 2019), the
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identification of cellular developmental trajectories (Gojo et al., 2020; Chen et al., 2019; Van den

Berge et al., 2020; Saelens et al., 2019), and the characterisation of cellular interaction patterns

(Cabello-Aguilar et al.; Kumar et al., 2018; Shao et al., 2020). In recent years, the scientific

community has produced a large number of computational tools for the analysis of such data

(Butler et al., 2018; Lun et al., 2016; McCarthy et al., 2017). One of the most popular of these,

Seurat (Butler et al., 2018; Stuart et al., 2019), stores raw and processed data in a highly

optimised, hierarchical structure (Figure 1A). This structure is displayed to the user as a

summary of its content. The user can extract and interact with the information contained in such

a structure with Seurat custom functions.

Machines and humans often have orthogonal needs when interacting with data. While

machines prioritise memory and computation efficiency and favours data compression, humans

prioritise low-dimensional data display, and direct and intuitive data manipulation. Considering

that low-dimensionality data representation often requires redundancy, it is challenging to

balance all priorities in a unique data container. Separating roles between the back-end data

container and the front-end data representation is an elegant solution for ensuring both

transparency and efficiency. The scientific community has tackled this issue by offering visual

and interactive representation of Seurat single-cell data containers. For example, Cerebro (Hillje

et al., 2020) is a Shiny-based standalone desktop application (Web Application Framework for R

[R package shiny version 1.5.0], 2020) that enables the investigation and the inspection of

pre-processed single-cell transcriptomics data without requiring bioinformatics experience. This

application can import and export Seurat data containers. Similarly, BioTuring (BioTuring INC)

offers a web visual interface for facilitating data analysis by scientists without coding experience.

NASQAR (Yousif et al., 2020) (GitHub.com/nasqar) enables interactive analysis of a wide

variety of genetic data including single-cell RNA sequencing data from Seurat. Single Cell

Viewer (SCV) (Wang et al.) is an R shiny application that offers users rich visualization and

exploratory data analysis options for single cell datasets, including Seurat. Although these tools

allow an intuitive data representation and analysis, they are not fully programmable and therefore

not suitable for reproducible research. Moreover, they are hardly expandable and cannot easily
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incorporate all tools that the scientific community publishes in R data analysis repositories such

as CRAN (Ripley, 2001) and Bioconductor (Huber et al., 2015).

Recently, efforts have been made toward the representation and manipulation of data

using the concept of data tidiness (Wickham et al., 2019). This paradigm allows the organisation

of information as a two-dimensional, highly flexible table (referred to as tibble, a type of a data

frame), with variables oriented in columns and observations oriented in rows. This new standard

has become extremely popular in many fields of data science. The application of tidiness

principles would be extremely powerful applied to single-cell transcriptomic data; because it

directly captures how biological data measurements relate to experimental design and metadata

(e.g. technical and clinical properties of transcripts, cells and biological replicates). The shift

from a compressed and hierarchical to a tabular data representation of cell- (by default) and/or

transcript-related information has the immediate advantages for scientific awareness, and enables

the direct interfacing with a large ecosystem of tidy-oriented APIs for data manipulation and

visualisation, thus facilitating data analysis and reproducibility for researchers across a wide

spectrum of computational literacy. For example, tidyseurat allows to display, plot, modify, join

or delete information, filter, subsample, nest and map functions, summarise information of a

Seurat object without leaving the tidyverse syntax and without the need of package specific

syntax. This is particularly powerful in perspective of a tidy counterpart for

SingleCellExperiment (Amezquita et al., 2020) objects, moving toward a unified interface for

single-cell data containers. As for comparison, although the indirect interface between Seurat

objects and the tidyverse is possible, it requires intermediate steps in order to extract information

that can be passed to downstream APIs. For example, building a custom plot that integrates

reduced dimensions with cell-wise annotations (e.g. library size, mitochondrial transcription,

cell-type identity) requires first an integration of multiple data frames (e.g. included in the slots

metadata, and reductions) with custom routines (e.g. direct querying for metadata and

Embeddings for reduced dimensions).

