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Abstract

The advancement in technologies and the growth of available single-cell datasets moti-
vate integrative analysis of multiple single-cell genomic datasets. Integrative analysis of
multimodal single-cell datasets combines complementary information offered by single-
omic datasets and can offer deeper insights on complex biological process. Clustering
methods that identify the unknown cell types are among the first few steps in the anal-
ysis of single-cell datasets, and they are important for downstream analysis built upon
the identified cell types. We propose scAMACE for the integrative analysis and clus-
tering of single-cell data on chromatin accessibility, gene expression and methylation.
We demonstrate that cell types are better identified and characterized through ana-
lyzing the three data types jointly. We develop an efficient expectation-maximization
(EM) algorithm to perform statistical inference, and evaluate our methods on both
simulation study and real data applications. We also provide the GPU implementa-
tion of scAMACE, making it scalable to large datasets. The software and datasets are
available at https://github.com/cuhklinlab/scAMACE py (python implementation) and
https://github.com/cuhklinlab/scAMACE (R implementation).

Keywords: Bayesian statistics, Clustering, Data integration, Multi-omics, Single-cell genomic

1 Introduction

Recent developments in single-cell technologies enable multiple measurements of different genomic fea-
tures (Lahnemann et al., 2020). Sequencing technologies include single-cell RNA sequencing (scRNA-seq)
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which measures transcription, single-cell ATAC sequencing (scATAC-seq) and the assay based on com-
binatorial indexing (sci-ATAC-seq) (Cusanovich et al., 2018b) that measure chromatin accessibility, and
single-nucleus methylcytosine sequencing (snmC-seq) (Luo et al., 2017) which meansures methylome at
the single cell resolution. High technical variation is presented in single-cell datasets due to the limited
amount of genomic materials and the experimental procedures to amplify the signals (Lahnemann et al.,
2020).

Because cell types are usually unknown beforehand, clustering methods are needed to identify the
cell types. Majority of existing clustering algorithms only take one single dataset as input. Beside the
widely used K-Means clustering algorithm, hierarchical clustering (Ward, 1963) forms hierarchical groups
of mutually exclusive subsets on the basis of their similarity with respect to specified characteristics by
considering the union of all possible k(k−1)

2
pairs and accepting the union with which an optimal value

of the objective function is associated. Spectral Clustering (Ng et al., 2001) uses the top k eigenvectors
of a matrix derived from the distance between points simultaneously for clustering. Several algorithms
are developed specifically for scRNA-seq data. SC3 (Kiselev et al., 2017) combines multiple clustering
outcomes through a consensus approach. SIMLR (Wang et al., 2017) learns a distance metric by multiple
kernels and clusters with affinity propagation. CIDR (Lin et al., 2017) imputes the gene expression
profiles, calculates the dissimilarity based on the imputed gene expression profiles for every pair of single
cells, performs principal coordinate analysis using the dissimilarity matrix, and finally performs clustering
using the first few principal coordinates. SOUP (Zhu et al., 2019) semi-softly classifies both pure and
intermediate cell types: it first identifies the set of pure cells by special block structure and estimates a
membership matrix, then estimates soft membership for the other cells. For the analysis of single-cell
chromatin accessibility data, scABC (Zamanighomi et al., 2018) first weights cells and applies weighted K-
medoids clustering, then calculate landmarks for each cluster, and finally clusters the cells by assignment
to the closest landmark based on Spearman correlation. Cusanovich (Cusanovich et al., 2018a) makes use
of singular value decomposition on TF-IDF transformed matrix and density peak clustering algorithm.
cisTopic (Bravo González-Blas et al., 2019) uses latent Dirichlet allocation with a collapsed Gibbs sampler
to iteratively optimize the region-topic distribution and the topic-cell distribution. SCALE (Xiong et al.,
2019) combines the variational autoencoder framework with the Gaussian Mixture Model which extracts
latent features that characterize the distributions of input scATAC-seq data, and then uses the latent
features to cluster cell mixtures into subpopulations. Clustering methods are also developed for single-
cell methylation data. BPRMeth (Kapourani and Sanguinetti, 2016) uses probabilistic machine learning
to extract higher order features across a defined region and to cluster promoter-proximal regions by
Binomial distributed probit regression (BPR) and mixture modeling. PDclust (Hui et al., 2018) leverages
the methylation state of individual CpGs to obtain pairwise dissimilarity (PD) values, and calculates
Euclidean distances between each pair of cells using their PD values and performed hierarchical clustering.
Melissa (Kapourani and Sanguinetti, 2019) implements a Bayesian hierarchical model that jointly learns
the methylation profiles of genomic regions of interest and clusters cells based on their genome-wide
methylation patterns. pCSM (Yin et al., 2019) implements a semi-reference-free procedure to perform
virtual methylome dissection using the nonnegative matrix factorization algorithm. It first determines
putative cell-type-specific methylated loci and then clusters the loci into groups based on their correlations
in methylation profiles.

