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Top-down attention is hypothesized to dynamically allocate limited neural resources to task-relevant computations.
According to this view, sensory neurons are driven not only by stimuli but also by feedback signals from higher brain
areas that adapt the sensory code to the goals of the organism and its belief about the state of the environment.
Here we formalize this view by optimizing a model of population coding in the visual cortex for maximally accurate
perceptual inference at minimal activity cost. The resulting optimality predictions reproduce measured properties
of attentional modulation in the visual system and generate novel hypotheses about the functional role of top-down
feedback, response variability, and noise correlations. Our results suggest that a range of seemingly disparate
attentional phenomena can be derived from a general theory combining probabilistic inference with efficient coding
in a dynamic environment.

Introduction

Activity of neurons in the visual cortex is driven jointly by external stimuli and internal feedback signals from higher
brain areas [1, 2]. One hypothesis suggests that such top-down modulation could adapt sensory codes to the goals
of an organism and its belief about the state of the environment [2, 3]. As a result, finite neural resources could
be allocated flexibly, to sharpen representations of task-relevant stimuli at the expense of task-irrelevant input. This
process, known as top-down attention [1], has been the subject of experimental and theoretical research since
the early days of perceptual and neural science [4]. Yet despite the extensive research, answers to several broad
questions related to top-down attention remain elusive.

The first question concerns the diversity of attentional processes. Depending on the task at hand, attention prior-
itizes different features of the sensory input. As a consequence, attentional processes are traditionally categorized
by the relevant properties of the stimulus or the environment into, e.g., object-based attention [5–7], spatial atten-
tion [8–10], or feature-based attention [11–13]. It is unclear whether these different “kinds” of attention really reflect
distinct neural processes, or whether they can be multiplexed in the same neural architecture and be governed by
the same set of principles.

The second question concerns the functional effects of attentional state on neural activity. Selective attention
has been shown to modulate tuning curves [14], receptive fields [15], and the firing rate of individual neurons [16].
Attentional signals can also modulate the collective structure of the population activity, in particular, correlations
between pairs of neurons [17, 18]. Furthermore, fluctuations in the internal state of the brain are known to dynam-
ically affect neural firing in the visual system [19–21]. Despite the wealth of empirical observations and qualitative
hypotheses, we still lack a quantitative framework for attentional modulation that is applicable to neural activity on
the individual as well as the population level.

The last question concerns the normative account of top-down attentional processing. Feedback connections
have been shown to aid processing in models of the visual system by enhancing desired features of the stimulus [22,
23]. In hierarchical probabilistic models of perception, attention-like modulation can aid Bayesian inference [24].
Irrespective of the model setup, existing approaches postulate attentional dynamics rather then derive them from a
normative theory of neural computation [25]. Moreover, the majority of current normative theories are themselves
limited either to task-independent scenarios [26, 27] or to static environments [28–30]. It is therefore unclear whether
a normative theory of task-relevant sensory coding in natural and dynamically changing environments could predict
attentional phenomena ab initio.

Here we start by addressing the last question. Our key insight places attentional processing at the intersection
of two established normative theories of neural computation: probabilistic inference and efficient coding. Probabilis-
tic inference specifies how task-relevant environmental states can be optimally estimated from unreliable sensory
signals. Efficient coding specifies how finite neural resources should be allocated to encode these signals. A re-
cently proposed fusion of these two theories [31] provides a natural framework to study attention: a process whose
presumed purpose is to allocate finite resources to extract task-relevant aspects of the environment.
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Building on these principles, we develop a statistical model of adaptive sensory representations in the visual cor-
tex. The model is optimized to infer the state of a changing environment from dynamic sequences of natural images.
To navigate the efficiency constraints on the total amount of neural activity, the model utilizes top-down feedback
to dynamically adapt the activation thresholds of individual neurons in the sensory population. We demonstrate
that key attentional processes such as object, feature, and spatial attention emerge from the same design prin-
ciple: maximization of inference accuracy at minimal neural activity cost. By optimizing this single objective, the
model reproduces known static and dynamic properties of neural coding in the visual cortex, and generates novel
testable predictions about neural correlations and the impact of perceptual uncertainty on the population code.
Taken together, our results provide a unified normative account of the dynamic, attentionally-modulated sensory
representations in the visual cortex.

Results

We consider a scenario depicted in Fig. 1, where the aim of the sensory system is to keep track of a changing latent
state of the environment. This latent state, denoted by ~θt and evolving in time t, might correspond to a behaviorally
relevant quantity, such as the position of a moving target. The brain does not have direct access to this latent state,
and has to infer it from a stream of high-dimensional stimuli ~xt. The stimuli are encoded by a resource-constrained
population of sensory neurons whose instantaneous responses are denoted by ~zt. A sensory representation of
the current stimulus is conveyed via feed-forward connections to a brain region which performs a specific inference
(a perceptual observer). To solve this inference optimally, the observer combines the stimulus representation ~zt
with its internal model of the world into a posterior distribution over the current state of the environment p(~θt|~zτ≤t).
The posterior distribution is used to extract a point-estimate of the state of the environment θ̂t, and the predicted
future distribution of stimuli, which we denote as p(~xt+1|~zτ≤t). Based on this prediction, optimal parameters for
the sensory population are computed and conveyed back upstream, via feedback connections. In that way, the
sensory population can use its finite resources to retain only those features of the stimulus which are relevant to the
perceptual observer at any given moment [31].
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Figure 1: Adaptation of the sensory code for perceptual inference in a dynamic environment. Continually evolving state of the environment
~θt gives rise to a sequence of stimuli ~xt, which are encoded by a population of sensory neurons into neural responses ~zt. The properties of
sensory neurons (e.g., their gain, receptive fields, recurrent interactions) are not fixed, but can be adapted moment-by-moment via feedback
connections from higher brain areas. The normative approach we study here considers a scenario where sensory neurons optimally adapt their
activation thresholds, leading to maximally accurate inference of the state of the environment by the perceptual observer, at minimal activity cost
in the sensory population.

Model of adaptive coding in the visual cortex
Following the rationale of Fig. 1, we develop a model of adaptive coding in the visual cortex (Fig. 2A, B) which is an
extension of the well-known sparse coding model of V1 [26]. In the sparse coding model, a population of sensory
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neurons, each encoding a single image feature, forms a distributed representation of natural images. Preferred
features of individual neurons are optimized to reconstruct natural images with minimal error, while maximizing the
sparsity of neural responses (see Methods). The resulting features resemble receptive fields of V1 neurons and
can be conveniently visualized for the entire population [27] (Fig. 2C). While sparse encoding is highly nonlinear
and requires inhibitory interactions between the neurons [32], images can be linearly decoded from the population
activity.
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Figure 2: Adaptive population coding with nonlinearities. (A) An image ~xt (32 × 32 pixel in size) is encoded by a population of N = 512
sparse coding model neurons, characterized by the represented features. Feature activations are transformed by adaptive nonlinearities with
the threshold parameter ξn,t. The resulting responses zn,t are transmitted to the perceptual observer, which may use them to linearly decode
the image and perform further task-specific computations. (B) Example adaptive nonlinearities for different values of the threshold parameter ξ
(color). Inset: linear fits to nonlinearity outputs demonstrate that increasing the threshold ξ effectively decreases the neural response gain. (C)
Visualization of the population code (bottom). The feature encoded by each model neuron is represented by a bar which matches that feature’s
orientation and location. Two example features (top) are represented by bars of the corresponding color (bottom). (D) Left: an example image
reconstructed using the standard sparse code (“full,” when all ~ξ = 0). Orange frame marks a region of interest (ROI). Right, top row: three
sensory populations optimized to reconstruct only the part of the image within the ROI, sorted by increasing attentional resource constraint
ψ. Red intensity visualizes the value of the optimal thresholds ξn (red = low threshold and high gain; gray = high threshold and low gain).
Right, bottom row: images linearly decoded from the corresponding sensory populations in the top row. (E) Activity of the neural population
is increasingly suppressed (black line) and quality of ROI reconstruction (measured in dB SNR) decreases with increasing attentional resource
constraint ψ.

