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Abstract. Elucidating the wiring diagram of the hu-
man cell is one of the central goals of the post-ge-
nomic era. Here, we integrate genome engineering, 
confocal imaging, mass spectrometry and data sci-
ence to systematically map protein localization in 
live cells and protein interactions under endogenous 
expression conditions. For this, we generated a li-
brary of 1,311 CRISPR-edited cell lines harboring 
fluorescent tags that also serve as handles for affin-
ity capture, and applied a new machine learning 
framework to encode the interaction and localiza-
tion profiles of each protein. Our approach provides 
a data-driven description of the molecular and spa-
tial networks that organize the human proteome. 
We show that unsupervised clustering of these net-
works delineates functional groups and facilitates 
biological discovery, while hierarchical analyses un-
cover the core features that template cellular archi-
tecture. Furthermore, we discover that localization 
signatures are remarkably predictive of protein 
function, and often contain enough information to 
identify molecular interactions. Paired with a fully 
interactive website (opencell.czbiohub.org), Open-
Cell is a resource for the quantitative cartography 
of human cellular organization. 

The sequencing of the human genome has trans-
formed cell biology by defining the protein parts list 
that forms the canvas of cellular operation (1, 2). This 
paves the way for elucidating how the ~20,000 proteins 
encoded in the genome organize in space and time to 
define the cell’s functional architecture (3, 4). Where 
does each protein localize within the cell? Can we com-
prehensively map how proteins assemble into larger 
functional communities? A main challenge to answer-
ing these fundamental questions is that cellular archi-
tecture is organized along multiple scales, so that sev-
eral approaches need to be combined for its elucidation 
(5). In a series of pioneering studies, human protein-
protein interactions have been mapped using ectopic 
expression strategies with yeast two-hybrid (Y2H) (6) 
or epitope tagging coupled to immunoprecipitation-
mass spectrometry (IP-MS) (7, 8), while protein local-
ization has been charted using immuno-fluorescence in 
fixed samples (9). However, these approaches do not 
measure protein interactions under native expression 
conditions (which can be more precise than using ec-
topic methods (10)), nor define protein localization in 
live and unperturbed cells. Furthermore, protein inter-
actions and spatial localization have so far mostly been 
addressed separately. Therefore, the description of hu-
man cellular organization remains incomplete. By 
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contrast, seminal work in the budding yeast S. cere-
visiae has demonstrated how libraries of endogenously 
tagged strains can enable the comprehensive mapping 
of localization and interactions in a eukaryotic prote-
ome (11–13). These libraries were made possible by 
the relative simplicity of homologous recombination in 
yeast (14) and enable the functional characterization of 
proteins in their native cellular context. Excitingly, re-
cent advances in CRISPR-mediated genome engineer-
ing now allow for similar strategies to be applied for 
the interrogation of the human cell (15, 16).  

Here, we combine experimental and analytical in-
novations to create OpenCell, a systematic proteomic 
map of human cellular architecture. We generated a li-
brary of 1,311 CRISPR-edited HEK293T cell lines ex-
pressing fluorescent protein fusions from endogenous 
genomic loci, which we characterized by pairing con-
focal microscopy and mass spectrometry. Our dataset 
constitutes the most comprehensive image collection of 
live-cell protein localization to date, while integration 
with IP-MS using the fluorescent tags for capture ena-
bles measurement of localization and interactions from 
the same samples. For a quantitative description of cel-
lular architecture, we introduce a data-driven frame-
work to quantitatively represent protein features, sup-
ported by a new machine learning approach for image 
encoding. This analysis allows us to delineate commu-
nities of functionally related proteins by unsupervised 
clustering and provides mechanistic insights on spe-
cific proteins or pathways, including many proteins that 
had so far remained uncharacterized. This approach 
further enables a hierarchical description of the human 
proteome’s organization, and highlights in particular 
that intrinsically disordered proteins – and notably 
RNA-binding proteins – exhibit very unique functional 
signatures that shape the proteome’s network. Finally, 
a direct comparison of imaging and mass spectrometry 
data establishes that localization patterns measured by 
light microscopy often contain enough information to 
predict interactions at the molecular scale.  

 
Results 
 

The OpenCell library Fluorescent protein (FP) fu-
sions are versatile tools that enable both the study of 
protein localization by microscopy and that of protein-

protein interactions by acting as affinity handles for IP-
MS (15, 17) (Fig. S1A). Here, we constructed a library 
of fluorescently tagged HEK293T cell lines by target-
ing human genes with the split-mNeonGreen2 system 
(18) (Fig. 1A). Split-FPs greatly simplify CRISPR-
based genome engineering (15), which allowed us to 
generate fusions directly into endogenous genomic loci 
and to preserve native expression regulation (Fig. 1B). 
A full description of our pipeline is available in the 
Methods section (summarized in Figs. 1C-E). In brief, 
FP insertions sites (N- or C-terminus) were informed 
by literature curation or structural analysis. For each 
tagged target we isolated a polyclonal pool of CRISPR-
edited cells, which was then characterized by live-cell 
3D confocal microscopy, IP-MS, and genotyping of 
tagged alleles by next-generation sequencing. Open-
source software development and advances in instru-
mentation supported scalability (Fig. 1C). In particular, 
we developed crispycrunch, a software for CRISPR-
based integration experiments enabling guide RNA se-
lection and homology donor sequence design 
(github.com/czbiohub/crispycrunch). We also fully au-
tomated microscopy acquisition in Python to enable 
on-the-fly computer vision and selection of desirable 
field of views imaged in 96-well plates 
(github.com/czbiohub/opencell-microscopy-automa-
tion). Furthermore, our mass-spectrometry protocols 
take advantage of the high sensitivity of timsTOF in-
struments (19) which allowed miniaturization of IP-MS 
down to 0.8x106 cells of starting material (Fig. S1B; 
12-well plate culture, a >10-fold reduction compared to 
previous approaches (7, 8)).  

In total, we targeted 1728 genes, of which 1311 
(76%) could be successfully detected by fluorescence 
and form our current dataset (full library details in 
Suppl. Table 1).  From these, we obtained paired IP/MS 
measurements for 1261 targets (96% of the publication 
set, Fig. 1D). Expression level is the main limitation to 
the successful detection of endogenous fluorescent fu-
sions. Indeed, RNA-Seq analysis revealed that “unsuc-
cessful” targets are expressed at significantly lower 
levels than successful ones (Fig. 1D, bottom left panel), 
and a correlation between transcript abundance and 
protein fluorescence identified the expression threshold 
corresponding to our fluorescence detection limit 
(log[RNA tpm] = 1.5, Fig. 1D, bottom right panel). 
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This threshold corresponds to the median expression 
level in the HEK293T line (Fig. S1C), meaning that the 
top ~50% of expressed genes are detectable at endoge-
nous level using current FPs.  

