
 1

 

Predictors of zoonotic potential in helminths 

 

Ania A. Majewska1,2, Tao Huang3,4, Barbara Han3, John M. Drake1 

1. Odum School of Ecology and the Center for Ecology of Infectious Diseases, University of 

Georgia, Athens, Georgia, USA 

2. Biology Department, Emory University, Atlanta, Georgia, USA 

3. Cary Institute of Ecosystem Studies, Millbrook, New York, USA 

4. Ecology, Evolution, and Behavior, Boise State University, Boise, Idaho, USA 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 29, 2021. ; https://doi.org/10.1101/2021.03.28.437423doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.28.437423


 1

Abstract  1 

Helminths are parasites that cause disease at considerable cost to public health and present a 2 

risk for emergence as novel human infections. Although recent research has elucidated 3 

characteristics conferring a propensity to emergence in other parasite groups (e.g. viruses), the 4 

understanding of factors associated with zoonotic potential in helminths remains poor. We 5 

applied an investigator-directed learning algorithm to a global dataset of mammal helminth traits 6 

to identify factors contributing to spillover of helminths from wild animal hosts into humans. We 7 

characterized parasite traits that distinguish between zoonotic and non-zoonotic species with 8 

greater than 88% accuracy. Results suggest that helminth traits relating to transmission (e.g. 9 

definitive and intermediate hosts) and geography (e.g. distribution) are more important to 10 

predicting zoonotic species than morphological or epidemiological traits. Whether or not a 11 

helminth causes infection in companion animals (cats and dogs) is the most important predictor 12 

of propensity to cause human infection. Finally, we identified helminth species with high 13 

modeled propensity to cause zoonosis (over 70%) that have not previously been deemed to be 14 

of risk. This work highlights the importance of prioritizing studies on the transmission of 15 

helminths that infect pets and points to the risks incurred by close associations with these 16 

animals.    17 

 18 

 19 
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Introduction 21 

Understanding the factors that contribute to the emergence of novel infectious diseases 22 

is a central concern to global public health [1]. Since most outbreaks of novel pathogens among 23 

humans are due to spillover from animal hosts [2-4], identifying factors associated with the 24 

propensity for transmission to humans is of high priority. Research in this area is particularly 25 

urgent because the rate of human-wildlife contacts is increasing with changes to natural 26 

landscapes and global climate [5], providing ample opportunities for human exposure to novel 27 

hosts and pathogens [6, 7]. Identifying species that are potentially parasitic or pathogenic in 28 

humans (i.e., those with high zoonotic potential) would enhance our understanding of the factors 29 

underpinning spillover transmission from animal reservoirs, and enable preemptive approaches 30 

to disease control.  31 

One approach to evaluating zoonotic potential is to analyze pathogen and host traits 32 

[e.g. 8]. Particularly, features distinguishing zoonotic from non-zoonotic parasites and their 33 

reservoir host species can be used to predict which species are most likely to present high risk 34 

of zoonotic exposure to people [9]. For example, work by Han, Schmidt [10] identified ‘fast’ life 35 

history strategy (short-lived, short generation time) as a key predictor of the rodent species most 36 

likely to be reservoirs of novel zoonotic pathogens. Trait analysis of zoonotic viruses revealed 37 

that viruses which can replicate in cytoplasm are more likely to infect humans [11] and viruses 38 

which infect nonhuman primates predict the transmissibility of a virus between humans [12]. 39 

Patterns in genome sequences of viruses have also yielded predictions on which hosts are 40 

likely to be reservoirs of zoonosis and which arthropods are likely to be their vectors [13]. These 41 

findings are of scientific interest concerning the current theoretical debate about why some 42 

parasite species are more prone to spillover [14-16]. 43 

Parasitic helminths are a group of parasites that remains poorly studied in comparison to 44 

viruses and bacteria, but may pose considerable future risk of human transmissibility. Helminths 45 
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are macroparasites, primarily known for chronic infections of the gastrointestinal tract, typically 46 

caused by tapeworms (cestodes), roundworms (nematodes), or flatworms (trematodes), 47 

although helminths can infect nearly all human tissues [17]. Helminths are also known to be 48 

vectors for other zoonoses, such as the fever-causing bacteria Neorickettsia sennestu 49 

transmitted by a trematode ingested via raw fish consumption [18]; although helminth vectoring 50 

remains understudied [19]. Human-helminth associations have ancient origins [reviewed in 20], 51 

but the relatively recent domestication of animals for food and companionship significantly 52 

increased the number of parasites shared between humans and (domesticated) animals [21]. 53 