The standard sparse coding model is capable of accurately reconstructing entire images, up to a single pixel, at
minimal activity cost. Sparse coding can be viewed as an instantiation of efficient coding in a static, task-agnostic
setup. We hypothesized that significant further efficiency gains would be possible if the sensory population could
dynamically adjust its properties to encode only those image features required by the perceptual observer at any
given moment.

We therefore extended the standard sparse coding model by transforming the output of each sparse feature with
an adaptive nonlinearity (Fig. 2A). Each nonlinearity is controlled by a single parameter ξn, which corresponds to an
activation threshold (Fig. 2B). When ξn = 0, the response of the neuron n is equal to the activation predicted by the
standard sparse coding. For ξn > 0 the neuron responds only when the activation exceeds a threshold determined
by the value of ξn. An increase of the threshold can be interpreted as a hyperpolarization of an individual neuron by
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feedback connections. Alternatively, an increase of the threshold can also be understood as an effective decrease
in the neural gain (Fig. 2B, inset). This nonlinear transformation is reminiscent of smooth shrinkage, a well-known
image denoising transform [33]. Neural nonlinearties can be dynamically modulated via feedback connections, as
we describe more precisely below; what is essential here is that these nonlinearity adjustments allow the resulting
neural responses zt,n to be sparsified beyond the standard, task-independent sparse coding. Mathematically, this
is achieved by imposing an “attentional resource constraint” of strength ψ that penalizes high neural activity ~zt
(see Eq (2), below). Finally, the neural responses are transferred downstream to the perceptual observer. Image
decoding remains a simple, linear transformation.

To illustrate how this model population can selectively encode only the relevant features of a stimulus we consider
a simple, static image encoding task (Fig. 2D). We optimize the nonlinearity parameters to reconstruct only a region
of interest (ROI) of an image (Fig. 2D, orange frame). When the attentional resource constraint is inactive (ψ = 0),
our model is equivalent to a sparse encoder, and the entire image can be reconstructed with high accuracy (Fig. 2D,
leftmost column). For increasing values of attentional resource constraint ψ, the neuronal thresholds increase and
“gain down” neurons that report on the image outside of the ROI (Fig. 2D, top row). While the quality of the overall
image reconstruction deteriorates with increasing ψ (Fig. 2D, bottom row), the image within the ROI is preserved
with high accuracy. The tradeoff between population activity suppression and ROI reconstruction accuracy as a
function of the attentional resource constraint ψ is clearly visible (Fig. 2E).

This pedagogical example highlights how task-irrelevant features (here, image components outside of the ROI)
can be suppressed in a sensory population to increase coding efficiency. Viewed from the image perspective, the
sensory population is performing a lossy image compression, biased to maintain the image fidelity within the ROI.
Here, the task is trivial, both because it deals directly with image reconstruction rather than inference, and because
it is static. We now proceed to more complex and dynamic scenarios where the latent state of the environment and
the stimulus statistics fluctuate. We expect that sensory neuron nonlinearities will have to dynamically adapt to the
changing belief of the perceptual observer, as depicted in Fig. 1.

Perceptual inference tasks
We consider three different probabilistic inference tasks that the perceptual observer carries out using the adaptive
sensory code: object detection, target localization, and orientation estimation (Fig. 3A). These tasks correspond
to traditionally defined types of attention: object-based attention, spatial attention, and feature-based attention,
respectively.

For each task, the perceptual observer performs a sequence of computations outlined in Fig. 1 at each time
step. First, the observer uses a representation of the stimulus in the form of population activity vector ~zt to perform a
“measurement” ~mt of the stimulus feature required to infer the latent variable of interest. The measurement consists
of evaluating a task-dependent function f over the population activity vector, i.e., ~mt = f(~zt)+ ρ, where ρ is additive
Gaussian noise. Second, the measurement ~mt is used in a Bayesian update step to compute the distribution over
the latent state of the environment p(~θt|~mτ≤t), and the predictive distribution of future stimuli p(~xt+1|~zτ≤t). Third, the
predictive distribution is used to select optimal values for the neural nonlinearities, to be conveyed to the sensory
population via top-down feedback (see Methods for details).

Object detection. The goal of the object detection task is to infer whether a specific object is embedded in the
current image or not (Fig. 3A, B, top row). The latent state of the environment follows a random correlated process
to switch between “object present” (θ = P ) and “object absent” (θ = A). The observer linearly decodes the image x̂t
and computes the measurement mt by projecting the decoded image onto the object template. The measurement
mt follows a different distribution, depending on whether the object is present or absent in the scene (Fig. 3C, top
row). The posterior distribution is characterized by a single number, the probability of object present p(θ = P )
(Fig. 3D, top row).

Target localization. The goal of the target localization task is to infer the position of a moving visual target –
a white cross – embedded in the background of a natural movie (Fig. 3A, B, middle row). The observer linearly
decodes the image to extract a noisy measurement of the position of the target, by computing cross-correlation with
the target template (Fig. 3C, middle row; see Methods). This noisy measurement, combined with observer’s knowl-
edge of the target dynamics, is used to estimate the current position of the target along the two spatial coordinates
θ̂t = (θ̂x,t, θ̂y,t) (Fig. 3D, middle row).

Orientation estimation. The goal of the orientation estimation task is to determine whether the current stimulus
is predominantly horizontally or vertically oriented (Fig. 3A, B, bottom row). These two classes of images were
first discovered via unsupervised learning (see Methods). The latent state of the environment follows a random
correlated process to switch between “horizontal” (θ = H) and “vertical” (θ = V ). The observer projects the
magnitudes of neural responses |~zt| onto a discriminative template, without decoding the image first, to obtain the
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measurement mt (Fig. 3C, bottom row; see Methods for details). The measurement follows different distributions
for horizontally and vertically oriented images (Fig. 3C, bottom row). The posterior distribution is characterized by a
single number, the probability that the environment is in the horizontal state p(θ = H) (Fig. 3D, bottom row).
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Figure 3: Perceptual inference tasks. (A) Rows correspond to individual inference tasks: object detection (top), target localization (middle), and
orientation estimation (bottom). (B) Visualization of latent states ~θt (top row of each panel, orange and green frames) and example stimuli ~xt in
each task (bottom rows of each panel, black frames). Top: tree present (orange) or absent (green). Middle: different white cross positions (orange
dot). Bottom: orientation horizontal (orange) or vertical (green). (C) Measurements taken by the perceptual observer to infer the state of the
environment. Top: a linear decoding of an image is projected onto a target “tree template” (inset) and noise is added. Measurements with object
present (orange) and absent (green) follow different distributions. Middle: a linear decoding of an image is used to take a noisy measurement of
the target position (orange dot = position estimate; orange circle = noise standard deviation). Bottom: logarithmically-transformed neural activity
is projected onto a template (inset, blue and red = negatively and positively weighted neurons, respectively) and noise is added. Measurements
of predominantly horizontal (orange) and vertical images (green) follow different distributions. (D) Posterior distributions. Top: probability of
object being present (P, orange) or absent (A, green). Middle: probability of the visual target location (orange dot = MAP estimate; orange circle
= covariance of the estimate). Bottom: probability of the image being predominantly horizontally (H, orange) or vertically (V, green) oriented.
(E) Top row, left column: population activity for two different observer belief levels that the tree is present. Top row, middle column: two images
decoded using the full code optimized for image reconstruction. Top row, right column: two images decoded using the adaptive code with
the activity shown in the left column. Middle and bottom rows: analogous to the top row, but for target localization and orientation estimation,
respectively. Throughout, the neural population is visualized using the expected neural activation (colorbar; see Methods).
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Top-down feedback for adaptive coding
To complete our model, we must close the loop and specify the procedure by which the perceptual observer adapts
nonlinearity thresholds in the sensory population via top-down feedback. Following the normative approach, we
assume that such adaptations are mathematically optimal and proceed to work out the predicted consequences.
The question of how realistic neural circuits could implement or approximate the required optimality computations is
clearly important but beyond the scope of present work.