Here we present tidyseurat, an adapter that interfaces Seurat, the most popular single-cell

RNA sequencing data analysis tool, with tidyverse, the most popular R data analysis framework.

Although the underlying data container is Seurat’s, when displayed on screen the cell-wise
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information (normally hidden from the user the the object is displayed on screen) is organised as

a tibble abstraction (Figure 1B). Tidyseurat includes adapters to the vast majority of methods

included in dplyr (Hadley Wickham et al., 2019), a powerful grammar of data manipulation;

tidyr (Mailund, 2019) a large collection of methods for data reshaping and grouping; ggplot2

(Wickham et al., 2016), the most popular R visualisation tool; and plotly (Inc, 2015), a powerful

tool for interactive visualisations. As a result, the user can perform efficient analyses using

Seurat (and Seurat-compatible software), while visualising, manipulating, integrating and

grouping the data using tidyverse (-compatible for plotly) software. This package is aimed at

analysts of single-cell data who favors the use of tidyverse and Seurat. Tidyseurat is part of a

larger ecosystem called tidytranscriptomics that aims to bridge the transcriptomics and tidy

universes (github.com/stemangiola/tidytranscriptomics).

System and methods

Data user interface

Tidyseurat abstracts the complexity of the data container and provides a friendlier interface for

the user. This abstraction can be obtained by applying the method `tidy()` to a Seurat object.

Tidyseurat implements an improved data display method (replacing the Seurat ‘show’ method)

mapping the cell-wise information into a user-friendly table. By default, cell-wise information is

displayed to the user (e.g. cell-cycle phase, cluster and cell-type annotation), leaving the

transcript information available upon request using the `join_transcripts` function. This function

adds transcript identifiers, transcript abundance and transcript-wise information (if present; e.g.

gene length, genomic coordinates and/or functional annotation) as additional columns. Cell-wise

information is prioritised over transcript-wise information on the rationale that it is more often

directly queried.

The tidyseurat tibble abstraction includes two types of columns, columns that can be interacted

with and modified, and columns that are view only. The editable columns are part of the cell

metadata, while the view-only columns are those that are calculated such as reduced dimensions

(e.g. principal component and UMAP dimensions). The default integration of all cell-wise

information in one tibble representation, including reduced dimensions facilitated data
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visualisation, filtering and manipulation. To allow the manipulation and plotting of the data using

the tidyverse ecosystem, the dplyr, tidyr, ggplot2, and the tidyerse-compatible plotly routines

have been adapted to work seamlessly with the back-end Seurat data structure, allowing the user

to operate as if it was a standard tibble. This abstraction strategy allows the data to appear as a

tibble for end-users and the tidyverse (Table 1) but appear as a Seurat container for any other

algorithm, thus preserving full backward compatibility (Figure 2).

API user interface

Thanks to R’s S4 class inheritance, tidyseurat objects can be operated by any Seurat compatible

algorithms. The seamless integration with the tidyverse is obtained through adapters for the vast

majority of methods in the packages dplyr, tidyr, ggplot2; as well as plotly (Figure 2). These

methods can be separated into three groups based on the action that they perform on the

back-end Seurat container. Methods such as `mutate`, `left_join`, `separate`, `unite` and `extract

`, `select` manipulate or subset the information present in the cell-wise metadata. Methods such

as `slice`, `filter`, `sample_n`, `sample_frac`, `inner_join` and `right_join` subset specific cells

based on a wide range of criteria. Methods such as `bind_rows` join two or more datasets. All

these methods return tidyseurat tables if those procedures do not lead cell duplication and if key

columns (e.g. cell identifier) are not excluded; otherwise a tibble is returned for independent

analyses. Another group of functions such as `summarise`, `count`, `distinct`, `join_transcripts`

and pull return a tibble and an array respectively by design, for independent analyses.