Studies based on single-omic data provide only a partial landscape of the entire cellular heterogeneity
(Ma et al., 2020). High technical noise and the growth of available datasets measuring different genomic
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features encourage integrative analysis (Lahnemann et al., 2020). By combining complementary infor-
mation from multiple datasets, the cell types may be better seperated and characterized (Corces et al.,
2016; Duren et al., 2017). The integrative analysis of gene expression and chromatin activity may better
define cell types and lineages, especially in complex tissues (Duren et al., 2018). Seurat V3 (Stuart et al.,
2019) uses Canonical Correlation Analysis (CCA) to reduce the dimension of the datasets. It identifies
the pairwise correspondences of single cells across datasets, termed ‘anchors’, and then transfers labels
from a reference dataset onto a query dataset. coupleNMF (Duren et al., 2018) is based on the coupling
of two non-negative matrix factorizations, where a ‘soft’ clustering can be obtained following the matrix
factorizations. It enables integrative analysis of scRNA-seq and scATAC-seq data. LIGER (Welch et al.,
2019) integrates multimodal datasets via integrative non-negative matrix factorization (iNMF) to learn
a low-dimensional space defined by dataset-specific factors and shared factors across datasets, and then
build a neighborhood graph based on the shared factors to identify joint clusters by performing commu-
nity detection on this graph. scACE (Lin et al., 2020) is a model-based approach that jointly analyzes
single-cell chromatin accessibility and scRNA-Seq data, and it quantifies the uncertainty of cluster as-
signments. MAESTRO (Wang et al., 2020) integrates scRNA-seq and scATAC-seq data from multiple
platforms. It also provides comprehensive functions for pre-processing, alignment, quality control, and
quantification of expression and accessibility. coupleCoC (Zeng et al., 2020) performs co-clustering of
the cells and the features simultaneously in the source data and the target data, and it also matches
the cell clusters between the source data and the target data through minimizing the distribution diver-
gence. scMC (Zhang and Nie, 2021) integrates multiple scRNA-Seq datasets or multiple scATAC-Seq
datasets, where it learns biological variation via variance analysis to subtract technical variation inferred
in an unsupervised manner. The three data types, including gene expression, chromatin accessibility
and methylation, have distinct characteristics and complex relationships with each other. The aforemen-
tioned methods for integrative analysis are not designed to integrate all three data types. Moreover, these
methods (except scACE) do not provide statistical inference on the cluster assignments, which may be
important when there are cells at the intermediate stages during development.

In this work, we extend scACE (Lin et al., 2020) to scAMACE (integrative Analysis of single-cell
Methylation, chromatin ACcessibility, and gene Expression). scAMACE considers the biological and
technical variabilities when integrating multiple data types, and it can provide statistical inference on
the assignment of clusters. We reason that by combining complementary biological information from
multiple data types, better cell type seperation can be achieved. We present our model in Section 2, and
statistical inference using the Expectation-Maximization (EM) algorithm in Section 3. Simulation study
and real data applications are presented in Sections 4 and 5, respectively. The conclusion is presented in
Section 6.

2 Methods

An overview of scAMACE is presented in Fig. 1.
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Figure 1: Graphical representation of scAMACE.

2.1 Model for scRNA-Seq data

The model specification for scRNA-Seq data is as the following.

ωrna
kg

zlk−→ ulg −→ vlg −→ ylg ∀g,
P (zlk = 1) = ψrna

k ,

ulg | zlk = 1 ∼ Bernoulli(ωrna
kg ),

vlg | ulg ∼ ulgBernoulli(πl1) + (1− ulg)Bernoulli(πl0),
πl0 ∼ Beta(α = 1, β = 1), πl1 ∼ 1(πl1 ≥ πl0)Beta(α = 1, β = 1),

p(ylg | vlg) = vlgg1(ylg) + (1− vlg)g0(ylg).

We assume that there are K cell clusters in total, the random variable zlk denotes whether cell l belongs
to cluster k ∈ {1, ..., K}, and zl· follows categorical distribution with probability ψrna

k for cluster k.
ωrna
kg denotes the probability that gene g is active in cluster k. ulg is a binary latent variable repre-

senting whether gene g is active in cell l and ulg = 1 represents that it is active. vlg denotes whether gene
g is expressed in cell l and vlg = 1 represents that it is expressed.