We start by assuming that at each time step a predictive distribution over future stimuli,

p(~xt+1|~zτ≤t) =
∫

d~θt+1 p(~xt+1|~θt+1)

∫
d~θt p(~θt+1|~θt) p(~θt|~zτ≤t), (1)

can be computed to derive the optimal nonlinearity parameters, ~ξ∗t+1, which, in turn, are used to encode the future
stimulus. These optimal parameters ξ∗t+1 are chosen at every time step to minimize the following cost function:

C
(
~ξt+1

)
=

〈
Dsym

KL

[
p(~θt+1|~zt+1(~ξt+1))

∥∥∥p(~θt+1|~zt+1(~ξ = 0))
]

︸ ︷︷ ︸
inference error due to neural activity suppression

+ψ
N∑
n=1

∣∣∣zn,t+1(ξt+1,n)
∣∣∣︸ ︷︷ ︸

neural activity cost

〉
p(~xt+1|~zτ≤t)

, (2)

where Dsym
KL is the symmetrized Kullback-Leibler divergence. We relied on symmetrized variant of the KL divergence

because of its conceptual similarity to other error measures such as reconstruction error. The essence of the
framework outlined here is however not dependent on this precise choice.

The cost function in Eq (2) is at the core of our approach. The first term corresponds to the error in inference
induced by image compression due to suppression of the neural activity via adaptive thresholds (see Methods): this
term is small in expectation when the task-relevant predictive information can be retained (at low threshold values).
The second term is the neural activity cost, where ψ is the attentional resource constraint: this term is small when
the predicted neural activations will be sparse (at high threshold values). By minimizing the cost function C, the
system balances the two opposing objectives and minimizes the error in latent state inference while reducing the
amount of neural activity beyond the limit set by standard sparse coding (ψ = 0).

Optimal thresholds depend on the current task, the strength of the attentional resource constraint ψ and, crucially,
on the time-changing perceptual belief of the observer. The dynamics of this belief induce temporal changes in the
structure of the sensory code. This interplay is illustrated in Fig. 3E. In the object detection task (Fig. 3E, top panel)
only the neurons which encode the silhouette of the object are modulated, while the rest of the population remains
suppressed to minimize activity. When the observer does not believe that the tree is present in the scene (i.e.,
p(θ = P ) is low; Fig. 3E, top panel, top row) only a minimal set of neurons remains active, in order to encode the
outline of the tree should it suddenly appear. This is evident when comparing the image decoded from the full code
with that from the adaptive code: in the latter case, only the shape of the tree is retained while the rest of the image
detail is compressed out. When the uncertainty about the presence of the object increases (i.e., p(θ = P ) = 0.5),
the sensory population must preserve additional image features to support the perceptual task (Fig. 3E, top panel,
bottom row).

Similar reasoning applies to the orientation estimation task (Fig. 3E, bottom panel), where only the neurons
encoding the relevant image orientations remain active and modulated by the observer. While the images recon-
structed from the adaptive code lose a lot of spatial detail, they retain the global “gist” which enables the observer
to identify their dominant orientation.

The influence of perceptual belief on the sensory encoding is perhaps most clearly apparent in the target lo-
calization task (Fig. 3E, middle panel). Here, the sensory population encodes only that region of the image where
the perceptual observer believes the target is expected to move in the next time step. This task can be seen as a
dynamic generalization of the ROI encoding example of Fig. 2D. As the target moves, the observer extrapolates this
motion into the future and encodes information just sufficient to confirm or rectify its prediction, while suppressing
the rest of the image. This results in an attentional phenomenon that closely resembles a moving spatial “spotlight”
of high visual acuity.

Adaptive coding enables accurate inference with minimal neural activity
How do adaptive codes navigate the tradeoff between minimizing neural activity and maximizing task performance?
We simulated perceptual inference in dynamic environments over multiple time steps for all three tasks (Fig. 4A).
Adaptive coding results in drastic decreases of neural activity in the sensory population compared to the standard

6

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 30, 2021. ; https://doi.org/10.1101/2021.03.29.437459doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.29.437459
http://creativecommons.org/licenses/by-nc-nd/4.0/


sparse coding (Fig. 4B). Adaptive coding furthermore reveals interesting task-specific dynamics of population activ-
ity, locked to the switches in the environmental state. For example, in the object detection and orientation estimation
tasks (Fig. 4B, top and bottom panels, respectively) the neural activity is significantly decreased in “absent” and
“horizontal” environmental states, respectively. This is because the sensory system needs to extract different kind
of information to support downstream inferences in different environmental states. In contrast, the standard sparse
code maintains a roughly constant level of activity (Fig. 4B, red lines).

We also quantified the cost of top-down feedback signaling (Fig. 4C). In our model, feedback activity is com-
mensurate with the amplitude and frequency of posterior belief updates in the perceptual observer (see Methods),
making feedback activity patterns strongly task-specific. In the object detection task, feedback activity peaks briefly
during switches between environmental states (Fig. 4C, top panel). In the orientation estimation task, the belief
of the perceptual observer fluctuates strongly when vertical orientation dominates, leading to elevated feedback
activity (Fig. 4C, bottom panel). Since the signal statistics are more homogeneous in the target localization task,
feedback activity (when non-zero) stays within a tight interval (Fig. 4C, middle panel).

Despite the additional cost of feedback signaling, the total activity of adaptive codes is drastically lower compared
to the full sparse code, sometimes by more than an order of magnitude (Fig. 4D). This dramatic reduction does not
significantly impact the accuracy of the inferences (Fig. 4E). Average trajectories of the posterior probability for the
object detection and orientation estimation tasks are very similar (Fig. 4E, top and bottom panels). In the target
localization task, the instantaneous error of the target location estimate using the adaptive code closely follows the
error of the full code (Fig. 4E, middle panel). For all tasks, the time-averaged error values are comparable between
the adaptive and the full code. Taken together, this demonstrates that adaptive coding enables accurate inferences
while dramatically minimizing the cost of neural activity in the sensory population.

Statistical signatures of adaptive coding
Dynamic adaptation significantly changes the statistical structure of a sensory code. The most prominent change
is a large increase in the sparsity of the adaptive code compared to the standard sparse code across all tasks
(Fig. 5A,B). This finding is consistent with the observed suppression of average neural activity (Fig. 4D). These two
phenomena are, however, not exactly equivalent. Sparsity of neural responses (as measured by kurtosis) can be
increased in many ways [26], and each would result in suppression of the average activity. In our case, sparsity
increase in the adaptive code is induced specifically by a complete suppression of a subpopulation of neurons,
resulting in the high spike at zero in the neural response distribution (Fig. 5A).

Coordinated top-down modulation of individual neurons leaves its imprint also on the collective statistics of the
population activity. For example, different perceptual tasks engage different neurons and, among them, induce
different patterns of pairwise correlation. This effect becomes apparent when we focus on a subset of neurons
active in a task and compare their correlated activity under standard sparse code or under the adaptive code. In
the standard sparse code, neural correlations are inherited solely from the stimulus (Fig. 5C, top submatrices, red
frame). In an adaptive code, they are additionally modulated by the task, leading to a very different correlation
pattern (Fig. 5C, bottom submatrices, blue frame).