Tidyverse-compatible visualisation methods include ggplot and plotly. These methods operate on

the tibble abstraction of the data. Such abstraction allows the application of the nest-map

tidyverse framework. Briefly, nesting enables tables to be divided into subsets according to any

combination of columns and to nest them into a column; the map function allows to iteratively

apply operations across subsets. Applied to single-cell data containers, this tool confers great

robustness, flexibility and efficiency.

Algorithm and implementation

To demonstrate the use of tidyseurat, we provide as example an integrated analysis of peripheral

blood mononuclear cells from public sources. We show the main steps of a common workflow,
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along with code examples (Figure 3) and tidyverse-compatible visualisations (Figure 4). As an

example, we show how data manipulation and filtering can result in a three folds reduction in

coding lines and a decrease in temporary variables compared to Seurat alone (Supplementary

code chunk 1).

Data import, polishing and exploration

The single-cell RNA sequencing data used in this study consists of seven datasets of peripheral

blood mononuclear cells, including GSE115189 (Freytag et al., 2018), SRR11038995 (Cai et al.,

2020), SCP345 (singlecell.broadinstitute.org), SCP424 (Ding et al., 2019), SCP591 (Karagiannis

et al., 2020) and 10x-derived 6K and 8K datasets (support.10xgenomics.com/). In total, they

include 50706 cells. Data exploration is a key phase of any analysis workflow. It includes data

visualisation and production of summary statistics, in combination with dimensionality reduction

and data scaling. The Seurat data container is abstracted to its tidy representation with the

command `tidy`, and the polishing of cell-wise annotations (cell-cycle phase and sample name)

can be achieved with tidyverse commands (Figure 3, Import and polishing; Supplementary code

chunk 2). Key cell properties included in the resulting table (e.g. proportion of mitochondrial

transcripts and cell-cycle phase; Figure 4A) can be visualised in a faceted and integrated fashion

using common tidyverse tools (Figure 3, Plot summary). This visualisation facilitates quality

control, helping identify potential low-quality samples such as SCP424 (Figure 4A).

Dimensionality reduction

Dimensionality reduction is a key step of single-cell RNA sequencing data analysis, as it allows

visualising cell heterogeneity in a plot (Figure 3, Dimensionality reduction). Beside principal

component analysis (PCA) (Venables and Ripley, 2002), methods such as uniform manifold

approximation and projection (UMAP) (McInnes et al., 2018) are commonly used to better

define local similarities, while preserving global distances. Seurat and tidyverse methods can be

seamlessly integrated through tidyseurat for the calculation and visualisation of UMAP

dimensions (Figure 3, Dimensionality reduction). The reduced dimensions are displayed as (view

only) additional columns of the tidyseurat table. The use of tidyverse (Wickham et al., 2019) for

visualisation allows great customisation of two-dimensional plots (Figure 4B). The advantage of
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tidyseurat here is the presence of cell annotation and reduced dimension in the same data frame,

that can be used for arbitrarily complex annotated visualisations (Supplementary code chunk 3).

Three-dimensional plots can be produced effortlessly applying plotly (Sievert, 2020) on the

tidyseurat tibble abstraction (Figure 4B). Visualising a third reduced dimension confers better

awareness of cell heterogeneity and clustering. Dimensionality reduction shows 3 main cell

clusters and a minor intermediate cell cluster (Figure 4B, top). The main cluster (bottom-left)

includes 69% of all cells (Mangiola, 2020). The display of the third UMAP dimension in an

interactive environment gives an additional perspective on cell heterogeneity and compared to

only calculating and visualising the first two  (Figure 4B, bottom).