When gene g is active in cell l (ulg = 1), the probability that gene g is expressed in cell l (vlg = 1) is
πl1, while the probability that gene g is expressed is πl0 if the gene is not active (ulg = 0). Since genes are
more likely to be expressed when they are active, we assume that πl1 ≥ πl0 and the prior distributions of
πl1 and πl0 are assumed to be flat.
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Let ylg denote the observed gene expression for gene g in cell l (after normalization to account for
sequencing depth and gene length), and we assume that ylg | vlg follows a mixture distribution, where
g1(.) and g0(.) are density functions of the expression level conditional on vlg.

2.2 Model for single-cell chromatin accessibility (scCAS) data

The model specification for scCAS data is as the following.

ωacc
kg

zik−→ uig −→ oig −→ xig ∀g,
P (zik = 1) = ψacc

k ,

uig | zik = 1 ∼ Bernoulli(ωacc
kg ),

oig | uig ∼ uigBernoulli(πi1) + (1− uig)Bernoulli(πi0),
πi1 ∼ Beta(αacc = 1, βacc = 1), set πi0 = 0,

p(xig | oig) = oigf1(xig) + (1− oig)f0(xig),
ωacc
kg |ωrna

kg ∼ Beta(µacc
kg , φ

acc), logit(µacc
kg ) = f(ωrna

kg ).

The random variables ωacc
kg , zik, ψacc

k and uig have similar interpretations to their corresponding vari-
ables in the model for scRNA-Seq data. We use a different notation i to represent that the cells in the
scCAS data are different from the cells in the scRNA-Seq data.

xig denotes the observed gene score for gene g in cell i. The gene score summarizes the accessibility
of the regions around the gene body (Cusanovich et al., 2018a). We model it by a mixture distribution
with density functions f1(.), f0(.), and binary latent variable oig. oig = 1, and 0 represent the mixture
components with high (f1) and low (f0) gene scores, respectively. Accessibility tends to be positively
associated with activity of the gene. We model this positive relationship by the distribution oig|uig. When
gene g is active in cell i (uig = 1), the probability that it has high gene score (oig = 1) is πi1; When gene
g is inactive in cell i (uig = 0), the probability that it has high gene score (oig = 1) is πi0. We assume that
πi1 ≥ πi0 to represent the positive relationship. In practice, we found that fixing πi0 = 0 leads to good
real data performance, and we set πi0 = 0 by default. The prior distribution πi1 ∼ Beta(α = 1, β = 1).
In real data example 1, the observed data is promoter accessibility and we use the same model as that
for gene score.

We assume that ωacc
kg follows Beta distribution with mean µacc

kg and precision φacc. The variable µacc
kg

is connected with ωrna
kg in scRNA-Seq data through the logit function: logit(µacc

kg ) = f(ωrna
kg ). Details on

the specification of f(·) are presented in Section 2.6.
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2.3 Model for single-cell methylation data

The model specification for sc-methylation data is as the following.

ωmet
kg

zdk−→ udg −→ mdg −→ tdg ∀g,
P (zdk = 1) = ψmet

k ,

udg | zdk = 1 ∼ Bernoulli(ωmet
kg ),

mdg | udg ∼ udgBernoulli(πd1) + (1− udg)Bernoulli(πd0),
πd0 ∼ Beta(α = 1, β = 1), πd1 ∼ 1(πd1 ≤ πd0)Beta(α = 1, β = 1),

p(tdg | mdg) = mdgh1(tdg) + (1−mdg)h0(tdg),

ωmet
kg |ωrna

kg ∼ Beta(µmet
kg , φ

met), logit(µmet
kg ) = g(ωrna

kg ).

The random variables ωmet
kg , zdk, ψmet

k and udg have similar interpretations to their corresponding
variables in the model for scRNA-Seq data. We use a different notation d to represent that the cells in
the sc-methylation data are different from the cells in the scRNA-Seq data.

The binary random variablemdg denotes whether gene g is methylated in cell d, andmdg = 1 represents
that it is methylated. Methylation of a gene (promoter methylation/gene body methylation) tends to be
negatively associated with activity of the gene, and we model this negative relationship with the model
mdg | udg: when the gene g is active in cell d (udg = 1), it is less likely to be methylated (mdg = 1), as we
assume that πd1 ≤ πd0.

tdg denotes the observed methylation level for gene g in cell d, and we assume that tdg | mdg follows
a mixture distribution, where h1(.) and h0(.) are density functions conditional on mdg. The technolo-
gies/features differ for the two real data applications to be presented: promoter methylation for the gene
(Pott, 2017), and gene body methylation at non-CG sites (Luo et al., 2017).