Changes in the stimulus are not the only factor which drives response variability in the visual cortex. Cortical
responses are notoriously unreliable and can fluctuate widely over multiple presentations of the same stimulus [34],
giving rise to “noise correlations” among sensory neurons [35]. Patterns of noise correlations can be task-specific
and driven by feedback [3]. Our framework provides a new normative hypothesis about the origin and functional
relevance of response variability and noise correlations. In our model, neurons generate different responses even
at fixed stimulus when the neural nonlinearities change due to fluctuations in the internal state of the perceptual
observer. For example, at the beginning of each target localization trial – even though the stimulus is the same –
the perceptual observer may have a different prior belief about where the target is, possibly influenced by preceding
history of the neural dynamics or sampling noise that leads to stochastic information accumulation about target
position. Trial-to-trial differences in this internal belief will result in a variable allocation of resources in the sensory
population as directed by the perceptual observer via top-down feedback, leading to strong noise correlations.

We simulated such a scenario by exposing our model to multiple presentations of a single stimulus, identical
across the three tasks, while enabling the perceptual belief to vary. A clear pattern of response variability to multiple
presentations of the same stimulus is visible in each case (Fig. 5D). This task-specific and feedback-driven response
variability manifests in distinct noise correlation structures (Fig. 5E, left column). For the adaptive code, the noise
correlation matrix is dominated by a small number of modes, reflecting a low-dimensional fluctuating internal state of
the perceptual observer. In contrast, noise correlations are expected to be exactly zero for the standard sparse code.
If independent noise is purposefully introduced into the standard sparse coding units (see Methods), the singular
value spectrum is much denser than for the adaptive code (Fig. 5E, right column), indicating that the presence
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Figure 4: Adaptive coding significantly reduces activity cost with minimal impact on inference accuracy. (A) Rows correspond to
inference tasks: object detection (top), target localization (middle), and orientation estimation (bottom). (B) Sensory population activity 〈|zn,t|〉n
in the standard sparse code optimized for image reconstruction (red = full code) or for a particular task (blue = adaptive code). Activities in object
detection (top) and orientation estimation (bottom) tasks were averaged over 500 switches between different states of the environment. For the
target localization task (middle), we plot an short non-averaged activity segment (200 time steps out of a 104 time-step simulation; see Methods).
(C) Same as B but for feedback activity required to adapt the nonlinearities in the sensory population (see Methods). (D) Time-averaged activity
of the full code (red bars) and adaptive code (blue bars). Pie charts show the total activity decomposed into contributions from two different
environmental states (green and orange; top and bottom row only) and feedback (brown; adaptive codes only). An important signature of
adaptive coding is the asymmetric distribution of activity across environmental states. (E) Inference accuracy (red = full code; blue = adaptive
code). Estimates of the environmental state (“object present” in object detection task, top; “orientation horizontal” in orientation estimation task,
bottom) were averaged over 100 environmental switches. For the target localization task (middle), inference accuracy is measured as mean
squared error between the true and inferred position of the target cross. Text insets display the average inference error in each task (see
Methods).

low-rank noise correlations differentiates between adaptive and full sparse codes. This observation is consistent
with the experimentally observed low-dimensionality of task-specific correlations in the visual cortex [3].

Taken together, adaptive code is predicted to feature: first, a sparser response distribution compared to the
standard sparse code; second, task-dependent response correlations compared to task-independent correlations
for the standard sparse code; third, prominent yet low-rank noise correlations compared to zero noise correlations
for the standard sparse code.
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Figure 5: Statistical differences between the adaptive code and the standard sparse code. (A) Rows correspond to inference tasks:
object detection (top), target localization (middle), and orientation estimation (bottom). (B) Distributions of neural responses zt,n for the standard
sparse code code optimized for image reconstruction (full, red) and the adaptive code (blue); kurtosis as a measure of sparsness is displayed
in inset. (C) Pairwise correlations of 10 example neurons whose activity is modulated by the task (different for each task). Correlations were
computed over the entire stimulus trajectory used to generate plots in Fig. 4. Upper triangle (red) of correlation matrices corresponds to the
full code, bottom triangle (blue) to the adaptive code. (D) Belief-induced response variability in the adaptive code. Neural activation (grayscale
proportional to |zn,t|0.5) for 32 example neurons chosen separately for each task, exposed to 1000 presentations of the same stimulus (orange
frame). Response variability at fixed stimulus originates from the fluctuations in the internal belief of the perceptual observer (top part of each
panel). Here, these fluctuations are simulated as sinusoidal variations in the probability of environmental state (object detection and orientation
estimation tasks; top and bottom row, respectively), or a random walk trajectory of the target for the localization task (middle row). (E) Belief-
induced noise correlations in the adaptive code. Left column: correlation matrices of the same 100 neurons computed from responses to
stimulus presentations displayed in D. Right column: scaled singular values of correlation matrices of the adaptive code (blue). We compared
this spectrum to the standard sparse coding in which a small amount of independent Gaussian noise is added to each neural activation. In
this case, noise correlation singular values scale with the noise magnitude (not shown), and their normalized singular spectrum is denser (red)
compared to that of the adaptive code.

Adaptive coding reproduces attentional phenomena in the visual cortex
To check whether our normative approach accounts for salient attentional phenomena observed experimentally,
we qualitatively compared the properties of the adaptive coding model with the signatures of top-down attention
measured in the visual cortex (Fig. 6). For this comparison we used the target localization task due to its similarity
to the established spatial attention paradigm [1]. While our model is intended primarily as an idealization of the
primary visual cortex, below we compare it to data on target localization from both V1 and V4; we believe this is
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justified since the observed effects have been observed across the visual hierarchy from V1 to V4 and IT, and since
these effects are a consequence of generic computational principles that are likely shared across cortical regions.

A prominent hallmark of spatial attention in the visual cortex is the modulation of population tuning curves [14].
Orientation-selective neurons whose receptive fields are located in the attended part of the scene respond more
strongly to preferred stimuli than neurons encoding unattended parts of the scene (Fig. 6A, top). Our model opti-
mized for the target localization task reproduces this phenomenon (Fig. 6A, bottom). When the perceptual observer
expects the target to be present at a particular image location, it increases the gain of neurons reporting on that
location. We interpret this as equivalent to top-down attention being directed towards that location, which allows
us to extract from our model a “prior-centered” tuning curve comparable to the “attended” experimental condition.
This is to be compared with the “baseline” tuning curve comparable to the “unattended” experimental condition,
computed using neural gain averaged over long periods of time (see Methods). We note that this spotlight-like
gain modulation was not engineered in any way into our model; instead, it emerged from a generic principle that
optimizes perceptual inference under coding cost constraints.
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Figure 6: Comparison of adaptive coding model for target localization to experimental data. (A) Population tuning curves in macaque
V4 in an attended (red) and unattended (gray) conditions (top panel, replotted from [14]). Model prediction (see main text) reproduces the
modulation of tuning curves (bottom panel). (B) Pairwise correlation of internal gain signals (red) and neural activity (gray) as a function of tuning
correlation in macaque V1 (top left) is reproduced by the model (bottom left; see main text). Measured gain autocorrelation functions for three
example neurons (top middle) resemble optimal gain dynamics in the model (bottom middle). Average gain autocorrelation function (gray) and
average pairwise gain cross-correlation function (red) are reproduced by the model (data figures - courtesy of Robbe Goris [19] top right; model
bottom right).