Clustering and marker genes identification

Unsupervised clustering based on cell transcription is essential to quantitatively define

self-similar groups of cells. Similarly to previous procedures, Seurat and tidyverse commands

can be concatenated though inference and visualisation steps (Figure 3, Clustering;

Supplementary code chunk 4). The newly calculated cluster identities will be displayed as

additional columns in the tidyseurat table. The cell clustering information can be used to identify

the marker genes that are preferentially transcribed in each cell group (Figure 3, Gene marker

identification). This information is key in order to define cell identities. Gene marker

identification can be performed with Seurat, and transcript abundance distribution can be

visualised for selected marker genes in a faceted and integrated manner using tidyverse (Figure

4C). The advantage of tidyseurat here is the ease of the integration of the transcript and cell

information in the same data frame (through `join_transcripts`) for joint manipulation, filtering

and visualisation (Supplementary code chunk 5). Cell-wise transcript abundance for marker

genes can be also efficiently visualised using a heatmap. While it is possible to use the Seurat

integrated heatmap function (DoHeatmap), the tidyverse-style heatmap method (Mangiola and

Papenfuss, 2020), tidyHeatmap, allows for more flexibility. For example, several cell-wise data

(e.g. principal components) can be added as annotations, choosing among several visualisations

(e.g. tile, point, line and bar; Figure 4E). The integration of diverse information facilitates quality

check and curation. Shared-nearest-neighbour (SNN) method (Ertöz et al., 2003) for

unsupervised clustering identified 24 cell clusters with default settings. The biggest cluster

7

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 29, 2021. ; https://doi.org/10.1101/2021.03.26.437294doi: bioRxiv preprint 

https://paperpile.com/c/LxSiLa/kl1K
https://paperpile.com/c/LxSiLa/BtPa
https://paperpile.com/c/LxSiLa/LtVv
https://paperpile.com/c/LxSiLa/LtVv
https://paperpile.com/c/LxSiLa/bGgY
https://doi.org/10.1101/2021.03.26.437294


includes the 17% of cells. The biggest supercluster including 69% of all cells encompasses 18

clusters.

Cell type inference

While the classification of cell clusters in cell-type categories can be performed manually

through the analysis of marker genes, the automatic cell and/or cluster classification can

represent a key first step in the process. Several methods are publicly available

(Alquicira-Hernandez et al., 2019; Nagendran et al., 2018; Jaitin et al., 2014; Tan and Cahan,

2019; Kim et al., 2019). SingleR (Aran et al., 2019) is a popular tool, able to classify both

clusters and single cells using transcriptional references. While using cluster identity to drive the

cell-type classification can benefit from data aggregation and improve the overall robustness of

the inference, it relies on the goodness of clustering and on the assumption that cells within the

same cluster are of the same type. On the contrary, single-cell classification avoids biases due to

clustering but introduces challenges relative to the absence of data hierarchy. Using tidyseurat,

the consistency between these two methods can be visually and quantitatively checked (Figure 3,

Comparison of cell classification). The tidyverse-style alluvial visualisation is ideal to

communicate the differences in classification with or without cluster information, and integrates

with the tidy data structure (Bojanowski and Edwards, 2016; Kennedy and Sankey, 1898;

Brunson, 2020) (Figure 4D). Using the Human Protein Atlas reference (Uhlén et al., 2015), eight

cell types were identified in total (including platelets, T-, B-, pre-B-, natural killer, monocyte,

myeloid progenitor and hematopoietic stem cells). For both classification approaches (cluster- or

cell-wise) the most abundant cell type was T-cells, including on average 51% of all cells. In total,

the 9.4% of cells were classified differently between the two methods (Figure 4D).