To maximize throughput, we used a polyclonal 
strategy to select genome-edited cells by fluorescent 
cell sorting. These polyclonal pools contain cells with 
different genotypes. On the one hand, HEK293T are 
pseudo-triploid (20) and a single edited allele is suffi-
cient to confer fluorescence. On the other hand, differ-
ent DNA repair mechanisms compete with homologous 
recombination for the resolution of CRISPR-induced 
genomic breaks (21) so that alleles containing non-
functional mutations can be present in addition to the 
desired fusion alleles.  However, such alleles do not 
support fluorescence and are therefore unlikely to im-
pact downstream measurements, especially in the con-
text of a polyclonal pool. In addition, we derived a 
stringent selection scheme to significantly enrich for 
fluorescent fusion alleles (Fig. S1D). Our final cell li-
brary has a median 61% of mNeonGreen-integrated al-
leles, 5% wild-type and 26% other non-functional al-
leles (Fig. S1E, full CRISPR design genotype infor-
mation in Suppl. Table 1).  

Finally, we verified that our engineering approach 
maintained the endogenous expression level of the 
tagged targets. For this, we quantified protein expres-
sion by Western blotting using antibodies specific to 
proteins targeted in 12 different cell pools. This analy-
sis revealed that the median abundance of a target pro-
tein in engineered lines was 79% of its abundance in wt 
HEK293T cells (Fig. S1F). Thus, our gene-editing 
strategy preserves near-endogenous abundances and 
circumvents the limitations of ectopic overexpression 
(16, 22, 23), which include aberrant localization, 
changes in organellar morphology or masking effects 
(see the respective examples of SPTLC1, TOMM20 
and MAP1LC3B in Fig. S1G). Therefore, OpenCell 
supports the functional profiling of tagged proteins in 
their native cellular context. 

 
The OpenCell interactome. Affinity enrichment cou-
pled to mass spectrometry is an efficient and sensitive 
method for the systematic mapping of protein interac-
tions networks (24). We isolated tagged proteins 
(“baits”) from cell lysates solubilized in digitonin, a 

mild non-ionic detergent known to preserve the native 
structure and properties of membrane proteins (25). 
Specific protein interactors (“preys”) were identified 
from biological triplicate experiments using label-free 
bottom-up proteomics on a timsTOF instrument (19) 
(see Figure S2A-B for a detailed description of our sta-
tistical analysis, which builds upon established meth-
ods (7)). In total, the full interactome from our 1261 
OpenCell baits includes 30,293 interactions between 
5271 proteins (baits and preys, Fig. 2A, full interac-
tome data in Suppl. Table 2).  

To assess the quality of our interactome, we esti-
mated its precision and recall using reference data (Fig. 
S2B). For recall analysis, we quantified the coverage in 
our data of interactions included in CORUM(26), a 
compendium of protein interactions manually curated 
from the literature. To estimate precision, we quanti-
fied how many of our interactions involved protein 
pairs expected to localize to the same broad cellular 
compartment (27) (Fig. S2B). Benchmarking OpenCell 
against other large-scale interactomes, we compared its 
precision and recall to Bioplex (overexpression of HA-
tagged baits (8, 28)), HuRI (Y2H (6)) and our own pre-
vious data (GFP fusions expressed from bacterial arti-
ficial chromosomes (7)) (Fig. S2C-E). We also calcu-
lated compression rates for each dataset as a measure 
of the overall inter-connectivity in the interaction net-
works (29) (Fig. S2F). Across all metrics, OpenCell 
outperformed previous approaches. Together, these 
findings establish the high quality of our interactome, 
which likely reflects both our preservation of near-en-
dogenous protein expression and the sensitivity of our 
mass spectrometry analyses.  

Analyzing the distribution of the number of in-
teractors per tagged target allowed us to investigate the 
global properties of the human interaction network 
(Fig. 2B). While this distribution approximates a 
power-law for moderate interaction counts (i.e., a linear 
relationship in log-log scale, Fig. 2B), our data shows 
significantly more targets with a large number of in-
teractors (Ninteraction³100 in Fig. 2B) than expected from 
a “scale-free” model of protein interaction net-
works(30), as has been noted in other analyses (31). We 
discovered that highly interacting proteins (i.e., Ninterac-

tion³100) are not simply the most highly expressed (Fig. 
2C), but rather exhibit specific biophysical signatures. 
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A sequence-base analysis showed that highly interact-
ing proteins are significantly less a-helical and less hy-
drophobic than other proteins, but more likely to con-
tain disordered domains (Fig. 2D, 2E). Ontology anal-
ysis also revealed that the group is enriched for RNA-
binding proteins (Fig. 2F). The propensity of highly in-
teracting proteins for high intrinsic disorder has been 
recognized in Y2H datasets (32). Intrinsic disorder is 
also a common property of proteins that form bio-
molecular condensates, which include a large number 
of RNA-binding proteins (33, 34).  Interestingly, disor-
der has been proposed to be under positive selection in 
viral proteomes as a means for the relatively small 
number of proteins encoded in viral genomes to be able 
to interact pleiotropically with the host machinery (35).  

 
Stoichiometry-driven clustering of interaction sig-
natures. A powerful way to interpret interactomes is to 
identify communities of interactors. These communi-
ties highlight complexes or functional pathways and 
also facilitate the assignment of protein function via 
“guilt-by-association” (8, 12). To this end, we applied 
unsupervised Markov clustering (MCL) (36) to the 
graph of interactions defined by our data (5148 baits 
and preys). We first measured the stoichiometry of 
each interaction as a proxy for interaction strength, us-
ing a quantitative approach we previously established 
(7), and used it to weigh the edges in the interaction 
graph (Fig. 2G). A first round of stoichiometry-
weighted Markov clustering delineated inter-connected 
protein communities and outperformed clustering on 
the basis of connectivity alone (Fig. S2G). To further 
refine annotations, we subjected each individual MCL 
community to another round of clustering in which 
low-stoichiometry interactions were removed. The re-
sulting sub-clusters outline core interactions within ex-
isting communities (Fig. 2G). An illustrative example 
of how this unsupervised approach allows us to deline-
ate functionally related proteins is shown in Figure 2H: 
all subunits of the machinery responsible for the trans-
location of newly translated proteins at the ER mem-
brane (SEC61/62/63) and of the EMC (ER Membrane 
Complex) are grouped within respective core interac-
tion clusters, but both are part of the same larger MCL 
community. This mirrors the recently appreciated co-
translational role of EMC for insertion of 

transmembrane domains at the ER (37). Interestingly, 
additional proteins, which have only been recently 
shown to have co-translational role, are found cluster-
ing with translocon or EMC subunits. These including 
ERN1 (IRE1), a folding sensor (38), and CCDC47, a 
poorly characterized translocon interactor which, like 
EMC, regulates the biogenesis of membrane proteins at 
the ER (39, 40). This highlights how clustering can fa-
cilitate mechanistic exploration by grouping together 
proteins involved in related pathways. Overall, we 
identified 300 communities including a total of 2154 
baits and preys (full details in Suppl. Table 2). A graph 
of interactions between communities reveals a richly 
inter-connected network (Fig. 2I), the structure of 
which outlines the global architecture of the human in-
teractome (discussed further below).   

 
The OpenCell image dataset. A key advantage of our 
cell engineering approach is to enable the characteriza-
tion of each tagged protein in live, unperturbed cells. 
To profile localization, we performed fluorescence mi-
croscopy on a spinning-disk confocal microscope 
equipped with a 63x 1.47NA objective under environ-
mental control (37°C, 5% CO2), and imaged the full 3D 
distribution of proteins in consecutive z-slices. Micros-
copy acquisition was fully automated in Python to en-
able scalability (Fig. S3A-B). In particular, we trained 
a computer vision model to identify fields of view 
(FOVs) with homogeneous cell density on-the-fly, sig-
nificantly reducing uncontrolled experimental varia-
tion between images. Our resulting dataset contains a 
collection of 5176 3D stacks (4-5 different FOVs for 
each target) and includes paired imaging of nuclear 
morphology with Hoechst 33342, a cell-permeable 
DNA dye compatible with live-cell measurements.  