Another prominent signature of attentional processing in the visual cortex concerns neural response variability,
which can be conveniently separated into sensory drive and gain dynamics [19, 20]. Specifically, gain dynamics
might reveal internal brain states related to arousal and attention [19]. Here we compare the statistical structure
of gain dynamics predicted by our normative model with the measurements in the visual cortex (Fig. 6B). Because
changes in effective neural gain are linked to changes in activation thresholds ξ in our setup (Fig. 2B), we focus on
predicted neuron-to-neuron correlations in threshold dynamics as well as individual neuron threshold autocorrelation
function (see Methods). Clear similarities emerge. First, observed correlations of gain and neural activity decay
with decreasing correlation of neuronal tuning, as predicted by our model; furthermore, the activity correlation is
consistently lower than the gain correlation, also as predicted (Fig. 6B, left column). Second, a broad spectrum
of temporal dynamics for the gain of individual neurons is observed in the sensory population: from long temporal
correlations to almost instantaneous decay, which is correctly reproduced by our model (Fig. 6B, middle column).
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When averaged over multiple neurons, the gain autocorrelation function shows a smoothly decaying profile. In
contrast, the average cross-correlation in gain across pairs of neurons reveals no preferred temporal relationship
and decays essentially instantaneously, which is correctly reproduced by our model (Fig. 6B, third column). This
finding is surprising, because – at least in the model – global coordination by top-down feedback could be expected
to lead to non-zero temporal correlations in gain.
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Figure 7: Predicted changes in the adaptive code when perceptual uncertainty is manipulated. (A) Rows correspond to inference tasks:
object detection (top), target localization (middle), and orientation estimation (bottom). (B) Normalized population activity as a function of
perceptual uncertainty for the standard sparse code (red = full code) and the adaptive code (blue). Uncertainty in object detection (top) and
orientation estimation (bottom) tasks was binned into deciles (see Methods). Uncertainty in the target localization task (middle) is plotted for
two levels of measurement noise (dark blue = high noise; light blue = low noise). (C) Dimensionality of the adaptive code can increase with
increasing perceptual uncertainty (left column). Shown is the proportion of variance in total neural activity explained as a function of the number
of principal components (red = full code; light blue = adaptive code at low uncertainty; medium blue = adaptive code at intermediate uncertainty;
dark blue = adaptive code at high uncertainty; see Methods). Increase in code dimensionality is correlated with the number of active neurons at
different levels of uncertainty (right column). (D) Same as B but showing the normalized SNR of the image reconstruction at different perceptual
uncertainty levels.

New predictions of adaptive coding
Previous theoretical work established a link between perceptual uncertainty about the state of the environment and
the influence of stimuli on the perceptual belief [31]. In brief, when a Bayesian perceptual observer is highly certain
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about the value of a latent state of the environment (strong prior), subsequent sensory signals will only have a small
influence over its belief (the posterior will be similar to the prior). In contrast, when the observer is highly uncertain,
any individual stimulus can sway the observer’s belief by a large margin (the posterior can differ significantly from the
prior). This reasoning leads us to the following hypothesis: efficient sensory systems gain down stimulus encoding
in states of high perceptual certainty and gain up encoding in states of high perceptual uncertainty.

We tested this hypothesis in our model. Across all tasks, increases in perceptual uncertainty lead to increased
population activity (Fig. 7A,B). In contrast, standard sparse coding is not modulated by uncertainty and maintains
its activity at a high baseline required to reconstruct the stimuli in full.

Does perceptual uncertainty affect only the total amount of neural activity or also its statistical structure? To an-
swer this question, we assessed the dimensionality of sensory population activity with principal component analysis,
and analyzed it as a function of the entropy of the prior that the perceptual observer holds about the environmental
state (see Methods). In two out of three perceptual tasks, progressively uncertain observer engages increasing
numbers of neurons (Fig. 7C, right column top and middle panels), which affects the dimensionality of the sensory
code. When the observer is highly certain, few principal components suffice to explain the population activity; as
perceptual uncertainty grows and progressively more neurons are engaged via top-down feedback, the dimension-
ality of the code increases, but always remains bounded by the dimensionality of the full sparse code (Fig. 7C).
These changes are mirrored in the fidelity of stimulus reconstruction that can be read out from the sensory popu-
lation (Fig. 7D): as perceptual uncertainty grows, incoming stimuli are increasingly relevant for inference and more
sensory resources are deployed to encode the stimuli, leading to improvements in stimulus reconstruction.

These results generate two new experimental predictions. First, the average firing rates and the dimensionality
of neural activity in the visual cortex should increase during periods of high perceptual uncertainty about the state of
the environment. This could be tested, for example, in the target localization paradigm, by comparing experimental
conditions in which the target object follows a more vs less predictable trajectory, or where the target is embedded at
a higher vs lower contrast in a structured background. To control for sensory confounds and isolate specific effects
of perceptual uncertainty, it should be possible to design stimulus protocols where the perceptual task is always
performed with an identical probe stimulus, but where perceptual uncertainty was manipulated by prior exposure
to different priming stimuli. These predictions echo recent findings that link neural gain variability to perceptual
uncertainty induced by manipulations of low-level image statistics [36]. This link between uncertainty and variability
is also qualitatively captured by our model (see Supplemental Fig. S2).

Second, our results predict that disruption of top-down signaling should decrease the variability of responses
in the sensory population. According to our model, the frequency and strength of top-down feedback signaling
grows with perceptual uncertainty and the frequency of perceptual belief changes. As a consequence, it should be
possible to compare the activity of the intact sensory population with the activity of the sensory population where
top-down feedback was interrupted via mechanical, pharmacological or optogenetic means, under stimulus or task
conditions that induce large fluctuations in perceptual uncertainty. Disrupted feedback should decrease variability
in the sensory population and stabilize its statistics.

Discussion

Attention has long been a subject of theoretical research and numerous theories of its origin and functional relevance
have been proposed [23, 24, 37–39]. In this work we suggest that several open questions about attention—about
its phenomenology, its effects on the neural code, and its functional origins, as laid down in the Introduction—are
interrelated and fall within the purview of a single conceptual framework that synthesizes two canonical theories of
neural computation: optimal perceptual inference and efficient coding [31, 40, 41].

To make these ideas concrete, we develop a model of sensory coding in the visual cortex that is applicable to
dynamic and possibly non-stationary scenarios. We demonstrate that attention-like phenomena emerge as a con-
sequence of moment-to-moment adaptations in a resource-limited sensory code optimized to efficiently learn about
the states of the environment. Such “optimal adaptive coding” reproduces a number of observations previously
attributed to attention: emergence of spatial spotlight, tuning curve modulation, gain dynamics, task-dependence
of neural correlations, and response variability manifesting as noise correlations. We furthermore suggest that dif-
ferent kinds of attention should not be thought of in terms of distinct neural mechanisms, but rather as a natural
consequence of universal computational principles.

Our framework also bears on a puzzling paradox at the heart of how we understand sensory systems. On
the one hand, perception and attention seem to rely on coarse, high-level properties of visual scenes which are
encoded selectively depending on the goals and internal states of the brain [42, 43]. On the other hand, neurons
in the sensory periphery encode signals at the physical limits of precision, right up to individual photons [44]. Why
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invest in such precision if the information is subsequently not used to guide perception or behavior? Our model
shows that adaptive sensory systems which possess the ability to accurately encode the entire image with a single
pixel accuracy can also dynamically partition this sensory information, into the task-relevant part to be extracted and
the task-irrelevant part to be suppressed. Precise sensory representations can thus be maintained at a higher cost
only when needed; when they suffice for the task, coarse sensory representations are preferred for their efficiency.

Relationship to other theoretical frameworks
The hypothesized role of top-down feedback in our approach differs from previous proposals. In hierarchical pre-
dictive coding, feedback conveys predictions of the higher-order stimulus structure to the sensory population, so
that sensory neurons only need to encode the difference between such predictions and the true stimuli [45]. This
establishes a complete and efficient representation of the signal. Top-down feedback has a related role in hierarchi-
cal Bayesian inference [46], where it conveys information about higher-order statistical regularities of the stimulus
to “explain away” lower-level activity. Sensory hierarchy instantiates a complete representation of the stimulus,
with higher levels corresponding to progressively more abstract features of the signal [27]. Importantly, in both of
these classical approaches the system needs to perform multiple feed-forward and feedback passes to establish
the complete stimulus representation.