Similar to scCAS data, we connect µmet
kg , which is the mean of ωmet

kg , and ωrna
kg through the logit

function: logit(µmet
kg ) = g(ωrna

kg ). Details on specification of g(·) are presented in Section 2.6.

2.4 More on model specification

Methylation and chromatin accessibility regulate gene expression biologically. Our model is specified in
the reverse order, so gene expression plays a central role. This is because scRNA-Seq data is usually less
noisy compared with scCAS data and sc-methylation data, the model specified this way will improve the
clustering performance of scCAS data and sc-methylation data, without sacrificing much the clustering
performance of scRNA-Seq data.

2.5 Prior specifications

We assume the following priors for ψacc, ψrna, ψmet, ωrna
kg .

ψacc ∼ Dir(2, ..., 2),ψrna ∼ Dir(2, ..., 2),ψmet ∼ Dir(2, ..., 2),

ωrna
kg ∼ Beta (α1 = 2, β1 = 2)

The prior specification Beta (α = 2, β = 2) improves the stability of the EM algorithm in Section 3 over
uniform distritbution.
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2.6 Determination of f(ωrna
kg ), g(ωrna

kg ), φacc and φmet

We assume that f(ωrna
kg ) = η+γωrna

kg +τ(ωrna
kg )2 and g(ωrna

kg ) = δ+θωrna
kg . The parameters {η, γ, τ, δ, θ, φacc, φmet}

are estimated empirically from the datasets. We first set the number of clusters K = 1 and use the model
to estimate ωrna

kg , ωacc
kg and ωmet

kg separately without considering the links on ω across the three datasets,
and then fix ω̂rna

kg , ω̂acc
kg and ω̂met

kg to estimate {η, γ, τ, δ, θ, φacc, φmet} by beta regression (Silvia and Fran-
cisco, 2004). The rationale for fixing K = 1 to estimating the parameters in the functions f(.) and g(.)
that link the three modalities is that the majority of the features may not change much across the cell
types. We fix {η̂, γ̂, τ̂ , δ̂, θ̂, φ̂acc, φ̂met} when implementing the EM algorithm in Section 3. Estimating
{η, γ, τ, δ, θ, φacc, φmet} separately from the EM algorithm improves computational efficiency and avoids
problematic local modes. Distributions of ω̂rna

kg v.s. ω̂acc
kg and ω̂rna

kg v.s. ω̂met
kg for the two real data appli-

cations are presented in Supplementary Materials Figures S.4 and S.5, we can see from Figures S.4 and
S.5 that the linear and quadratic models capture the trends on how ω̂acc

kg and ω̂met
kg changes with ω̂rna

kg .

2.7 The mixture components

For scCAS data, we apply f1(x) = 0, f0(x) = 1 if x = 0 and f1(x) = 1, f0(x) = 0 if x > 0, due to the
sparsity of the data matrix.

For scRNA-Seq data, we first normalize read counts to TPM (transcripts per million) or FPKM
(fragments per kilobase of exon model per million reads mapped) to account for sequencing depth and
gene length, then fit a two-component gamma mixture model for the nonzero entries, through pooling
ln(TPM+1) or ln(FPKM+1) over all the samples, and then the remaining zero entries are merged with
the mixture component that has a smaller mean. The log transformation takes into account the very
large values in the data matrix.

sc-methylation data represents the proportion of methylated sites within a given genomic interval,
where the entries in the data matrix take values between 0 and 1. In the two real data applications,
majority of entries in the data matrix take small values, for the methylation data in each cell, we first
divide the entries by (1 − entries) to map them into [0,∞). We then normalize the entries by dividing
the median of non-zero entries in each cell, and then take square of the entries to boost the signals.
This transformation helps to align the three modalities and it improves the clustering results significantly
(Supplementary Materials Tables S.5 and S.6). Because the transformed entries represent the relative

evidence of the methylation status, we input the transformed entries directly as the ratio h1(·)
h0(·) in the EM

algorithm. Histograms for the distributions of the sc-methylation data are presented in the Supplementary
Materials Figure S.1.

2.8 Feature selection

scRNA-Seq data is usually the least noisy data type, compared with scCAS and sc-methylation data. We
use scRNA-Seq data for feature selection before implementing scAMACE. We first cluster scRNA-Seq
data with SC3 and then use the cluster assignments to select top 1,000 features with large mean shift
across different clusters. More specifically, denote the data matrix as Xn×p (xij denotes the observation
for the i-th cell and j-th feature), the cluster assignments as Ln×1 (li = k denotes that the i-th cell
belongs to the k-th cluster) and total number of clusters as K. For feature j, we first calculate the
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difference between the mean of the cells within one cell type and the mean of cells in other cell types;
the differences are represented as D(j) = (d1j, ..., dKj), where dkj = mean

i:li=k
(xij)−mean

i:li 6=k
(xij). We take the

maximum entry in D(j): m(j) = maxk D(j). When m(j) is large, it represents that feature j has high
expression in one cluster, compared with all other clusters. Finally, we select the top 1,000 features with
highest values in m(j).