We manually annotated localization patterns by 
assigning each protein to one or more of 15 separate 
cellular compartments such as nucleolus, centrosome 
or Golgi apparatus (see Figure 3A for the full list and 
example images). Because proteins often populate mul-
tiple compartments at steady-state (9), we annotated lo-
calizations using a three-tier grade system: grade 3 
identifies the most prominent localization compart-
ment(s), grade 2 represents clearly detectable but minor 
localizations, and grade 1 annotates weak localization 
patterns nearing our limit of detection (see Figure S4A 
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for two representative examples, full annotations in 
Suppl. Table 3). Ignoring grade 1 annotations which are 
inherently less precise, 55% of proteins in our library 
are multi-localizing and outline known functional rela-
tionships with, for example, clear connections between 
secretory compartments (ER, Golgi, vesicles, plasma 
membrane), or between cytoskeleton and plasma mem-
brane (Fig. 3B). The most common pattern of multi-
localization involves proteins found in both nucleus 
and cytoplasm (21% of our whole library), highlighting 
the importance of the nucleo-cytoplasmic import/ex-
port machinery in shaping global cellular function(41, 
42). Importantly, because our split-FP system does not 
enable the detection of proteins in the lumen of orga-
nelles, multi-localization involving translocation 
across an organellar membrane (which is rare but does 
happen for mitochondrial or peroxisomal proteins) will 
not be detected in our data.  

 
Quantitative localization encoding with self-super-
vised machine learning. Extracting functional insights 
directly from cellular images is a major goal of modern 
cell biology and data science (43). Because the function 
of a protein is tightly linked to its localization, we ex-
plored whether a quantitative comparison of localiza-
tion signatures would allow us to delineate groups of 
co-functioning proteins. For this, we developed a deep 
learning model, which is fully described in a compan-
ion study (44). Briefly, our model is a variant of an au-
toencoder (Fig. 3C): a form of neural network that 
learns to vectorize an image through paired tasks of en-
coding (from an input image to a vector in a latent 
space) and decoding (from the latent space vector to a 
new output image). After training, a consensus repre-
sentation for a given protein can be obtained from the 
average of the encodings from all its associated images. 
This generates a “localization encoding” (Fig. 3C) that 
captures the complex set of features that define the lo-
calization of a protein across the full cell population. 
One of the main advantages of this approach is that it 
is self-supervised. Therefore, as opposed to supervised 
machine learning strategies that are trained to recog-
nize pre-annotated patterns (for example, manual anno-
tations of protein localization (45)), our method ex-
tracts localization signatures from raw images without 
any a priori assumptions, manually assigned labels, or 

other additional information. This allows us to objec-
tively compare proteins by measuring the similarity be-
tween their localization signatures.  

A UMAP representation of the localization encod-
ings for the entire OpenCell library is shown in Figure 
3D. This map is organized in distinct territories that 
closely match manual annotations (Fig. 3D, highlight-
ing mono-localizing proteins). This validates that our 
approach yields a quantitative representation of the bi-
ologically relevant information in our microscopy data. 
We then asked what degree of functional relationship 
could be inferred between proteins solely on the basis 
of their localization patterns. For this, we employed an 
unsupervised Leiden clustering strategy classically 
used to identify cell types in single-cell RNA sequenc-
ing datasets (46).  Strikingly, applying this data-driven 
approach identified groups of proteins that are closely 
related mechanistically (182 clusters in total, full list in 
Suppl. Table 3). For example (Figure 3E), our analysis 
not only separated P-body proteins (cluster #83) from 
other forms of punctated cytoplasmic structures, but 
also unambiguously differentiated vesicular trafficking 
pathways despite very similar localization patterns: the 
endosomal machinery (cluster #40), plasma membrane 
endocytic pits (cluster #117) or COP-II vesicles (clus-
ter #143) were all delineated with high precision. Pro-
teins involved in closely inter-related cellular functions 
were also found to cluster together: for example, the ER 
translocon clusters with the SRP receptor, EMC subu-
nits and the OST glycosylation complex, all responsi-
ble for co-translational operations (cluster #9). Cluster-
ing performance was also high for non-organellar pro-
teins, as shown in Figure S4B (cytoplasmic clusters) 
and Fig S4C (nuclear clusters). Altogether, our results 
show that the localization pattern of a given protein re-
flects its function with high specificity, down to spe-
cific pathways, and that this information can be cap-
tured by self-supervised deep learning algorithms. 
While closely related proteins cluster tightly together, 
the existence of many separated groups also underlines 
the fascinating diversity of localization patterns across 
the full proteome. Images from nuclear proteins offer 
compelling illustrative examples of this diversity (Fig. 
S4D).  
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Interactive data sharing at opencell.czbiohub.org 
To enable widespread access to the OpenCell datasets, 
we built an interactive web app that provides side-by-
side visualizations of the confocal images and of the 
interaction network for each tagged protein (Fig. 4A-
B). The app is organized around a ‘target profile’ page 
that displays all of the metadata, images, and interac-
tions for a selected mNG11-tagged target (Fig. 4B). 
Confocal fluorescent images can be visualized either in 
2D as a scrollable stack of z-slices, or in 3D via an in-
teractive volume rendering module we developed (Fig. 
4C). Our interface also allows the user to toggle be-
tween fluorescence channels (tagged protein and DNA 
stain) and to adjust image brightness and contrast.  The 
interaction network, which consists of the target, its di-
rect interactors, and the interactions between them, is 
organized by the communities and core clusters identi-
fied by Markov clustering and is positioned directly ad-
jacent to the image viewer (Fig. 4B). This side-by-side 
juxtaposition of images and interactions encourages the 
comparison between subcellular localizations and in-
teraction signatures. The interactome visualization can 
be switched to reveal quantitative data for each pull-
down in the form of volcano and stoichiometry plots 
(Fig. 4D). To enable the interactive navigation of the 
full interaction network, interactors in the network that 
are themselves OpenCell targets are hyperlinked (from 
any visualization mode) to their corresponding target 
pages. Interacting proteins in the network that are not 
OpenCell targets are likewise hyperlinked to a distinct 
‘interactor profile’ page (Fig. 4A, middle panel) that 
displays information about all the pull-downs in which 
the interacting protein appears. Finally, to explore the 
dataset by localization pattern, a separate ‘gallery’ page 
displays a grid of thumbnail microscopy images for all 
targets in the library, filtered according to a user-de-
fined set of subcellular localizations (Figure 4A, right 
panel). The app itself is supported by a relational data-
base and a REST API that also allows for program-
matic access to the underlying raw data. 