The agricultural revolution and associated practices, such as storage of crops in granaries, likely 54 

created new links between humans and wildlife, providing additional opportunities for helminth 55 

species to infect human hosts [22]. To this day, zoonotic helminths continue to emerge within 56 

human populations, a process that may be further accelerated with the global trade of livestock, 57 

climate change and growth in the demand for animal protein for human consumption [23].  58 

Helminths are distinct from other human parasites, such as viruses and bacteria, in that 59 

they commonly have complex life cycles that rely on one or more intermediate hosts [24, 25]. 60 

These intermediate hosts are necessary for the development of juvenile life stages (eggs and 61 

larvae) and transmission to the definitive host, where the animal matures, reproduces and 62 

produces propagules [26]. Intermediate hosts include a wide range of aquatic, terrestrial, wild 63 

and domesticated animals [26], yet it is unknown how intermediate host identities are linked to 64 

risk of helminthiasis in humans. In addition, transmission may occur directly (i.e., trophically, 65 

vertically) and/or indirectly (i.e., via environment or arthropod vector). From a public health 66 

perspective, most chronic infections are caused by soil-transmitted helminths [27], however, the 67 

transmission modes of most zoonotic helminths have not previously been summarized. Thus, 68 

identifying helminth biological and ecological traits that are linked to zoonosis can help to 69 
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improve our understanding of the factors that drive zoonotic potential in helminths and to better 70 

manage risk of transmission to humans.  71 

In addition to intrinsic biological and ecological traits such as identity of definitive and 72 

intermediate hosts, transmission to humans also may be influenced by socio-economic factors 73 

specific to regions where the parasites are found. Currently, most helminth infections in humans 74 

are found in low and middle income countries of the tropics [27, 28], where disease prevention 75 

and healthcare infrastructure vary greatly. Numerous parasitic worms such as hookworms 76 

(genera Ancylostoma and Necator) are considered neglected tropical diseases which could be 77 

eliminated with sufficient drug administration and effective interventions [28]. Further, given the 78 

generally high animal biodiversity of tropical regions, it also may be that there are more host 79 

species of potential zoonoses in this part of the world [29], although previous work indicates that 80 

temperate regions contain more zoonotic helminths than tropical regions [9]. Thus, we 81 

conjectured that geographic traits of helminths might be important factors for predicting the 82 

probability that a species might infect humans. Despite the high variation in medical, 83 

educational, and economic burden of human helminth infections worldwide [28], how the 84 

different epidemiological and geographic factors relate to helminth zoonotic potential has been 85 

unclear.  86 

We investigated which traits of helminths are predictors of disease in humans. We 87 

compiled a global dataset from existing databases and the published literature on more than 88 

700 mammal helminth parasite species to examine the frequency of biological (transmission, 89 

morphology), epidemiological, and geographical traits. We used boosted regression trees, an 90 

ensemble learning technique, to navigate the high dimensionality of these data. These and 91 

similar machine learning methods are rapidly developing approaches that can be applied to 92 

hetereogeneous covariates and are often robust to nonlinear interactions hidden in the data [30, 93 