2.9 Determination of the number of clusters K

We determine the number of clusters K for the three single-cell datasets seperately before we apply
scAMACE. We first run K-Means for each K and calculate the average silhouette width of observations
(Kaufman and Rousseeuw, 1990). Silhouette width measures how well an observation has been classified.
For each observation i, the silhouette value s(i) is calculated as follows. First denote by A the cluster to
which observation i has been assigned and then calculate

a(i) = average Euclidean distance of i to all other objects of A.

Now consider any cluster C different from A and define

d(i, C) = average Euclidean distance of i to all objects of C.

b(i) = min
C 6=A

d(i, C).

Then s(i) = b(i)−a(i)
max(b(i),a(i))

. When cluster A contains only a single observation, we simply set s(i) = 0.

The average of s(i) for i = 1, 2, ..., n is denoted by s̄(k), and it is called the average silhouette width for
the entire data set. s̄(k) is used for the selection of K. Higher value in s̄(k) indicates better clustering
outcome. We select K that has the maximum average silhouette width. Details for selecting K in the
two real data applications are presented in Supplementary Materials Figures S.2 and S.3. When the
similarity of the cell types is high, the Silhoutte method may choose a smaller K than the number of cell
types (Figure S.3), and we may choose a larger K instead.

3 Statistical inference: EM algorithm

Given the observed scCAS data X, scRNA-Seq data Y , and sc-methylation data T , we treat the la-
tent variables Γ = {Z,U ,O,V ,M} as missing data, and use the Expectation-Maximization (EM)
algorithm to estimate the parameters Φ={ψacc,ωacc,πi,ψ

rna,ωrna,πl, ψ
met,ωmet,πd}. The Q-function is

Q(Φ|Φold) = Eold(ln(P (Φ,Γ|obs.))), where the expectation is over Γ under distribution P (Γ|Φold, obs.).
In the M-step, we maximize Q(Φ|Φold) with respect to Φ and update parameters as follows.

ψacc
k =

1 +
∑

i Eold(zik)

K + nacc

,

ψrna
k =

1 +
∑

l Eold(zlk)

K + nrna

,
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ψmet
k =

1 +
∑

d Eold(zdk)

K + nmet

,

πi1 =

∑
k

∑
g Eold(zikuigoig) + αacc − 1∑

k

∑
g Eold(zikuig) + αacc + βacc − 2

,

πl1 =

∑
k

∑
g Eold(zlkulgvlg)∑

k

∑
g Eold(zlkulg)

,

πl0 =

∑
k

∑
g Eold[zlk(1− ulg)vlg]∑

k

∑
g Eold[zlk(1− ulg)]− 1

,

πd1 =

∑
k

∑
g Eold(zdkudgmdg)∑

k

∑
g Eold(zdkudg)

,

πd0 =

∑
k

∑
g Eold[zdk(1− udg)mdg]− 1∑

k

∑
g Eold[zdk(1− udg)]− 1

,

ωacc
kg =

∑
i Eold(zikuig) + µacc

kg φ
acc − 1∑

i Eold(zik) + φacc − 2
,

ωmet
kg =

∑
d Eold(zdkudg) + µmet

kg φ
met − 1∑

d Eold(zdk) + φmet − 2
.

We use grid search to update ωrna
kg because its optimal value does not have an explicit form.

We iterate between E-step and M-step until converge. E(Zi.), E(Z l.) and E(Zd.) in the last iteration
are used for clustering. Details for the derivations are presented in the Supplementary Materials.

4 Simulation studies

To validate scAMACE, we generated three different types of simulated data x, y and t following the
model assumption. In the simulated data, the sample sizes nx = 900, ny = 1100, and nt = 1000. The
number of features p = 1000. The number of clusters Kx = Ky = Kt = 3, and ψx = ψy = ψt = (1

3
, 1
3
, 1
3
).

f(ωy
kg) = η+ γωy

kg + τ(ωy
kg)

2 = −1 + 7ωy
kg− 2(ωy

kg)
2, g(ωy

kg) = δ+ θωy
kg = −2 + 5ωy

kg, φ
x = 10 and φt = 10.