 
Comparing interactions and spatial relationships. 
IP-MS and microscopy examine the architecture of the 
cellular proteome at very different scales (molecular 
for IP-MS, pan-cellular for microscopy). Localization 
and interactions are linked: proteins must co-localize to 

interact. But while the localization patterns of each in-
teractor must overlap to some extent, depending on the 
nature of these interactions (stable or transient), they do 
not need to match completely. Therefore, the degree to 
which interacting proteins also share the same overall 
spatial signature represents an organizing feature of the 
cellular protein network. To quantify the similarity of 
localization of any two targets in OpenCell, we meas-
ured the Pearson correlation between their localization 
encodings; this gives a distance measure of similarity 
in “localization space” between two proteins (Fig. 5A, 
upper panel). In parallel, similarities can be measured 
in “interaction space” by comparing the interaction 
profiles between any two proteins based on stoichiom-
etry information (Fig. 5A, lower panel). As expected, 
the distribution of localization vs. interaction similari-
ties between all pairs of OpenCell targets that were 
found to interact shows a positive correlation between 
the two parameters (Fig. 5B); however, it also high-
lights that the vast majority of interacting proteins are 
not particularly similar by either measure (large cloud 
around the origin of the graph). Examining the relation-
ship between localization similarity and interaction 
stoichiometry further reveals two separate groups of in-
teracting pairs (Fig. 5C): 1) those that interact with low 
stoichiometry and whose spatial signatures do not spe-
cifically overlap (i.e., have low localization similarity, 
solid line in Fig. 5C), which represents the largest pro-
portion and 2) a smaller but well-delineated group of 
stoichiometric interactors that share very similar local-
ization patterns (dashed line). This second result makes 
intuitive sense: interactions that are stoichiometric 
should be stable in space and time, and a high overlap 
between localization patterns is expected. Indeed, dif-
ferent subunits of known stable complexes share ex-
tremely similar localization signatures and form tight 
clusters in our image UMAP (Fig. 5D). Overall, our 
analysis underscores the organization of the cell’s pro-
teome along two modes of interactions: small commu-
nities of high-stoichiometry protein groups, whose 
functions are intertwined to the point that their steady-
state localization patterns are very similar, and a much 
larger set of low-stoichiometry, and presumably more 
dynamic interactions with lower spatial overlap.    

This intuitive result also has an important corre-
late: that highly similar localization patterns between 
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two proteins can be used to infer close molecular inter-
action. In fact, looking at the entire set of OpenCell tar-
get pairs (predicted to interact or not), proteins that 
share high localization similarities are also very likely 
to interact (Fig 5E). For example, target pairs with a 
localization similarity greater than 0.85 have a 58% 
chance of being direct interactors, and a 68% chance of 
being second-neighbors (i.e., sharing a direct interactor 
in common). Therefore, our analysis demonstrates that 
a quantitative comparison of localization patterns can 
also make predictions about the molecular-level archi-
tecture of the proteome. This also reveals that the local-
ization pattern of a given protein contains highly spe-
cific information from which precise functional attrib-
utes can be extracted, in particular by modern machine 
learning algorithms.   
 
Biological discovery using interactomes or images. 
As demonstrated above, unsupervised clustering of 
both localization and interaction signatures can be used 
to derive functional relationships between proteins (for 
example, unambiguously linking together different 
forms of co-translational processes). A direct applica-
tion of this result is to help elucidate the cellular roles 
of the many human proteins that remain poorly charac-
terized (47). We first mined our interactome for poorly 
studied proteins. We focused on the set of baits and 
preys found within MCL communities, reasoning that 
belonging to a community was a strong signal to map 
function via “guilt by association”. As a simple metric 
for how well characterized a protein is, we quantified 
its occurrence in article titles and abstracts from Pub-
Med. Empirically, we determined that proteins in the 
bottom 10th percentile of publication count (corre-
sponding to less than 10 publications) were very poorly 
annotated (Fig. 6A). This set encompasses a total of 
251 proteins for which our dataset offers specific mech-
anistic insights. For example, the poorly characterized 
NHSL1, NHSL2 and KIAA1522 are all found as part 
of an interaction community centered around 
SCAR/WAVE, a large multi-subunit complex nucle-
ating actin polymerization (Fig. 6B). Interestingly, all 
three proteins share sequence homology and are all ho-
mologous to NHS (Fig. S5A), a protein mutated in pa-
tients with Nance-Horan syndrome and that interacts 
with SCAR/WAVE components to coordinate actin 

remodeling (48). This suggests that NHSL1, NHSL2 
and KIAA1522 also act to regulate actin assembly. A 
recent mechanistic study made public after our initial 
prediction supports this hypothesis: NHSL1 was found 
to localize at the cell’s leading edge and to directly bind 
SCAR/WAVE to negatively regulate its activity, re-
ducing F-actin content in lamellipodia and inhibiting 
cell migration (49). Importantly, the authors identified 
NHSL1’s SCAR/WAVE binding sites, and we find 
these sequences to be conserved in NSHL2 and 
KIA1522 (Fig. 6B). Therefore, we propose that both 
NHSL2 and KIAA1522 are also direct SCAR/WAVE 
binders and new modulators of the actin cytoskeleton.  

Our data also uncovers a specific function for 
ROGDI, whose variants cause Kohlschuetter-Toenz 
syndrome (a recessive developmental disease charac-
terized by epilepsy and psychomotor regression (50)). 
ROGDI appears in the literature because of its associa-
tion with disease, but no study, to our knowledge, spe-
cifically determines its molecular function. To deline-
ate the function of ROGDI, we first observed that its 
interaction pattern matched very closely that of three 
other proteins in our dataset: DMXL1, DMXL2 and 
WDR7 (Fig. 6C). This set exhibited a specific interac-
tion signature related to v-ATPase, the lysosomal pro-
ton pump. All four proteins interact with soluble v-
ATPase subunits (ATP6-V1), but not its intra-mem-
brane machinery (ATP6-V0). Interestingly, DMXL1 
and WDR7 have been shown to interact with V1 v-
ATPase, and their knock-down compromises lysoso-
mal re-acidification (51). In fact, sequence analysis 
showed that DMXL1/2, WDR7 and ROGDI are homol-
ogous to proteins from yeast or Drosophila that have 
been involved in the regulation of assembly of the sol-
uble V1 subunits onto the V0 transmembrane ATPase 
core (52, 53) (Fig. S5). In yeast, Rav1 and Rav2 (ho-
mologous to DMXL1/2 and ROGDI, respectively) 
form the stoichiometric RAVE complex, a soluble 
chaperone that regulates v-ATPase assembly (53). To 
further characterize the function of these proteins, we 
generated new tagged cell lines for DMXL1/2, WDR7 
and ROGDI. Because of the low expression level of 
these proteins, imaging analysis proved difficult, and 
fluorescent fusions of DMXL2 and ROGDI did not 
lead to detectable fluorescence. However, pull-downs 
of DMXL1 and WDR7 confirmed a stoichiometric 
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interaction between DMXL1/2, WDR7 and ROGDI 
(Fig. 6C, right panels). Interestingly, no direct interac-
tion between DXML1 and DMXL2 was detected, sug-
gesting that they might nucleate two separate sub-com-
plexes. Therefore, our data uncovers a human RAVE 
complex comprising DMXL1/2, WDR7 and ROGDI, 
which likely acts as a chaperone for v-ATPase assem-
bly. Altogether, NHSL1/2-KIAA1552 and DMXL1/2-
WDR7-ROGDI illustrate how OpenCell catalyzes new 
biological insights by combining quantitative analysis, 
literature curation and new functional data – including 
a direct mechanistic role for ROGDI, shedding light on 
the biology of Kohlschuetter-Toenz syndrome. 