31]. Among over 70 variables, our machine learning approach identified key trait patterns 94 
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predicting helminth zoonosis. Specifically, whether a helminth species is zoonotic was best 95 

predicted by three characteristics: (1) whether one of the hosts is a companion animal (i.e. dog, 96 

cat), (2) whether an intermediate host is a fish (member of Chordata phylum), and (3) the 97 

number of unique locations in which the helminth species has been detected. More generally, 98 

this study adds to the growing body of literature used to inform strategies for preventing 99 

helminth infection and mitigating risk of novel zoonoses.  100 

 101 

Methods  102 

Data compilation 103 

We used the Global Mammal Parasite Database (GMPD) [32], which consists of over 700 104 

species of helminths, representing three main phyla (Acanthocephala, Nematoda, and 105 

Platyhelminthes) of parasitic helminths that infect wild mammals. Most emerging zoonotic 106 

diseases originate from mammals [33] and therefore a mammal-focused analysis is well-suited 107 

to identifying zoonotic risk factors. For each helminth species, we searched primary literature for 108 

evidence of human infection originating from animal hosts to assign a binary response indicating 109 

whether or not the helminth species is zoonotic. We acquired morphological information of 110 

adults and eggs from Benesh, Lafferty [34] and Dallas, Gehman [35] databases, both of which 111 

gathered information from the literature. To fill in gaps, we followed Dallas, Gehman [35] and 112 

searched for missing morphological information from veterinary and parasitology references 113 

(e.g. Taylor, Coop [36]), taxonomy references [26, 37], and primary literature. We extracted 114 

minimum, mean, and maximum body length and width (in millimeters) of adult helminths from 115 

the descriptions of each parasite species. We also extracted minimum, mean, and maximum 116 

egg length and width (in millimeters). We compiled records of male and female body sizes when 117 

that information was available. We recorded site of infection in the definitive host body when it 118 

was provided. 119 
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We supplemented transmission information within the above references by extracting the 120 

following: common name(s) of definitive and intermediate hosts, whether the species has a free-121 

living propagule stage (a binary variable), and if so, the stage of the free-living propagule as 122 

egg, larva, or both (as can occur in species that pass through more than one intermediate host), 123 

and the medium in which free-living stage(s) persist (soil, water, or both). We used the common 124 

names of intermediate hosts to note the class or phyla to which the intermediate animal host 125 

belongs, whether any of the host (definitive or intermediate) are domesticated animals (livestock 126 

and pets), or companion pet animals (predominantly cats and dogs). For each species we noted 127 

the transmission mode(s) to the definitive host as vertical (from parent to offspring), 128 

environmental (propagules acquired from the soil, water, or both), vector (via biting arthropod), 129 

or trophic (via consumption of intermediate host).  130 

The GMPD provides geographical coordinates for each helminth species, which we 131 

augmented with host‐helminth occurrence data from London Natural History Museum (LNHM) 132 

[38] available via R package helminthR [39]. Coordinates in the GMPD are from reported study 133 

site coordinates, or centroids of the reported study area [32]. Helminth occurrences in LNHM 134 

are georeferenced as centroids to the country or state (for the USA) level. In several instances 135 

coordinates were not provided by the databases, which we then georeferenced based on the 136 

location name using the geocode function [package ggmap; 40]. Some location names were 137 

obscure, such as the portion of a continent (e.g. southern South America) or body of water (e.g. 138 

southwest Atlantic), which we did not georeference. Next, based on the occurrence points of 139 

each species, we calculated the number of unique locations and latitudinal range (minimum and 140 

maximum), assigned a binary variable to indicate whether the species occurrences fall within 141 

the tropical latitudes (between 23° 27' N and 23° 27' S), and quantified the number of 142 

occurrences within tropical latitudes. We note that the number of unique locations reflects 143 

geographic distribution and sampling effort. From occurrence data we also calculated the 144 

number of countries, terrestrial ecoregions of the world (as defined by Olson, Dinerstein [41]), 145 
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and terrestrial zoogeographic realms (as defined by Holt, Lessard [42]) from which each 146 

helminth species has been reported. Further, following Byers, Schmidt [43] we calculated range 147 

size for each helminth species as the total area of the ecoregions in which the species has been 148 

found. Finally, we calculated the mean gross domestic product (GDP) and human population 149 

size of the countries (provided by package rworldmap in R [44]) in which the species has been 150 

documented. Our final dataset consisted of 737 globally distributed helminth species 151 