Nesting

Subsetting the data according to sample, cell identity and/or batch is a common step of a

standard analysis workflow. For example, grouping according to major cell subtypes (e.g.

lymphocytes, myeloid and stromal cells) might be needed for independent analysis with

improved resolution; performing independent analyses across biological replicates can be useful

to assure that data integration is not creating artifacts; or similarly, balanced subsampling across
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biological replicates might be needed for an unbiased visualisation of reduced dimensions. This

can be obtained by manually splitting the data into subsets according to a variable and iteratively

applying procedures to each subset. Tidyverse gives a more powerful and intuitive framework to

perform such operations on tibbles. The functions nest (Mailund, 2019) allows to nest data

subsets into a table column according to any combination of variables, and map (Henry and

Wickham, 2018) allows iterating procedures across such subsets without leaving the clear and

explicit tibble format. An example is shown (Table 2; Figure 3, Nesting) where (i) cell types are

grouped in lymphoid and myeloid, and (ii) variable gene transcripts are independently identified

for each of the two cell populations with an increased resolution, without the need to create any

temporary variable.

Discussion

Seurat is the most popular single-cell RNA sequencing data analysis workflow. It includes

user-friendly methods for data analysis and visualisation. However, data query, manipulation and

visualisation requires Seurat-specific functions. This ultimately limits critical data evaluation,

scientific awareness and discoveries. The R data-science community has settled on a robust,

consistent and modular data representation, which is referred to as tidy. Tidyseurat exposes the

data contained in the complex hierarchical structure of a Seurat object in the form of a tidy table.

As a result, the data is readily visible and transparent to the user, who can leverage the large

computational and visualisation tidy ecosystem. Considering that tidyverse syntax and

vocabulary (e.g. dplyr and tidyr) is becoming common knowledge, the domain-specific

bioinformatic knowledge required to operate with Surat object is in practice greatly diminished.

Most importantly, the full compatibility with the Seurat ecosystem is not compromised. By

default, Seurat provides a wide range of custom methods for data plotting, where the data is

internally extracted from its hierarchical container. The customizability of these methods is

necessarily limited and achieved through setting command parameters. The tidyverse includes an

increasing number of connected modules for data visualisation, that the transparent tidy data

representation can leverage, eliminating the need of custom methods. The amount of information

and heterogeneity within single-cell RNA sequencing data often requires data subsetting and
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reanalysis. For example, highly diverse broad cell populations such as lymphoid and myeloid are

often subset and analysed independently to decrease the inference complexity and increasing

resolution. While it is commonly required to manually subset the Seurat object, perform iterative

analysis for each subset, and reintegrate the objects (if necessarily), the tidy abstraction enables

the use of the nest-map paradigm. This elegant and powerful paradigm allows self-contained and

robust iterative analysis on data subsets. Tidyseurat is a standalone adapter that improves

analysis reproducibility and scientific awareness, in a user-friendly way, without changing the

user’s familiar Seurat analysis workflow. As the display and manipulation is centered on

cell-wise information by default, the use of tidyseurat does not add any perceptible overhead.

This approach is particularly powerful in moving toward a unified interface for single-cell data

containers together with a tidy counterpart for SingleCellExperiment objects. We anticipate that

this data abstraction will be also the pillar of more extensive analysis-infrastructures based on the

tidy paradigm, such as has happened for bulk RNA sequencing data (Mangiola et al., 2021). In

summary, tidyseurat offers three main advantages: (i) it allows tidyverse users to operate on

Seurat objects with a familiar grammar and paradigm; (ii) it streamlines the coding, resulting in a

smaller number of lines and fewer temporary variables compared with the use of Seurat only;

and (iii) it provides a consistent user interfaces shared among other tidy-oriented tools for

single-cell and bulk transcriptomics analyses (e.g. tidySingleCellExperiment and

tidySummarizedExperiment). The package tidyseurat offers extensive documentation through

methods description, vignettes (accessible typing browseVignettes("tidyseurat")), and through

workshop material (e.g. rpharma2020_tidytranscriptomics, ABACBS2020_tidytranscriptomics at

github/stemangiola).
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Code availability

Tidyseurat is available on GitHub github.com/stemangiola/tidyseurat, and on CRAN

cran.r-project.org/package=tidyseurat. The web page of the tidyseurat package is

stemangiola.github.io/tidyseurat. The example code included in this manuscript is available as a

markdown file at github.com/stemangiola/tidyseurat/vignettes. Seurat version 3 was used in this

study.
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Tables and figures

Table 1. Example of a tidyseurat table. Pre-existing cell-wise annotation and new calculated information is all

coexisting in a unique table.