These examples underscore the power of mining 
interactome data for mechanistic predictions. Having 
established that quantitative localization encoding on 
its own could help elucidate the molecular function of 
a given protein, we next asked to which extent the func-
tion of an orphan protein could be characterized by im-
aging alone. FAM241A (or C4orf32) is a human pro-
tein without any functional annotation. Our initial in-
teractome dataset placed FAM241A as part of a com-
munity centered around the OST complex, the transfer-
ase responsible for co-translational glycosylation (Fig. 
6D). We generated an endogenous FAM241A fluores-
cent fusion and separately used imaging and mass-
spectrometry to elucidate its function. Importantly, the 
deep learning model we used to generate its localiza-
tion encoding was not trained with images of this new 
target (“naïve” model). Strikingly, the quantitative dis-
tances between FAM241A and other OpenCell targets 
measured using either localization or interaction signa-
tures both identified FAM241A as a new OST subunit 
(Fig. 6D). Moreover, separate unsupervised clustering 
analyses using the two signatures both placed 
FAM241A in well-defined clusters with other OST 
subunits (Fig. 6D, right panels). Thus, the function of 
FAM241A could have been predicted with the same 
degree of precision by using either its interaction sig-
nature or its localization encoding. This proof-of-con-
cept example establishes the potential of live-cell im-
aging as a specific readout of protein function, includ-
ing for the characterization of poorly studied human 
proteins.  

 

Hierarchical structure(s) of proteome organization. 
Finally, we explored the global structure of our datasets 
by using hierarchical clustering to highlight the signa-
tures patterning the proteome. Starting with the 300 in-
teractome communities or the 182 localization clusters 
outlined above, we mapped the full hierarchical rela-
tionships underlying both our interactome and imaging 
sets. Specifically, we implemented an agglomerative 
clustering strategy based on node pair sampling (54), 
which we applied separately to the graph of interactions 
between interactome communities and to the graph 
connecting localization clusters derived from the corre-
sponding UMAP adjacency matrix (55). This resulted 
in fully connected hierarchical trees, shown in Figure 
7.  Isolating groups of proteins at separate hierarchical 
layers reveals different levels of the proteome’s organ-
ization. At an intermediate layer, the proteome can be 
delineated into sets of 18-19 separate “modules”, each 
including a median of 99 proteins for the interactome 
(modules M1-M18, Fig. 7A, see composition in Suppl. 
Table 4A) and of 66 proteins for the imaging dataset 
(modules N1-N19, Fig, 7B, see composition in Suppl. 
Table 4B), respectively. At a higher layer, each dataset 
can be divided into three “branches”, which separately 
represent the core features that shape the proteome’s 
global architecture from a molecular or spatial perspec-
tive.  Performing gene ontology analysis underlined 
that modules and branches are enriched for specific cel-
lular functions or compartments, which define unique 
functional signatures (labeled in Fig 7A,7B – details in 
Figure S6 for branches; Suppl. Tables 4A, 4B contain 
the full gene ontology analysis for both modules and 
branches).  

Overall, the hierarchy of localization encodings 
reveals that, as expected, localization patterns are orga-
nized along the three foundational compartments of the 
eukaryotic cell: nucleus, cytoplasm and membrane-
bound organelles (Fig. 7B, Fig. S6G). Each localization 
branch is sub-divided into modules that correspond to 
discrete sub-cellular territories. For example, the orga-
nellar branch separates into the different components of 
the secretory pathway: ER, Golgi, endosome, lysosome 
or plasma membrane, mirroring the known spatial seg-
regation between these compartments.  The fact that 
this unsupervised clustering strategy broadly recapitu-
lates known cellular compartments validates our 
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approach. By contrast, the hierarchical analysis of the 
interactome graph reveals how the proteome is orga-
nized at the molecular scale (Fig. 7A). The 18 modules 
separate the interactome into clear cellular functions 
such as transcription, splicing or vesicular transport. 
This reflects that functional pathways are templated by 
groups of proteins that physically interact, a principle 
also underscored by the overlap between genetic inter-
actions and protein complexes in eukaryotes (56, 57). 
More interestingly, analysis of the high-level branches 
reveals a separation between three groups of proteins 
that differ in their functional and biophysical proper-
ties. Ontology enrichment highlights that proteins re-
lated in membrane processes (branch B) and RNA-
binding (branch C) clearly segregate from the rest of 
the proteome in term of their interaction profiles (Fig. 
S6A-E). This functional segregation is correlated with 
different biophysical properties: branch B proteins are 
significantly more structured, more hydrophobic and 
richer in aromatic residues than the rest of our dataset; 
conversely, branch C proteins have higher intrinsic dis-
order and higher isoelectric points (Fig. S6B-C). Over-
all, our data reveals that RNA-binding proteins form a 
specific molecular sub-group that shapes the global or-
ganization of the cell, similar to how association with 
membranes is a molecular feature that sets apart a large 
fraction of the proteome. Strikingly, RNA-binding pro-
teins are known to form membrane-less organelles un-
der stress conditions, especially through phase transi-
tion processes supported by intrinsic disorder (33, 34). 
This suggests that the biophysical properties underly-
ing the formation of biomolecular condensates might 
also be a global driving force shaping the cellular pro-
teome network under normal conditions.  

Discussion 

OpenCell combines innovations at four separate 
levels to augment the elucidation of human cellular ar-
chitecture. First, we describe an integrated experi-
mental pipeline for high-throughput cell biology, 
fueled by scalable methods for genome engineering, 
live-cell microscopy and IP-MS. Second, we provide 
an open-source resource of well-curated localization 
and interactome measurements, easily accessible 
through an interactive web interface at 

opencell.czbiohub.org. Third, we pioneer new analyti-
cal strategies for the representation and comparison of 
interaction or localization signatures (including a fully 
self-supervised machine learning approach for image 
encoding). And fourth, we demonstrate how our dataset 
can be used both for fine-grained mechanistic explora-
tion (by elucidating the function of multiple proteins 
that were previously uncharacterized), as well as for in-
vestigating the core organizational principles that wire 
the proteome. In particular, we uncover two global fea-
tures that shape cellular architecture. First, we show 
that most proteins interact with low stoichiometry and 
distribute unequally within the cell, whereas high-stoi-
chiometry interactors share very similar localization 
patterns. This reinforces the importance of low-stoichi-
ometry interactions for defining the overall structure of 
the cellular network, not only providing the “glue” that 
holds the interactome together (7) but also connecting 
different cellular compartments. Second, we reveal that 
two separate groups of interacting proteins segregate 
from the global proteome: membrane-related and 
RNA-binding, both of which exhibit specific biophysi-
cal signatures (in particular hydrophobicity and high 
intrinsic disorder, respectively). That membrane-re-
lated proteins form a specific interaction group is per-
haps not surprising as the two-dimensional membrane 
surface drives their sequestration within the three-di-
mensional cell. By contrast, the discovery of RNA-
binding proteins as a separate sub-group is significant 
given the growing appreciation that RNA-binding pro-
teins, together with RNAs themselves, can form con-
densates in the cytoplasm and nucleoplasm. Interest-
ingly, intrinsic disorder is an important modulator of 
partition into biomolecular condensates, as are specific 
protein-protein interaction domains (33, 34, 58, 59). 
Therefore, RNA-binding proteins might have evolved 
to multiply molecular interactions between themselves 
to create compartments that can concentrate a large 
functional variety of proteins (for example RNA pro-
cessing factors, translation machinery or silencing 
complexes (60, 61)) and enable the spatial specializa-
tion of cellular processes. In this context, it is interest-
ing to consider a role for RNA itself as an organizer of 
the cellular proteome, as is for example the case for 
some non-coding RNAs whose function is to template 

9

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 29, 2021. ; https://doi.org/10.1101/2021.03.29.437450doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.29.437450
http://creativecommons.org/licenses/by-nc-nd/4.0/


molecular interactions with proteins to form nuclear 
bodies (62).  