(supplemental materials Fig. S1) and 73 trait variables describing helminth species that we 152 

included in our analyses. We classified the traits into one of four categories: transmission, 153 

epidemiological, morphological, or geographical traits (see Table 1). For full descriptions of each 154 

variable see supplementary materials. 155 

 156 

Predictive model  157 

We used boosted regression trees (BRT), a regression approach that permits missing data, 158 

variable interactions, collinearity, and non-linear relationships between the response and 159 

explanatory variables, which can be of mixed types [30, 45]. We fit a logistic-like predictive 160 

model with the zoonotic status of the helminths (0: not zoonotic, 1: zoonotic) as the response 161 

variable and the 73 traits as explanatory variables. Prior to analysis, we log transformed body 162 

size variables, which were right skewed. We randomly selected 80% of the data as the training 163 

set and reserved 20% for testing. Boosted regression trees were trained using the gbm package 164 

in R [46] with Bernoulli distributed error. We ran permutations of the model with different 165 

learning rates (1 x 10-5 to 1 x 10-2) and tree depths (1 to 3) using the training set to identify 166 

optimal learning parameters yielding the highest predictive performance (see supplementary 167 

materials Fig. S2). The learning conditions that were identified as yielding highest accuracy as 168 

assessed by the model AUC score (area under the receiver operating characteristic curve) 169 

included setting the maximum number of trees to 50,000, a learning rate of 0.001, and an 170 

interaction depth of 3. We used permutation procedures to compute relative importance scores 171 
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for each predictor variable using Friedman’s algorithm [45]. We also build partial dependence 172 

plots, showing the marginal effect of each variable on the predicted outcome of the primary 173 

model [30, 45] (Fig. 1). Based on the results of the primary model, we ranked helminth species 174 

by their mean predicted probability of being transmissible to humans (Fig. 2).  175 

Finally, we repeated the above analysis using only the top 15 most important variables 176 

predicted by the primary model trained on all 73 variables, and permuted the model 100 times. 177 

To further evaluate the relative importance of trait category, we ran additional submodels, also 178 

permuted 100 times, with one of the four trait categories (transmission, epidemiology, 179 

morphology, geography) excluded (Fig. 3 and 4). We used R programming for all analyses [47]. 180 

 181 

Results  182 

We examined 737 globally distributed helminth species of which 137 are known to infect 183 

humans. Our boosted regression ensemble of models trained on 73 helminth traits distinguished 184 

zoonotic versus nonzoonotic species in the test dataset with 88% accuracy (AUC ± SE = 0.88 ± 185 

0.01) and identified several predictors of zoonotic helminths (Fig. 1). The most important 186 

variable for accurately predicting zoonotic helminths was whether the helminth species is known 187 

to infect a companion animal, followed by whether fish serve as intermediate hosts, and the 188 

number of locations in which the helminth species has been documented. The fourth and fifth 189 

most important traits predicting zoonotic status in helminths related to the size of terrestrial 190 

zoogeographic regions observed for each helminth species (Fig. 1). Generally, the most 191 

important traits were related to geography and transmission, while epidemiological and 192 

morphological traits were least important (for the relative influence values of all 73 variables see 193 

supplementary materials Table S1).  194 

While not currently known to cause human infection, BRT models identified 3 mammal-195 

borne helminth species as likely to be zoonotic with >70% probability (Fig. 2) (in descending 196 

order): Paramphistomum cervi, Schistocephalus solidus, and Taenia pisiformis. 197 
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Additional ensembles of BRT models restricted to the top 15 most important variables (as 198 

identified by the primary models with 73 traits included, see Fig. 1) predicted the testing data 199 

with higher accuracy (AUC = 0.91) compared to the primary models trained on all 73 traits (AUC 200 