# A Seurat-tibble abstraction: 8033 x 11

# Transcripts=1000 | Active assay=SCT | Assays=RNA, SCT

Cell Total count Total transcripts PC1 PC2 PC... UMAP2 UMAP2 UMAP... Cluster Cell type

cell_1 10456 450 -1.23 -2.11 ... -3.47 3.51 ... 1 T cell

cell_2 2088 400 0.98 3.09 ... -1.59 -2.8 ... 2 B cell

cell_3 11309 699 5.55 -0.02 ... 1.26 0.39 ... 5 Monocyte

cell_4 8791 423 -5.42 1.12 ... -4.42 -3.63 ... 1 Monocyte

Table 2. Example of a nested tidyseurat table, with gene markers calculated internally for each major immune cell

type. This is obtained with the nest-map combination from tidyverse.

# A tibble 2 x 3

Cell class Data Top Markers

lymphoid <tidyseurat> RPL34, RPS27, RPL32,
RPS3A, RPL21, RPL31

myeloid <tidyseurat> S100A8, S100A9,
S100A12, VCAN,
CYP1B1, CD14
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Figure 1. Comparison between the data structure (Cui, 2020) (top; abstracted tibble for

tidyseurat) and the information presented to the user (bottom) for Seurat (panel A) and tidyseurat

(panel B; including transcript information). The data set underlying these visualisations is a

subset of a peripheral blood mononuclear cell fraction provided by 10X (10xgenomics.com/).
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Figure 2. Cheatsheet of the tidyverse functionalities that tidyseurat enables for Seurat objects. This cheatsheet

provides examples of the alternative tidyverse and Seurat syntax. The green colour scheme includes procedures that

output a tidyseurat, if: (i) do not lead cell duplication; and (ii) key columns (e.g. cell identifier) are not excluded,

modified nor renamed (e.g., through a select, mutate and/or rename commands). In this case, a table (rather than an

abstraction) is returned for independent analysis and visualisation. The blue colour scheme includes procedures that

return tibble tables for independent analyses and plotting. The grey-shaded boxes include the alternative code

utilising Seurat and base-R.
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Figure 3. Pseudo-code representing the procedures for the analysis of single-cell RNA sequencing data analysis

using integrating Seurat and tidyverse functions through tidyseurat.
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Figure 4. Tidyverse-compatible libraries offer powerful, flexible and extensible tools to visualise single-cell RNA

sequencing data. Natively interfacing with such tools expands the possibilities of the user to learn from the data.

Graphical results of the example workflow, integrating Seurat and tidyverse with tidyseurat. A. Sample-wise

distribution of biological indicators; including proportion of mitochondrial transcripts and cell-cycle phase scores.

For optimum visualisation, a 20% subsampling was performed on the cell set. B. Cells mapped in two- and

three-dimensional UMAP space. The default integration of reduced dimensions, together with other cell-wise

information, in a tibble abstraction facilitates such visualisation. C. Distribution of transcript abundance for some

marker genes, identified for each cluster identified by unsupervised estimation. Cells mapped in two-dimensional

Uniform Manifold Approximation and Projection (UMAP) space. D. Mapping of cells between the cell- or

cluster-wise methods for cell-type classification. Only large clusters are labelled here. The colour scheme refers to

cell types classified according to clusters. The bottom containers refer to the classification based on single cells. E.

Heatmap of the marker genes for cell clusters, produced with tidyHeatmap, and annotated with data source and the

first principal component. Only the ten largest clusters are displayed. The integrated visualisation of transcript

abundance, cell annotation, and reduced dimensions is facilitated by the `join_transcripts` functionality and by the

default complete integration of cell-wise information (including reduced dimensions) in the tibble abstraction.
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