While OpenCell joins a growing number of large-
scale datasets (6, 8, 9, 16, 27, 63–66) that contribute to 
the systematic and quantitative dissection of the human 
cell, it is unique in its analysis of both quantitative in-
teractomes and live-cell localization of genome-edited 
proteins. However, the full description of human cellu-
lar architecture remains a formidable challenge, espe-
cially considering the vast diversity of cell types and 
cell states that shape human physiology. Mirroring the 
advances in genomics following the sequencing the hu-
man genome (2), open-source systematic datasets will 
likely play an important role in how the growth of cell 
biology measurements can be transformed into funda-
mental discoveries by an entire community (67). To 
date, OpenCell includes functional information for 
1311 targets (~7% of the human proteome) and a total 
of 5148 proteins found in our interactome (baits and 
preys, ~26% of the proteome). Our approach that com-
bines split-FP systems and HEK293T – a cell line that 
is heavily transformed but easily manipulatable – is 
mostly constrained by scalability considerations. But 
given the current pace of technological advances, the 
large scale of measurements required to match the full 
extent of cellular complexity might soon be within 
reach. In particular, advances in stem cell technologies 
enable the generation of libraries that can be differenti-
ated in multiple cell types (16), while innovations in 
genome engineering (for example, by modulating DNA 
repair (68)) pave the way for the scalable insertion of 
gene-sized payload (e.g., fluorescent proteins, Halo-
Tag, degrons), for the combination of multiple edits in 
the same cell (e.g., dual-tagged libraries for co-locali-
zation studies) or for increased homozygosity in poly-
clonal pools. In addition, our live-cell imaging ap-
proach also paves the way for the systematic descrip-
tion of 4D intracellular dynamics (64), which is being 
transformed by recent developments in high-through-
put light-sheet microscopy (69). 

Finally, OpenCell provides a large set of open-
source, quantitative and curated data that can be used 
as a proving ground for data science and algorithm de-
velopment. Our own innovation in machine learning to 
encode localization signatures was made possible by 
the availability of a critical mass of high-quality live-

cell images taken under uniform experimental condi-
tions – itself facilitated by our collection of genome-
edited lines that can be characterized repeatedly and in 
a native cellular context. Our results also demonstrate 
the power of self-supervised deep learning models to 
identify complex but deterministic signatures from 
light microscopy images. In particular, we show that 
remarkably detailed functional relationships can be in-
ferred on the sole basis of similarities between locali-
zation patterns, including the prediction of molecular 
interactions. This opens exciting avenues for the use of 
imaging as a high-throughput, information-rich method 
for deep phenotyping and functional genomics (70). 
Because light microscopy is easily scalable, can be per-
formed in live, unperturbed samples and enables meas-
urements at the single-cell level, this offers rich oppor-
tunities for the full quantitative description of cellular 
diversity in normal physiology and disease. 
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Figure 1: the OpenCell library. (A) Functional tagging with split-mNeonGreen2. (B) Endogenous tagging strategy: 
mNG11 fusion sequences are inserted directly within genomic open reading frames (ORFs) using CRISPR-Cas9 gene 
editing and homologous recombination with single-stranded oligonucleotides (ssODN) donors. (C) The OpenCell 
experimental pipeline. See text for details. (D) Successful detection of fluorescence in the OpenCell library. Out of 
1728 genes that were originally targeted, fluorescent signal was successfully detected for 1311 (left panel). Low 
expression level is the main obstacle to successful detection (bottom left panel, showing the full distribution of RNA 
expression in transcripts per million reads – tpm – for all genes expressed in HEK293T vs. successfully or unsuccess-
fully detected OpenCell targets; **: p < 10-5, t-test). A correlation between expression level (RNASeq tpm) and fluores-
cence intensity (as read by flow cytometry) is shown for all successful OpenCell targets (bottom right panel). A linear 
regression (solid line, Pearson R2 = 0.49) allows to estimate the expression threshold required for successful detec-
tion. (E) The OpenCell data analysis pipeline, described in subsequent sections. 
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Figure 4: interactive data exploration at opencell.czbiohub.org. (A) The three principal pages of the OpenCell web app. 
From left to right: the target page, interactor page, and gallery page. (B) The target page consists of three columns. The 
leftmost column contains the functional annotation for the target from UniProt, links to other databases, our manually-as-
signed localization annotations, and measures of protein expression. The middle column contains the image viewer, and the 
rightmost column the interaction network. (C) The image viewer allows the user to scroll through the confocal z-slices using 
a slider or to visualize the z-stack in 3D as a volume rendering; in either mode, the user can pan and zoom by clicking, drag-
ging, and scrolling. (D) The interaction network can be toggled with two alternative, complementary visualizations of the 
target’s protein interactions: a volcano plot of relative enrichment vs. p-value and a scatterplot of interaction stoichiometry 
vs. abundance stoichiometry. In both the network view and the scatterplots, the user can click on an interactor to open the 
target or the interactor page for the corresponding protein. 
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Figure 5: quantitative comparisons of localization and interaction signatures. (A) Measure of localization (top) and 
interaction (bottom) similarities between proteins. (B) Heatmap distribution of localization vs. interaction similarities 
between all interacting pairs of OpenCell targets. (C) Heatmap distribution of localization vs. interaction stoichiometry 
between all interacting pairs of OpenCell targets. The discrete sub-group of high-stoichiometry/high localization similarity 
pairs is outlined. (D) Localization patterns of different subunits from example stable protein complexes, represented on 
the localization UMAP (cf. Figure 3). (E) Frequency of direct (1st-neighbor) or once-removed (2nd-neighbor, having a direct 
interactor in common) protein-protein interactions between any two pairs of OpenCell targets sharing localization similari-
ties above a given threshold (x-axis). 
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proteins) is highlighted.  (B) NHSL1/NSHL2/KIAA1522 are part of the SCAR/WAVE community and share amino-acid sequence 
homology (right panel). (C) DMXL1/2, WDR7 and ROGDI form the human RAVE complex. Heatmaps represent the interaction 
stoichiometry of preys (lines) in the pull-downs of specific OpenCell targets (columns). See text for details. (D) Parallel identifi-
cation of FAM241A as a new OST subunit by imaging or mass-spectrometry. See text for details. 
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replicate set, globally constrained by the parameter αthreshold. (B) To optimize parameter choice, we measured how precision (% co-localiza-
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Figure S3: computer vision for automated microscopy acquisition (related to Figure 3). (A) To automate micros-
copy acquisition on 96-well plates and to limit experimental variability between imaging sessions (e.g., to limit varia-
tions in cell density) we paired an acquisition script, written in Python, with a pre-trained machine learning model to 
select fields of view (FOVs) on-the-fly during the acquisition. A total of 25 FOVs are sampled per well in a single 
z-plane, and desirable FOVs are selected for further 3D confocal acquisition on the basis of a score predicted by the 
pre-trained model. (B) Microscopy automation workflow. Microscope hardware is controlled by a Python-based 
acquisition script via an open-source MicroManager-Python bridge (mm2python; https://github.com/czbiohu-
b/mm2python). This approach enables us to combine custom acquisition logic with the rich ecosystem of 
Python-based machine-learning packages. Here, we use the scikit-image package to extract features from each 
FOV snapshot, then use a pre-trained random-forest regression model (scikit-learn) to predict a quality score for the 
FOV. This process is not computationally expensive and requires less than a second; the FOV score can therefore be 
used immediately to determine whether the script should acquire a z-stack or else move on to the next position. To 
maximize the quality of our confocal z-stacks, however, we chose to visit and score all 25 FOVs in each well, then 
re-visit the top-scoring FOVs for confocal z-stack acquisition.
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  717 NTSDSEWNYLHHHHDASCRQDFSPERPKADSLGCPSFTSMATYDSFLEKSPSDKAD-TSS                                                              775