= 0.89). The restricted submodels trained on the 15 variables generally agreed on the ranking of 201 

the importance of variables with the primary models (Fig. 3). Submodels trained on data without 202 

one of the trait categories (i.e., leave-one-out) indicated that model trained on data without 203 

morphological traits performed slightly worse (AUC = 0.90) compared to submodels with all trait 204 

categories included (AUC = 0.91; Fig. 3), suggesting that including these features improved the 205 

predictive accuracy of our models. Models trained on data with epidemiological traits left-out 206 

performed best (AUC = 0.92; Fig. 3). Finally, models trained on data without geographical traits 207 

or transmission traits performed worse than models with other categories left out (AUC = 0.87, 208 

AUC = 0.89 respectively; Fig. 3). In submodels, companion animal host was the most important 209 

variable, except for the submodel that excluded transmission traits (Fig. 4). For AUC scores and 210 

the relative influence values of the variables in submodels see supplementary materials (Table 211 

S2). 212 

 213 

Discussion 214 

Identifying pathogen traits associated with a propensity to spillover into humans is key 215 

for understanding and predicting emergence of novel human diseases originating from wildlife. 216 

We applied a machine learning algorithm to a large dataset of mammal helminths to identify 217 

characteristics distinguishing zoonotic and non-zoonotic species, and to predict which species 218 

currently classified as non-zoonotic have a high risk of ‘spilling over’ to humans in the future. 219 

Our results indicate that helminths that infect companion animals (dogs and cats) and utilize fish 220 

as intermediate hosts are more likely to cause human infection compared to other mammal-221 

borne helminths. The third strongest predictor of the ability to cause human infection was the 222 

number of occurrences of helminth species, which indicates that widespread geographic 223 
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distribution might provide important transmission exposure to human hosts; however, we note 224 

that this variable might also reflect sampling effort (see below). Overall, these results suggest 225 

that the zoonotic potential of helminth species is related to the identity of both definitive and 226 

intermediate hosts that come in direct and indirect contact with people, thereby providing 227 

abundant opportunities for parasite transmission. Further, our findings highlight the importance 228 

of transmission strategies in the ability of mammalian helminths to infect humans. 229 

Particularly interesting is the predicted association between helminth zoonosis and 230 

companion animals (predominantly cats and dogs in this study). Domestic cats and dogs are 231 

hosts to numerous parasitic helminth species [36, 48] and represent an important link between 232 

humans and wildlife for zoonosis [49]. Indeed, the role of cats and dogs in helminthiasis have 233 

been well-documented for several parasites including the zoonotic tapeworm Echinococcus 234 

multilocularis (see Richards et al. in this issue) and roundworm Toxocara cati [49]. While many 235 

domesticated cats and dogs are “free-range” (i.e., not owned and cared for by humans), these 236 

animals are ubiquitous and tend to live near humans for provisioned food and shelter. Further, 237 

they hunt wild animals, consume animal parts (e.g. entrails) discarded by humans, and can 238 

overlap with wildlife habitat and territories [50], even in urban areas where numerous wild 239 

animals such as racoons, foxes, and coyotes thrive [51, 52]. The direct trophic interactions and 240 

indirect contacts dog and cats have with wildlife provide numerous opportunities for 241 

transmission of helminth parasites from wild to domestic animals, and eventually to humans. 242 

Additionally, the human-pet-wildlife interface has been around for centuries as it surfaced 243 

thousands of years ago with the domestication of cats 10,000 years ago and dogs 16,000 years 244 

ago [53, 54]. Therefore, there has been ample opportunity for host-jumping and host-switching 245 

events from wildlife to pets and humans, a process which is expected to accelerate with the 246 

increasing size of the human population, associated companion animals, and activities that 247 

impose close contact with wildlife. 248 
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Fish (freshwater or marine) as an intermediate host was identified as the third most 249 

important trait for predicting zoonosis. This finding is not surprising as fish are well-documented 250 

intermediate hosts to non-zoonotic parasitic worms that inflict humans [55]. One of the best-251 

known examples of zoonotic parasites transmitted by fish is nematode Anisakis simplex, which 252 

have a complex life cycle with marine mammals as definitive host and high incidence among 253 

human populations that eat raw fish [56]. Fish-borne helminths are transmitted via consumption 254 

of raw, undercooked, or improperly preserved fish [57] and therefore fish represent an important 255 

direct trophic link between humans and wildlife. While wild fish are a source of parasitic 256 

helminths [55, 58], recent work indicates that farmed fish are also linked to zoonosis [59, 60]. 257 