In contrast to the above theories that retain stimulus detail up to the pixel level, our model of adaptive coding
involves a (potentially lossy) compression of sensory stimuli. Here, top-down feedback does not provide the values
needed for prediction subtraction (in predictive coding) or for explaining away (in hierarchical Bayesian models);
in fact, top-down feedback conveys no stimulus information, at least not directly. Instead, feedback conveys the
optimal “system settings” for the lossy encoder (e.g., nonlinearity parameters for the sensory population), based on
predictions of the perceptual observer. In this setting, the sensory system does not require multiple feed-forward and
feedback passes to establish the stimulus representation. As a consequence, neural resources devoted to coding
and time devoted to transmission of sensory information are dramatically reduced. This efficiency comes at a cost
– the resulting representation is less robust and unexpected environmental changes may lead to dramatic errors in
perceptual inference. Taken together, the adaptive coding regime instantiated by our model offers a perspective on
the role of top-down feedback in sensory systems that is complementary to previous work.

In our approach attention-like processing emerges as a consequence of optimizing a general-purpose objective
function. The model derived here fits in a broader tradition of deriving sensory codes from principles of efficient
coding [26, 47]. Phenomena such as the spatial spotlight or enhancement of vertical orientations are therefore a
“side-effect” of this optimization, rather than a goal in itself. The objective function considered here is reminiscent
of other normative objectives for sensory coding in dynamic environments, such as maximization of predictive
information [48]. There, the goal of the sensory system is to extract information predictive of future values of the
stimulus. We consider the case where encoded information is expected to be relevant for a latent-variable inference
and not the raw values of the stimulus, suggesting further connections to the information bottleneck framework [29,
49]. We foresee exploring the relationship between these objectives in future work.

Our model provides an intriguing link between attentional mechanisms and a wide body of work on the origins
and effects of neural correlations. It has been suggested that neural correlations might be a consequence of shared
noise sources and circuit connectivity [50], or that they may reflect hierarchical perceptual inference [51] which can
be instantiated via probabilistic sampling [51–53]. We do not see our model as being mutually exclusive with these
proposals: adaptive coding could contribute partially, along with other mechanisms, to the task-specific changes in
experimentally measured neural correlations. An important debate concerns the impact of neural correlations on
information transmission in sensory systems [54, 55]. Our framework provides a nuanced perspective on this issue.
Here, changing correlation patterns reflect the compression of the stimulus, i.e., the reduction of the total encoded
stimulus information. Removed stimulus information is however unnecessary from the perspective of the task to be
solved and the momentary perceptual belief.

Caveats and future work
Our work crucially depends on the observer using the correct statistical model of the environment and its dynam-
ics. Dramatic reduction of neural activity cost with a negligible impact on inference quality cannot be achieved by
a “mismatched” observer, which uses an incorrect model, operates under incorrect assumptions, or fails to cor-
rectly compute optimal thresholds. To perform accurate inferences, a mismatched observer should encode stimuli
in higher detail and should therefore decrease the attentional resource constraint ψ. We foresee the possibility of
dynamically controlling this parameter: attentional resource constraint could start at a low value which would pro-
gressively increase as the observer converges to the correct model of the environment. The optimal dynamics of
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the attentional constraint itself (“meta-attention”) is a subject of future work.
Our model makes a number of idealizations about the sensory neuron population. Firstly, we assume that

adaptive nonlinearities are applied to the output of the sparse coding population, where lateral inhibition plays a
crucial role in forming the code [26, 32]. In this scenario, activations sn,t of the sparse-coding algorithm correspond
to subthreshold potentials [56]. Neural firing is computed in a separate step, by transforming these potentials with
a thresholding nonlinearity. We envision other possible mechanisms where suppression of unnecessary neural
activities occurs simultaneously with the computation of the sparse code, for example, by manipulating sparsity
constraints of individual neurons. Secondly, our neural activity is real-valued, making direct quantitative comparisons
with real data impossible for features such as response variability; this issue could be addressed by extending the
model with Poisson spike generation. Lastly, we assume instantaneous top-down feedback, whereas real neural
circuits may suffer from transmission delays that could detrimentally affect the code performance.

Despite the assumptions described above, our key insights should not depend on detailed modeling choices.
Compression of sensory signals could be achieved with different types of nonlinearities, or transformations such
as divisive normalization and multiplicative scaling [57, 58]. Similarly, stimulus could be represented by alternative
schemes, e.g., by neural sampling [56]. Inference carried out by the perceptual observer also need not be explicitly
probabilistic [59]. The only essential component of our model is the feedback loop that dynamically adapts the
sensory code to the demands of the perceptual observer. This provides the necessary theoretical link between the
dynamics of attentional processing, efficient coding, and perceptual inference.

Methods

Adaptive coding model of natural images

Spare coding model of V1

Standard sparse coding model [26] represents image patches xt with a population of N neurons, each of which
encodes the presence of a feature ~φn in the image. Given activations of individual neurons sn,t, the image patch
can be linearly decoded as:

x̂t =

N∑
n=1

~φnsn,t. (3)

Basis functions φ are optimized to jointly minimize the reconstruction error and the cost of neural activity (or, con-
versely, to maximize sparsity):

E(φ) =
〈∑

i

1

2σ2
SC

(x̂t,i − xt,i)2 + λ
N∑
n=1

|sn,t|
〉
t
, (4)

where λ is the sparsity constraint, σ2
SC is the noise level, i indexes image pixels, and t indexes individual images in

the training dataset. We optimized a set of N = 512 basis functions using the standard SparseNet algorithm [26]
which iteratively alternates between minimizing Eq. (4) with respect to basis functions φ and coefficients s. During
learning, we fix ||φn||2 = 1 for every n.To learn neural receptive fields we used a dataset of 5 ·104 32×32 pixel image
patches (standardized to zero mean and unit variance for each patch) randomly drawn from natural movies of the
African savannah [60], which were reduced to 512 dimensions using Principal Component Analysis. We learned
the sparse features φ using λ = 1 and σ2

SC = 0.5; we then fixed features φ for all subsequent analyses.

Adaptive nonlinearities

We extended the sparse coding model by applying pointwise nonlinearities to sparse coding outputs. After encoding
an image patch ~xt we transformed the activations of individual neurons sn,t into responses zn,t:

zn,t(sn,t; ξn,t, α) = sign(sn,t)×

[
1

α
log
(
exp

(
αξn,t

)
+ exp

(
α|sn,t|

)
− 1
)
− ξn,t

]
, (5)

where ξn,t is the threshold value and α = 10 is a constant parameter. This nonlinearity is a smooth and differentiable
shrinkage operator proposed in Ref [61]. Thresholds ξn,t are individually set for each neuron at each time point to
encode only these features of the image which are required to perform the perceptual inference.
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Visualization of nonlinearity parameters

To compare different threshold settings ξ in the sensory population across tasks, perceptual beliefs and stimulus
distributions, we visualized the expected neural activity of neuron n at time t+ 1: 〈|zn,t+1|〉p(xt+1|zτ≤t). This quantity,
which we typically display in color code, would correspond to experimentally observable expected activity of neuron
n.

Cost of feedback activity

We assume that the feedback activity cost at each time point is equal to the standard deviation of the parameter
vector ~ξt. We computed the cost of feedback activity only at time points t when the optimal threshold values changed
with respect to time point at t− 1. The resulting cost measure reflects the frequency of threshold switches and the
range of parameter values which need to be transmitted from the observer to the sensory population via feedback
connections after each switch.