        :                                                   

  603 LYSEDHDGYCASVHTDSGHGSGNLCNSSDGFGNPRHS-VINVFVGRAQKNQGDRSNYQDK                                                              661
  498 SLSVPTDSGTTDVDYDEEQKANEACALPFAST---SSEGSNSADNIASLSA-QQEAQHRR                                                              553
  391 SVVPPPQGG-------S------------GRGSPSGGSTAEASDTLS-------IRSSGQ                                                              424
  776 HFSVDTEGYYTSMHFDCGLKGNKSYVCHYAALGPENGQGVGASPGLPDCAW-QDYLDHKR                                                              834

      :.                     .      .                      :

  662 SLSRNISLKKAKKPPLPPSRTDSLRRIPKKSSQ--------CNGQVLNESLIATLQHSLQ                                                              713
  554 QRSKSISLRKAKKKPSPPTRSVSLVKDEPGLL--------PEGGSALPKDQ---RPKSLC                                                              602
  425 LSGRSVSLRKLKRPPPPPRRTHSLHQRGLAV----------------PDGP---------                                                              459
  835 QGRPSISFRKPKAKPTPPKRSSSLRKSDGNADISEKKEPKISSGQHLPHSS---REMKLP                                                              891

    .:*::* *  * ** *: ** :                      ..          

  714 LSLPGKSGSSPSQSPCSDLEEPWLPRS-RSQSTVSAGSSMTSATTPNVYSLCGATPSQSD                                                              772
  603 LSLE------------------------HQGHHSS------------HPDAQGHPAIPNH                                                              626
  460 LGLPPKPERKQQ---------PQLPRPPTTGGSE----------------GAGAAPC---                                                              491
  892 LDFANTPSRMENANLPTKQEPSWINQS-EQGIKEP------------QLDASDIPPF-KD                                                              937

*.:                                                 .       

  773 TSSVKSEYTDPWGYYI-----DYTGMQ---EDPGNPAGGCSTSSGVPTGNGPVRHVQEGS                                                              824
  627 KDPESTQFSHHWYLTDWKSGDTYQSLSSSSTATGTTVIECTQVQG----SSESLASPSTS                                                              682
  492 ----PPNPANSWVPGL--------------------------------------------                                                              503
  938 EVAESTHYADLWLLNDLKTNDPYRSLSNSSTATGTTVIECIKSPE----SSESQTSQSES                                                              993

      . :. *                                                

  825 RATMPQVPGGSVK-PKIMSPEKSHRVISPSSGYSSQSNTPTALTPVPVFLKSVSPANGKG                                                              883
  683 RATTPSQLSIEVEAREISSPGRPPGLMSPSSGYSSQSETPTPTVSMSLTLGHLPPPSSSV                                                              742
  504 ------SPGG-----SRRPPRSPERTLSPSSGYSSQSGTPTLPP-----KGLAGPPASPG                                                              547
  994 RATTPSLPSVDNE-FKLASPEKLAGLASPSSGYSSQSETPTSSFPTAFFSGPLSPGG--S                                                             1050

        .      .   *       ********** ***             *     

  884 KPKPKVPERKSSLISSVSISSS-STSLSSSTS------TEGSGTMKKLDPA--------V                                                              928
  743 RVRPVVPERKSSLPPTSPMEKF-PK-SR-----------------LSFD-----------                                                              772
  548 KAQPPKPERVTSLRSPGASVSSSLTSLCSSSSDPAPSDRSGPQILTPLGDRFVIPPHPKV                                                              607
 1051 KRKPKVPERKSSLQQPSLKDGT-IS-LS-----------------KDLE-----------                                                             1080

: :*  *** :**           .                      :            

  929 GSPPAPPPPPVPSPPFPCPADRSPFLPPPP-PVTDCSQGSPLPHSPVFPPPPPEALIPFC                                                              987
  773 -LPLTS-SPNLDLSGMS-ISIRS------KTKVSRHHSETNFGVKLAQKTNPNQPIMPMV                                                              823
  608 PAPFSPPPSKPRSPNPAAPALAAPAVVPGPVSTTDA--------SPQSPPTPQTTLTPLQ                                                              659
 1081 -LPIIP-PTHLDLSALH-NVLNKPFHHRHPLHVFTHNKQNTVGETLRSNPPPSLA----I                                                             1133

  *                             .           .      *        

  988 SPPDWCLSP-------------PRPALS----------PILPDSPVS----LPLPPPLLP                                                             1020
  824 TQSDLRSVR-------------LRS--------------VSKSEPEDDIES----PEYAE                                                              852
  660 ESPVISKDQSPPPSPPPSYHPPPPPTKKPEVVVEAPSASETAEEPLQDPNWPPPPPPAPE                                                              719
 1134 TPTILKSVN-------------LRS--------------INKSEEVKQKEENNTDLPYLE                                                             1166

                                          ..  .             

 1021 SSEPPP--APPLDPKFMKDTRPPFTN-SGQPE--SS---------RGSLRPPSTKE----                                                             1062
  853 EPRAEE--VFTLPE---RKTKPPVAE-KPPVA--RR-------PPSLVHKPPSVPE----                                                              893
  720 EQDLSMADFPPPEEAFFSVASPEPAGPSGSPELVSSPAASSSSATALQIQPPGSPDPPPA                                                              779
 1167 ESTLTT--A-ALSP---SKIRPHTAN-------------------------KSVSR----                                                             1191

.                    *  :                           .       

 1063 -----------------------------E--TSRPPMPLITTEALQMVQLR-PVRKNSG                                                             1090
  894 -----------------------------EYALTSPTLAMPPRSSIQHAR---PL-PQDS                                                              920
  780 PPAPAPASSAPGHVAKLPQKEPVGCSKGGGPPREDVGAPLVTPSLLQMVRLRSVGAP-GG                                                              838
 1192 -----------------------------QYSTEDTILSFLDSSAVEMGPDKLHLEKNST                                                             1222

                                       :   . ::           . 