Parasitic worm infections stemming from fish ingestion are increasing, likely due to the 258 

significant increase in demand for fish meat associated with changes in dietary habits and 259 

population growth [61]. Our finding elucidates fish as a key group of intermediate hosts linked to 260 

helminthiasis and the importance of monitoring fish intended for human consumption for 261 

parasitic worms to prevent and control zoonosis.  262 

We also identified several geographical traits as important to predicting zoonotic 263 

helminths. Specifically, the number of unique locations around the world, the number of 264 

zoological realms in which helminths have been found, and the number of locations within the 265 

tropics were relatively important predictors. Overall, these findings suggest that mammalian 266 

parasitic helminths that are geographically widespread and able to persist in a range of habitat 267 

types are also more likely to be zoonotic than their more ecological specialized counterparts, 268 

possibly due to their ability to persist in different environmental conditions and exposure to 269 

humans in varying environments.  270 

It is important to note that study effort (and attendant bias) is likely interwoven through 271 

several traits we included in this study. Particularly, the number of unique record locations might 272 

not only capture distribution but also number of samples and therefore sampling effort. Indeed, 273 

previous work shows that variation in sampling effort among parasitic species can predict the 274 
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number of localities in which the species are documented [62]. Companion animal (pet host) 275 

trait might also reflect disproportionate study effort given the high access and relative ease of 276 

sampling. Furthermore, veterinary diagnostics (e.g. fecal floats, snap tests) more frequently 277 

performed on companion animals in high income countries might lead to higher discovery rate 278 

of helminth species in these places. We found that submodels which included or excluded the 279 

number of occurrences resulted in companion animal (pet host) remaining the most important 280 

predictor of zoonotic status among the helminths, lending some assurance of the strong 281 

statistical association between zoonotic status and pet host despite the influence of sampling 282 

effort in helminth data.  283 

Our model predicted several helminth species that are currently not known to infect 284 

humans to have high probability (70% or higher) of causing zoonosis. The helminth species with 285 

highest probability of causing human infection was a flatworm, Paramphistomum cervi, followed 286 

by Schistocephalus solidus, and Taenia pisiformis. Paramphistomum cervi is environmentally 287 

transmitted and requires a snail intermediate host that is accidentally ingested by wild mammals 288 

and livestock ruminants (e.g. sheep and cattle), the definitive hosts [63]. Given that livestock 289 

can share species of gastrointestinal helminths with farmers [64], Paramphistomum cervi may 290 

be a likely candidate for spillover to humans. On the other hand, the flatworm Schistocephalus 291 

solidus infects a copepods, fish, and fish-eating water birds [65], all of which have the potential 292 

to provide trophic transmission to human host. Taenia pisiformis also appears likely to have the 293 

pathway to directly infect humans since it utilizes rabbit intermediate hosts and carnivores 294 

including cats and dogs as definitive hosts [66]. Indeed, consumption of wild rabbits by humans 295 

is popular in some European countries [e.g. Spain; 67] and might facilitate host-switching to 296 

humans for Taenia pisiformis. Identifying the three species of helminths and their traits serves 297 

as an initial step in focusing efforts on surveillance and empirical work investigating the zoonotic 298 

potential of these species.  299 
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In conclusion, we focused our study on parasitic helminth traits and used boosted 300 

regression trees to quantify how the different transmission, geographic, morphological and 301 

epidemiological factors relate to helminths’ zoonotic potential. Our work suggests that helminths 302 

found in cats and dogs are more likely to infect humans, and that consumption of fish by 303 

humans may pose a greater risk of spillover. While our study examined over 700 mammalian 304 

helminth species, many more parasitic worms are found in wildlife, and most are poorly 305 

described with little known about their life cycles [68]. Key life cycle details, such as intermediate 306 

host(s), are often assumed based on relation to better-studied species in the same genus. 307 