The detailed simulation scheme is presented in the Supplementary Materials.
For the first data type, x, we set f1(x) = 0 if x = 0, and f0(x) = 0 if x = 1. We fit a two-component

gamma mixture model for y using ‘gammamixEM’ in R (Young et al., 2019) and beta mixture model
for t using ‘betamix’ in R (Cribari-Neto and Zeileis, 2010; Grun et al., 2012) to estimate the mixture
densities. We apply the method in Section 2.6 to estimate parameters in f(ωy

kg) and g(ωy
kg). We then

implement scAMACE using the estimated densities and η̂, γ̂, τ̂ , φ̂x, δ̂, θ̂, φ̂t.
We use purity, rand index, adjusted rand index and normalized mutual information to evaluate the

clustering results. We implement scAMACE either on the three data types seperately (‘scAMACE (seper-
ate)’) without borrowing information or jointly (‘scAMACE (joint)’). Table 1 presents the simulation
results. We also compared scAMACE with other exsiting methods under four additional simulation
schemes: imbalanced datasets where the number of cells varies across the three datasets (Supplementary
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Table 1: Mean and sd (in parentheses) of purity, rand index, adjusted rand index (ARI) and normalized
mutual information (NMI) for 50 independent runs are shown.

Data type Purity Rand Index ARI NMI

scAMACE (joint)
x 0.690(0.025) 0.683(0.018) 0.288(0.041) 0.245(0.035)
y 0.897(0.009) 0.874(0.010) 0.716(0.022) 0.637(0.022)
t 0.704(0.021) 0.693(0.016) 0.310(0.034) 0.265(0.030)

scAMACE (seperate)
x 0.659(0.028) 0.662(0.018) 0.241(0.041) 0.205(0.034)
y 0.838(0.012) 0.810(0.012) 0.573(0.028) 0.498(0.026)
t 0.643(0.020) 0.651(0.012) 0.216(0.028) 0.185(0.024)

K-Means
x 0.383(0.020) 0.558(0.004) 0.007(0.008) 0.008(0.007)
y 0.714(0.036) 0.702(0.026) 0.331(0.058) 0.283(0.049)
t 0.388(0.021) 0.560(0.004) 0.010(0.008) 0.106(0.008)

Hierarchical Clustering
x 0.360(0.011) 0.488(0.047) 0.001(0.001) 0.003(0.002)
y 0.366(0.011) 0.520(0.026) 0.002(0.002) 0.003(0.002)
t 0.360(0.010) 0.532(0.022) 0.001(0.001) 0.002(0.001)

Spectral Clustering
x 0.395(0.020) 0.561(0.004) 0.012(0.009) 0.013(0.008)
y 0.722(0.018) 0.708(0.018) 0.344(0.041) 0.295(0.034)
t 0.400(0.025) 0.562(0.005) 0.014(0.012) 0.015(0.011)

Materials Table S.1), unequal numbers of clusters in the three datasets (Supplementary Materials Table
S.2), imbalanced cluster sizes (Supplementary Materials Table S.3) and smaller number of features (Sup-
plementary Materials Table S.4). scAMACE performs the best compared with the other methods in the
above simulation settings. This is likely due to integration of information from all three data sets.

In the following two real data applications, we apply methods mentioned in Section 2.7 instead of
fitting a beta mixture model to sc-methylation data.

5 Application to real data

5.1 Application 1: K562 and GM12878 scRNA-Seq, scATAC-Seq and sc-
methylation data

We evaluate scAMACE by jointly clustering scRNA-Seq, scATAC-Seq and sc-methylation data generated
from two cell types, K562 and GM12878 (Buenrostro et al., 2015; Li et al., 2017; Pott, 2017). We set
K = 2, and use the true cell labels as a benchmark to evaluate the performance of the clustering
methods. Table S.5 presents the clustering results. scAMACE performs well in seperating the cell types.
scRNA-Seq is perfectly seperated, while there are only three cells that are not classified correctly in the
sc-methylation dataset and eleven misclassifications in the scATAC-Seq dataset. In addition, the two cell
types are correctly matched across the three datasets. Compared with the clustering results given by
implementing scAMACE seperately on the three datasets, jointly clustering the three datasets improves
the overall clustering performance, especially for scATAC-Seq data, which is likely due to the integration
of information across the three datasets.