 1091 AEAAQLSERTAQEQRTPVAPQYHLKPSAFLKSRNSTNEMESESQPASV------------                                                             1138
  921 YTV---VRK-----------------------------------PKPS------------                                                              930
  839 APTPALG---------PSAPQKPL------R-----RALSGRASPVPAPSSGLHAAVRLK                                                              878
 1223 FDV---KNRCDPET-------ITSAGSSLLDSNVTKDQVRTETEPIPE-------NTPTK                                                             1265

  .                                         *               

 1139 TSSLPTPAKSSS-----QGDH----------GSAAE------RGG-PVSRSPGAPSAGEA                                                             1176
  931 --SFPDGRSPGES-TAPSSL------------VFTPF--ASSSDA-FFSGTQQPPQGSVE                                                              972
  879 ACSLAAS--EGLSSAQPNGPPEAEPRPPQSPASTASFIFSKGSRKLQLER-PVSPETQ-A                                                              934
 1266 NCAFPTEGFQRVSAARPNDLD----------GKIIQY--GPGPDE-TLEQVQKAPSAGLE                                                             1312

  ::             ..                            ..     *.    

 1177 EARPSPSTTP---------LPDSSPSRKPPPISKKPKLFLVV-PPPQKDFAVEPAENVSE                                                             1226
  973 DEGPKVRVLPERISLQSQEEAEKKKGKIPPPVPKKPSVLYLPLTSPTAQ--------M-E                                                             1023
  935 DLQRNLVAELRSISEQRPPQAPKKSPKAPPPVARKPSVGVPPPASPSYPRA--------E                                                              986
 1313 EV-----AQPESVD-----------------------VITSQSDSPTRATDV--SNQFKH                                                             1342

:      .                             :       *             .

 1227 ALRAVPSPTTGEEGSVHSREAKESSAAQAGSHATHPGTSVLEGGAAGSMS-PSRV---EA                                                             1282
 1024 AY-------------V-----------AEPR-LPLSPIITLEE--------DTKCPATGD                                                             1050
  987 PLTAP--PTN---GLPHTQDRTKREL------AENGG-----------------------                                                             1012
 1343 QF-------------V-----------MSRHHDKVPGTISYESEITSVNSFPEKCSKQEN                                                             1378

                                                            

 1283 NVPMVQPDVSPAPKQEEPAENSADTGGD-GESCLSQQDGAAGVPETNAAGSSSEACDFLK                                                             1341
 1051 DLQSLGQRVTSTPQADS--EREASPLGSSV-----E----PG--TEEKSLISDKTAEWIA                                                             1097
 1013 VLQLVGPE---------------------------EKMGLPG---SD-------------                                                             1029
 1379 I----ASGISAKSASDN--SKAEETQGNVDEASLKE----SS--PSDDSIISPLSED-SQ                                                             1425

                                   :     .    :             

 1342 EDGNDEVMTPSRPRTTEDLFAAIHRSKRKVLGRRDSDDDHSRNHSPS--PPV--------                                                             1391
 1098 EDDDDVFV---ASRTTEDLFTVIHRSKRKLLGWKEPGEAFVGGRTSSHSPIKNTAE----                                                             1150
 1030 ------------------------------------------------------------                                                             1029
 1426 AEAEGVFVSPNKPRTTEDLFAVIHRSKRKVLGRKDSGDMSVRSKSRA--PLSSSSSSASS                                                             1483

                                                            

 1392 --TPTGAAPSLASPKQVGSIQRSIRKSSTSSDNFKALLLKKGSRSDTSARMSAAEMLKNT                                                             1449
 1151 --SPISESTATA---GS---GSSANLDAGRNDDFKALLQKKGSKATPRSRPSAAELLKTT                                                             1202
 1030 --------------------------------SQKELA----------------------                                                             1035
 1484 ITSPSSNVTTPNSQRSPGLIYRNAKKSNTSNEEFKLLLLKKGSRSDSSYRMSATEILKSP                                                             1543

                                . * *                       

 1450 DPRFQRSRSEPSPDAPESP----------------SSCSPSKNRRAQEEWAKNEGLMPRS                                                             1493
 1203 NPLARRIIAQFSKDY-ETTDNPST------------------------------------                                                             1225
 1036 ------------------------------------------------------------                                                             1035
 1544 IL--PKPPGELTAESPQSTDDAHQGSQGAEALSPLSPCSPRV---------NAEGFSSKS                                                             1592

                                                            

 1494 L-SFSGPRYGRSRTPPSAASSRYSMRNRIQSSPMTVISEGEGEAVEPVDSIARGALGAAE                                                             1552
 1226 ------------------------------------------------------------                                                             1225
 1036 ------------------------------------------------------------                                                             1035
 1593 FATSASARVGRSRAPPAASSSRYSVRCRLYNTPMQAISEGETENSDGSPHDDRSSQSST-                                                             1651

                                                            

 1553 GCSLDGLAREEMDEGGLLCGEGPAASLQPQAPGPVDGTASAEGREPSPQCGGSLSEES                                                           1610
 1226 ----------------------------------------------------------                                                           1225
 1036 ----------------------------------------------------------                                                           1035
 1652 ----------------------------------------------------------                                                           1651
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  388 SQ----ELRHFESENIMSPACVVSPHATYSTSIIPNATLSSSSEVIAIPTAQSAGQRESK                                                              443
  375 ---------------SVPSSCNGPTESTFSTSWK--------------------------                                                              393
  273 ----------AGPAEPLSPAMSISPQATYLSKLIPHAVLPPTVDVVALGRCSLRTLSR--                                                              320
  574 HKLSERGRSRLSRMAADSGSCDISSNS----DTF--------------------------                                                              603

                   :     .:    .                            
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Figure S5: sequence analysis of orphan proteins (related 
to Figure 6). (A) Amino-acid sequence alignment between 
human NHSL1, NSHL2, KIAA1522 and NHS. (B) Correspon-
dence of RAVE complex members in S. cerevisiae, D. melano-
gaster and H. sapiens. Note that in S. cerevisiae RAVE also 
includes Skp1, not depicted here. 
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Figure S6: biophysical & ontology analysis of the main branches from interactome and localization hierarchies (related to Figure 7). 
(A) The three branches derived from the interactome hierarchy (see Figure 7A). (B) Heat-map representing significance testing of biophysical 
properties of protein sequences in the 3 branches. P-values were obtained using Student’s t-test comparing proteins belonging to a specific 
hierarchical branch against all proteins in the three branches. (C) Box plot representing the significance testing of biophysical properties 
described in (B). Boxes represent 25th, 50th, and 75th percentiles, and whiskers represent minimum and maximum values. Median is repre-
sented by a white line. ** p < 10-9 (Student’s t-test), exact p-values are shown. (D), (E) Enrichment analysis of GO annotations in the hierarchi-
cal branches, testing GO term enrichment of proteins in each branch against all proteins in the interactome (Fisher’s exact test, showing 
annotations enriched at p < 10-10 and excluding near-synonymous annotations).  (F), (G): same as (A) and (D) but for localization-based hierar-
chical branches (see Figure 7B). 
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