Large gaps in our understanding of life cycles and transmission dynamics exist for most 308 

parasitic worms, including those known to infect humans. Experimental infection work is largely 309 

lacking, while detailed studies of life cycles are no longer common [68] as molecular studies 310 

have eclipsed traditional experimental biology. Despite these knowledge gaps, the machine 311 

learning approach we took point to key insights about zoonotic helminths. In particular, our 312 

results highlight the importance of the interface between wildlife, companion animals, and 313 

humans in determining risk of parasitic worm infections, which continue to cause significant 314 

disease burden in developing countries [69], where semi-feral dogs and cats are generally not 315 

treated for parasites and will likely continue to serve as a source of novel helminthiases. 316 

 317 
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Table 1. Top 15 most important variables used to predict helminth zoonoses status. 

Colors of the rows correspond to the four trait categories: geographical traits are in pink, 

transmission traits are in green, morphological traits are in blue and epidemiological traits are in 

orange. Color scheme also applies to Fig. 3 and 4. 

 
Variable Description 
Transmission  
Pet host Binary variable indicating whether the host (final or 

intermediate) is a companion animal (predominantly dog 
and cat) 

Fish intermediate host Binary variable indicating whether an intermediate host is a 
fish 

Geography  
Number of locations Number of distinct locations (based on coordinates) a 

helminth species was observed in 
Number of zoogeographic 
realms 

Number of terrestrial zoogeographic realms (as defined in 
Holt et al 2013) a helminth species was located in  

Number of tropical sites Number of tropical sites the parasites was observed in 
Number of ecoregions Number of terrestrial ecoregions (as defined by World 

Wildlife Fund) 
Number of countries Number of countries the helminth parasite was observed in 
Morphology  
Male length (mean) Mean male length in millimeters 
Female length (max)  Maximum female length in millimeters 
Egg width (max) Maximum egg width in micrometers 
Female length (min) Minimum female length in millimeters 
Male length (min) Minimum male length in millimeters 
Female width (max) Maximum female width in millimeters 
Epidemiology  
Human population (mean) Mean human population of the countries in which the 

helminth species is found 
Gross domestic product 
(mean) 

Mean gross domestic product (GDP) of the countries in 
which the helminth species occurs 
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Figure 1. Partial dependence plots for top 15 most important variables. Plots are based 

on permutations of the primary boosted regression tree model that included 73 variables. 

Importance of the variables is ordered from left to right, then top to bottom. Black lines 

represent the median predicted probability, while shaded regions represent the 

corresponding 95% confidence interval across 100 permutations of the model. 
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Figure 2. Predicted zoonotic helminth risk index. Average model-predicted probability of 

being zoonotic as ranked by the primary boosted regression tree model. Blue bars represent 

species not known to be transmissible to humans from wildlife and gray bars are species known 

to be transmissible to humans from wild hosts and are confirmed by the model to be zoonotic. 

Inset: zoonoosis risk of helminth species with model-predicted probabilities greater than 70%. 

Names of top 3 species not currently known to be zoonotic appear above the bars and include 

Paramphistomum cervi, Schistocephalus solidus, and Taenia pisiformis (in descending order).  
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Figure 3.  Variable importance values by permutation, averaged over 100 models trained on all 

four categories of traits (left panel), show relative importance of transmission traits (green), 

epidemiological traits (orange), geographical traits (maroon), and morphological traits (blue). 

Average model accuracy for each submodel trained on all four trait categories (white symbol), 

all trait categories except: morphological traits (blue), epidemiological traits (orange), 

transmission traits (green), or geographical traits (maroon). Error bars represent the standard 

deviation from 100 model permutations. 
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Figure 4. Variable importance values averaged over 100 model permutations trained on all 

categories of traits except: morphology (top left - blue), epidemiological traits (top right - 

orange), geography (bottom left - maroon), and transmission (bottom right- green). 
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