Inference tasks

Object detection

Environment dynamics and stimuli. At each trial, the environment switches randomly between two states corre-
sponding to two values of the latent variable θt: object present (θt = P ) and object absent (θt = A), with the hazard
rate h = 0.01. When the object was absent, stimuli xt — samples from p(xt|θt = A) — were randomly drawn image
patches with zero mean and unit variance. When the object was present, stimuli — samples from p(~xt|θ = P ) —
were a linear combination of a randomly selected image patch ~xRt , and pre-selected image of the object of interest
~xobj (a tree): ~xt = (1 − γ)~xRt + γ~xobj, where the mixing coefficient γ = 0.2. Sparse coding neural activations sn,t
were determined using λ = 0.05 and σ2

SC = 0.5.

Observer model. At each time instant t the observer performed the following sequence of steps. First, the observer
took the measurement mt to be a projection of the image reconstructed from the sensory code ~zt on the template
image of the object of interest ~xobj , i.e., mt(~zt) = x̂Tt ~xobj + ζ, where T is vector transpose and ζ is a Gaussian noise
with variance σ2

m = 0.01.
Second, the observer updated the posterior distribution over the latent state θ:

p(θt|mτ≤t) =
p(mt|θt)p(θt|mτ<t)∑

θt∈{P,A} p(mt|θt)p(θt|mτ<t)
. (6)

From the posterior, the observer computed the MAP estimate, θ̂. For simplicity, we assumed that p(θ|~zτ≤t) =
p(θ|mτ≤t). In the consecutive step, the observer computed the predictive distribution of the latent states p(θt+1|mτ≤t) =∑
θ∈{P,A} p(θt+1|θ)p(θ|mτ≤t). At low hazard rate, we could approximate that the predictive distribution is equal

to the current posterior, p(θt+1|mτ≤t) ≈ p(θt|mτ≤t), from which we derived the predicted distribution of stimuli:
p(~xt+1|mτ≤t) ≈ p(~xt+1|θ̂t).

Nonlinearity optimization. To compute optimal nonlinearity thresholds for sensory encoding at different internal
belief states of the observer, we first discretized the posterior distribution over the latent state into k = 32 bins,
corresponding to linearly spaced values for p(θt = P |mτ≤t) over [0, 1]. Each of these states defined a distribution
of expected image frames, p(~xt+1|mτ≤t). For each of these states, we generated a training dataset consisting of
104 images with and without the object of interest mixed in proportion p(θt = P |mτ≤t)/(1 − p(θt = P |mτ≤t)). For
each posterior state we then numerically optimized the Eq. (2) to derive optimal thresholds ξ at attentional resource
constraint ψ = 4, using resilient-backpropagation gradient descent with numerically estimated gradient [62]. Each ξ
was initialized with Gaussian noise. Since ξn ≥ 0, we performed the optimization with respect to real-valued auxiliary
variables an, where ξn = a2

n. The resulting 32 vectors of optimal nonlinearity parameters ~ξk (where k ∈ {1, . . . , 32})
were used during subsequent simulations, where at each time step the observer selected the most appropriate set
of nonlinearities k∗:

k∗ = argmin
k

[
pk − p(θt = P |mτ≤t)

]2
. (7)

Simulation details. We generated a trajectory of the latent states of environment θt by concatenating 500 cycles of
50 samples of object present (θt = P ) followed by 100 samples of object absent (θt = A) and again 50 samples of
object present, resulting in the total length of 105 time steps. Analyses in Fig. 4 B,C,E were performed by averaging
over the 500 cycles. This artificial environment allowed us to compute averages over multiple changes of the latent
state θt.
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Target localization

Environment dynamics and stimuli. The latent environmental state was defined by the 2D position of the center
of the visual target (the white cross 7 × 7 pixels in size) ~θt = (θxt , θ

y
t ), where θx, θy ∈ {1, . . . , 32}. This position

evolved as a random walk, θCt+1 = θCt + ρ, where ρ ∼ N (0, σ2) and C ∈ {x, y}; coordinates were rounded to nearest
integer and bounded to image dimensions. We chose σ = 1.2 for the low-uncertainty scenario and σ = 2.4 for the
high-uncertainty scenario to analyze the impact of uncertainty on the sensory code. The target was superposed
on consecutive frames of a natural movie, ~xt. The presence of the artificially-designed visual target significantly
changed statistics of images. Sparse coding neural activations sn,t were determined using λ = 0.1 and σ2

SC = 0.5.

Observer model. The observer computed the measurement ~mt = (mx
t ,m

y
t ) as the position of the peak of the two-

dimensional cross-correlation function between the target template image (the cross) and the stimulus decoded from
the neural code x̂t. We assumed independent measurement noise in spatial coordinates for the measurement mt:
p(mt|θt) = p(mx

t |θxt )p(m
y
t |θ

y
t ), where marginal conditional distributions of coordinates are Gaussian: p(mC

t |θCt ) =
N (θCt , σ

2
m) (with C ∈ {x, y} is the index over spatial coordinates). To simplify optimization, we assumed vanishing

measurement noise in this task, σm = 10−5.
The posterior distribution p(~θt|~mτ≤t) can be then computed separately for each spatial coordinate C:

p(θCt |mC
τ≤t) =

p(mC
t |θCt )p(θCt |mC

τ<t)

p(mC
t )

. (8)

The prior distribution p(θCt |mC
τ<t) and the likelihood p(mC

t |θCt ) are Gaussian and conjugate to each other, therefore
the posterior is also Gaussian, p(θCt |mC

τ≤t) = N (µθt,C , σ
2
θt,C

); the point estimate for position is θ̂Ct = µθt,C .
We further assume that the observer relies on trivial dynamics, where p(θCt+1|θCt ) = δ(θCt+1 − θCt ). In this sce-

nario, Eq (8) becomes a standard case of Bayesian online estimation of the mean with well-known closed form
solutions [63].

Given these simpifying assumptions, the predicted distribution of measurements along each spatial coordinate
is p(mC

t+1|zτ≤t) ≈ N (θ̂Ct , σ
2
t+1), where the variance is the sum of the variance of the posterior and variance of the

random walk i.e. σ2
t+1 = σ2

θt,C
+ σ2.

Nonlinearity optimization. We discretized the posterior belief about the position of the target into 25 values corre-
sponding to a grid of 5 horizontal positions θ̂x and 5 vertical positions θ̂y linearly spaced between 1 and 32 pixels.
Nonlinearity optimization was performed analogously to the object detection task. At each time step the observer se-
lected the optimal nonlinearity vector ξx

∗,y∗ corresponding to the discretized position closest to the current position
estimate θ̂t:

(x∗, y∗) = argmin
x,y

[(
θ̂xt − x

)2
+
(
θ̂yt − y

)2]
. (9)

Simulation details. The simulation was ran for 104 steps during which the target trajectory was evolving according
to the dynamics described above.

Orientation estimation

Environment dynamics and stimuli. The environment state θt was switching randomly between two states with
hazard rate h = 0.01. One of the states was generating images dominated by the vertical orientation θt = V
and the other images with predominantly horizontal orientation θt = H. We identified these two states of the
environment via unsupervised learning. First, we used the sparse coding model (without nonlinearities) to encode a
large corpus of natural image patches ~xt. We then transformed activations of each model neuron n in response to
each patch t by taking the log-ratio of its absolute value and the average magnitude of the activation of that neuron:
rn,t = log

|sn,t|
〈|sn,t|〉t . We then clustered such transformed vectors of the population response rt into 9 clusters using

the standard K-means algorithm. Out of these 9 clusters we visually selected two. One of these clusters included
encodings of image patches where neurons with horizontally oriented basis functions were active stronger than
their average. The other cluster included encodings of image patches where the vertically oriented basis functions
were activated more strongly than the baseline. We selected these two sets of image patches to be generated by
distributions p(~xt|θ = H) and p(~xt|θ = V ) respectively. In this task, we used the following parameters of the sparse
coding algorithm to encode the images: λ = 0.05 and σ2

SC = 0.5.