We compared scAMACE with Seurat V3 (Stuart et al., 2019), LIGER (Welch et al., 2019) and scMC
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Table 2: Clustering tables for K562, GM12878 scRNA-Seq, scATAC-Seq and sc-methylation data.
scAMACE (joint) scAMACE (seperate)
1 2 1 2

scATAC-Seq GM12878 368 5 254 119
K562 6 660 171 495

scRNA-Seq GM12878 128 0 128 0
K562 0 73 0 73

sc-methyl GM12878 16 3 7 12
K562 0 11 11 0

Seurat V3 LIGER
1 2 3 1 2 3

scATAC-Seq GM12878 346 27
K562 499 167

scRNA-Seq GM12878 101 2 25 127 0 1
K562 0 73 0 10 63 0

sc-methyl GM12878 19
K562 11

Table 3: Comparison of the performance of different methods on the K562, GM12878 dataset by adjusted
rand index (ARI).

scAMACE (joint) scAMACE (seperate) Seurat V3 LIGER scMC
scATAC-Seq 0.958 0.192 0.033 0.000
scRNA-Seq 1.000 1.000 0.713 0.800 0.771
sc-methyl 0.628 0.260 0.000 0.000

(Zhang and Nie, 2021), which are methods for integrative analysis of single-cell data. Examples were
presented in Seurat V3 (Stuart et al., 2019) where scRNA-Seq and scATAC-Seq data were integrated.
So we implemented Seurat V3 to integrate these two data types. Seurat V3 did not perform well for
scATAC-Seq data (Table S.5). Seurat V3 is not applicable to integrate sc-methylation data with the other
two datasets. Examples were presented in LIGER (Welch et al., 2019) where scRNA-Seq data and sc-
methylation data were integrated. So we implemented LIGER to integrate these two data types. LIGER
did not perform well on sc-methylation data (Table S.5). We also implemented LIGER to integrate all
three datasets, and LIGER still did not perform well on sc-methylation data (Supplementary Materials
Table S.7 and S.8), this may be due to the small sample size in sc-methylation data. scMC (Zhang and
Nie, 2021) was developed for the integrative analysis of multiple single-cell datasets with the same data
type. Since the features in scATAC-Seq data, scRNA-Seq data and sc-methylation data are linked, scMC
can be implemented in principle. scMC did not perform well on scATAC-Seq data and sc-methylation
data (Supplementary Materials Table S.7 and S.8). This may be due to the fact that the characteristics
of different data types are very different, and ignoring the difference leads to suboptimal performance.
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5.2 Application 2: Mouse neocortex scRNA-Seq, sci-ATAC-Seq and sc-
methylation data

In this example, we evaluate scAMACE for the joint analysis of single-cell datasets where the cell types
are different across the datasets.

We collected single-cell datasets generated from mouse neocortex. There are five cell types in scRNA-
Seq data (Tasic et al., 2018), including astrocytes (Astro), glutamatergic neurons in layer 4 (L4) , corti-
cothalamic glutamatergic neurons in layer 6 (L6 CT), oligodendrocytes (Oligo) and Pvalb+ GABAergic
neurons (Pvalb). There are three cell types in sci-ATAC-Seq data (Cusanovich et al., 2018b), including
astrocytes (Astro), excitatory neurons CPN (Ex. neurons CPN), and oligodendrocytes (Oligo). There
are three cell types in sc-methylation dataset (Luo et al., 2017), including excitatory neurons in layer
4 (L4), excitatory neurons in layer 6 (labeled as L6-2 in (Luo et al., 2017)), and Pvalb+ GABAergic
neurons (Pvalb). In the three datasets, the optimal numbers of clusters chosen by the Silhoutte method,
K̂ = 2, tend to be smaller than the numbers of cell types, which is likely due to the similarity of the neu-
ronal subtypes. We set K=5 when we implement scAMACE, instead of the value given by the Silhoutte
method. The true cell labels are used as a benchmark for evaluating the performance of the clustering
methods.

The clustering results are presented in Table S.6. Even though K is larger than the number of cell
types in sci-ATAC-Seq data and sc-methylation data, scAMACE still determines the correct number of
cell types in sci-ATAC-Seq data. Although the cells in sc-methylation data fall into four clusters, there
are only seven cells in cluster 4. Cell types in all three datasets are well seperated. Astrocytes and
oligodendrocytes are matched across scRNA-Seq data and sci-ATAC-Seq data. Excitatory neurons CPN
in sci-ATAC-Seq data are matched with glutamatergic neurons in layer 4 in the scRNA-Seq data. We
note that most excitatory neurons are glutamatergic neurons. Excitatory neurons in layers 4 and 6, and
Pvalb+ GABAergic neurons are matched between scRNA-Seq data and sc-methylation data.