Observer model. In this task the observer did not explicitly decode the image. Instead, it transformed neural
activations zn,t by taking their absolute value: rn,t = |zn,t|. This vector of activity magnitude ~rt was then projected
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on the discriminative vector ~d to obtain the measurement mt = ~rTt
~d + ζ, where T denotes vector transpose, and ζ

is a Gaussian measurement noise with variance σ2
m = 10−4. The discriminative vector ~d was a linear discriminant

optimized to maximize discrimination accuracy between the two clusters of rescaled activity ~rt corresponding to the
horizontal and vertical states respectively. We fitted distributions of noisy measurements p(mt|θt) with a Gaussian
distribution for each state of the environment separately i.e. p(mt|θ) = N (µθt , σ

2
θt
), where θt ∈ {V,H}. The

remaining computations were analogous to the object-detection task.

Nonlinearity optimization. Nonlinearity optimization was performed analogously to the object-detection task.

Simulation details. We generated a trajectory of the latent states of environment θt by concatenating 500 cycles of
50 samples of horizontal state (θt = H) followed by 100 samples of vertical state (θt = V ) and again 50 samples of
the horizontal state. Analyses in Fig. 4 B,C,E were performed by averaging over these 500 cycles.

Computation of code statistics

Selection of task-modulated neurons

We sorted neurons according to how strongly they were modulated by the task. As a measure of the task modulation
we took the ratio of the average activity of that neuron in the full sparse code and in the task-specific, adaptive code
z̄n
s̄n

. To compute activity correlation matrices in Fig. 5C, we selected 10 neurons with high modulation values
computed in that way.

Response variability

To simulate response variability due to feedback modulation of the sensory code (Fig. 5D), we encoded the same,
randomly selected image patch 1000 times while the belief of the observer was changing and adapting neural
nonlinearities accordingly.

For the object detection and orientation estimation tasks we took the trajectory of the changing belief (p(θ = P )
and p(θ = H) respectively) to be a sine function rescaled to fit in the interval [0.1, 0.9]. Over the 1000 stimulus
presentations this sinusoid completed five cycles. For the target localization task we generated an instance of
Gaussian walk, which determined the belief of the observer about the location of the target in the scene.

Noise correlations

For each task, we estimated noise correlations by computing correlation matrices of neural responses to 1000
presentations of the same stimulus (see above). To avoid numerical errors we added a Gaussian noise with variance
σ2 = 0.01 to neural responses zn,t, after the stimulus has been encoded at each presentation. Correlations of the
full code were all approximately equal to 0, since responses to each stimulus presentation were the same.

Code dimensionality, population activity and response fidelity as a function of perceptual uncertainty

To characterize the dimensionality of the code we computed PCA of the neural activity matrix S, where individual
entries sn,t are responses of the n-th neuron at t-th time point. We plotted the cumulative variance explained as a
function of the number of principal components. For object detection and orientation estimation tasks we performed
the dimensionality analysis by dividing the neural responses according to the level of uncertainty of the observer,
and computing PCA on these responses separately. We quantified the uncertainty as the binary entropy of the
prior over the latent state (H(p) = −p log2(p) − (1 − p) log2(1 − p), where p is the probability of the object being
present p(θ = P ) in the object detection task, and the image orientation being horizontal p(θ = H) in the orientation
estimation task. We defined three such intervals of uncertainty: [0, 0.33), [0.33, 0.66), and [0.66, 1] bits. For
the target localization task, we run the simulation for two different levels of spatial uncertainty, determined by the
variance of the target movements σ2.

To characterize the amount of population activity we computed the average absolute value of neural activations
|zn,t|. The accuracy (or fidelity) of representation was computed as the average SNR dB of the image decoding x̂t i.e.

20 log10

∑
i x

2
t,i∑

i(xt,i−x̂t,i)2
, where i indexes the image pixels. For the object detection and orientation estimation tasks, we

computed these average quantities for 10 levels of uncertainty spanned by the deciles of the uncertainty distribution.
For the target localization task, we computed them for two different levels of spatial uncertainty, determined by the
variance of the target movements σ2.
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Determination of the number of active neurons

We declared n-th neuron to be active at time t if the magnitude of its activity exceeded the 1% of its maximal activity
i.e. |zn,t| > 0.01maxt(|zn,t|). For each time point we computed the number of active neurons Nact

t , and averaged
this number for different levels of uncertainty.

Comparisons to data

Attentional modulation of population tuning curves

To estimate the population tuning curve, we first estimated orientation tuning curves of individual neurons. To do
so, we fitted the basis function of each neuron with a parametric Gabor filter. In the next step, we parametrically
varied the orientation of the Gabor filter, while keeping other parameters identical. We then discretized the interval
of orientations [αn− π

2 , αn+
π
2 ] into 16 linearly spaced values, where αn was the preferred orientation of that neuron.

For each orientation value, we encoded the normalized image of the filter using the entire population, and took the
neurons response zn(ξn) to be a tuning at that orientation. We describe how we chose nonlinarity thresholds ξn
below. We repeated this procedure for all neurons in the population. The population tuning curve was taken to be
the average of tuning curves of individual neurons.

We ran a simulation of the target localization task for 104 steps. The two population tuning curves in Fig. 6A were
computed using different values of nonlinearity thresholds. To compute the population tuning curve in the absence of
attention, for each neuron we took the nonlinearity threshold value averaged across the entire duration of simulation.
To compute the population tuning curve in presence of attention, we took a single nonlinearity threshold value ξn
corresponding to the belief that the target is closest to the spatial position of the Gabor filter encoded by that neuron.

Temporal statistics of gain dynamics

To compute temporal statistics of nonlinearity parameters we ran a simulation of the target localization task for 104

steps. We note that while we computed temporal correlations of nonlinarity threshold parameters ξn,t, the results
do not qualitatively change if we take an inverse of the threshold 1

ξn,t
, a parameter more directly related to the gain.

As a measure of spatial tuning similiarity we took the correlation of the absolute values of neural basis functions
|φn|. We took the absolute value of neural nonlinearity outputs |zn,t| as a measure of neural activity level. Auto- and
cross-correlation functions were computed using standard methods.

For the analysis displayed in Fig. 6 we selected only the neurons whose average activity magnitude 〈|zn,t|〉t
exceeded the 0.01 of the maximal activity average for all neurons in the population. The results do not qualitatively
depend on this selection criterion.
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Figure S1: Statistics of uncertainty, population activity and representational fidelity A Object detection task. Left column - full code (red)
optimized for image reconstruction, right column (blue) adaptive code for inference. Top row - uncertainty vs population activity, bottom row -
uncertainty vs representation fidelity. Each scatter density plot displays 10000 points. Red, dashed lines depict the linear fit. B Same as A but
for the orientation estimation task.
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Figure S2: Impact of the attentional constraint ψ on uncertainty-activity and uncertainty-fidelity relations in the orientation-estimation
task. A Uncertainty decile vs normalized population activity (analogous to Fig. 7B) for two values of the attentional constraint ψ. B Correlation
between uncertainty and population activity as a function of the attentional constraint ψ. C Uncertainty decile vs encoding fidelity (analogous
to Fig. 7D) for two values of the attentional constraint ψ. D Correlation between uncertainty and representation fidelity as a function of the
attentional constraint ψ.
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Figure S3: Average time courses of uncertainty and threshold (gain) variance. A Object detection task. Top - time course of posterior
uncertainty (in bits) averaged over 500 switches between the environmental states (marked with a green-orange bar at the top). Bottom - time
course of variances of neural thresholds xin,t averaged over 500 switches between the environmental states and neurons in the population. B
Same as A but for the orientation estimation task.
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