Compared with implementing scAMACE on the three datasets separately, the joint analysis leads to
improvement in clustering, especially for sc-methylation dataset. This is likely because the joint model
borrows information across the three datasets. Similar to application 1, we implemented Seurat V3 to
integrate scRNA-Seq and sci-ATAC-Seq data. Seurat V3 (Stuart et al., 2019) does not perform well on
sci-ATAC-Seq data (Table S.6). We implemented LIGER (Welch et al., 2019) to integrate scRNA-Seq and
sc-methylation data. LIGER does not seperate excitatory neurons in layer 4 and layer 6 in sc-methylation
data (Table S.6). We also integrated all three datasets by LIGER (Welch et al., 2019) and scMC (Zhang
and Nie, 2021). LIGER and scMC did not perform well (Supplementary Materials Table S.9 and S.10).
Overall, scAMACE performed the best compared with the other methods.

5.3 Computational cost

LIGER, Seurat V3 and scMC only provide the versions that are implemented on CPU, while scAMACE
can be implemented on both CPU and GPU. We summarized the computational time for scAMACE (CPU
version and GPU version in python), LIGER (Welch et al., 2019), Seurat V3 (Stuart et al., 2019) and
scMC (Zhang and Nie, 2021) (Supplementary Materials Tables S.11, S.12 and S.13). We implemented
scAMACE, LIGER and scMC to cluster the three types of data simultaneously, and we implemented
Seurat V3 to cluster scCAS data and scRNA-Seq data.
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Table 4: Clustering tables for the mouse neocortex scRNA-Seq, sci-ATAC-Seq, and sc-methylation data.
scAMACE (joint) scAMACE (seperate)

1 2 3 4 5 1 2 3 4 5
sci-ATAC-Seq Astro 550 0 1 550 0 1

Ex. neurons CPN 0 1391 0 1 1390 0
Oligo 0 1 457 0 0 458

scRNA-Seq Astro 368 0 0 0 0 368 0 0 0 0
L4 0 1401 0 0 0 0 1401 0 0 0

L6 CT 0 0 960 0 0 0 0 960 0 0
Oligo 25 0 0 66 0 27 0 0 64 0
Pvalb 0 0 0 0 1337 0 0 0 0 1337

sc-methyl L4 411 1 0 0 412
L6-2 20 703 6 0 729
Pvalb 0 0 1 153 154

Seurat V3 LIGER
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7

sci-ATAC-Seq Astro 296 29 1 2 223
Ex. neurons CPN 110 461 243 0 577

Oligo 64 90 1 0 303
scRNA-Seq Astro 0 0 0 0 0 368 0 0 0 6 0 0 362 0

L4 1028 0 0 0 373 0 0 0 0 0 1401 0 0 0
L6 CT 0 960 0 0 0 0 0 0 0 2 0 958 0 0
Oligo 0 0 0 0 0 0 0 60 31 31 0 0 0 60
Pvalb 0 0 647 498 0 0 192 0 0 1337 0 0 0 0

sc-methyl L4 0 11 679 0
L6-2 0 13 399 0
Pvalb 68 0 0 86

Table 5: Comparison of the performance of different methods on the mouse neocortex dataset by adjusted
rand index (ARI).

scAMACE (joint) scAMACE (seperate) Seurat V3 LIGER scMC
sci-ATAC-Seq 0.998 0.998 0.058 0.019

scRNA-Seq 0.997 0.997 0.697 0.983 0.145
sc-methyl 0.932 0.000 0.316 0.001

On real data application 2 (∼8,000 cells), the computational time for scAMACE are 418.858 seconds
on one 3.4GHz Intel Xeon Gold CPU and 69.652 seconds on one 3.1GHz Dual Intel Xeon Gold GPU.
Compared with LIGER (80.389 seconds on one 3.4GHz Intel Xeon Gold CPU), scMC (372.323 seconds
on one 3.4GHz Intel Xeon Gold CPU) and Seurat V3 (116.688 seconds for scRNA-Seq and sci-ATAC-Seq
data on one 3.4GHz Intel Xeon Gold CPU), scAMACE has competitive computational speed, especially
the GPU version.

Next, we generated a dataset with sample size=30,000 (nacc = nrna = nmet = 10, 000) by sampling the
cells with replacement from real data application 2. The computational time for scAMACE are 1534.631
seconds on one 3.4GHz Intel Xeon Gold CPU and 250.089 seconds on one 3.1GHz Dual Intel Xeon Gold
GPU. Compared with LIGER (555.574 seconds on one 3.4GHz Intel Xeon Gold CPU), scMC (3667.878
seconds on one 3.4GHz Intel Xeon Gold CPU) and Seurat V3 (290.640 seconds for scRNA-Seq and sci-
ATAC-Seq data on one 3.4GHz Intel Xeon Gold CPU), scAMACE has competitive computational speed
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on datasets with larger scale.

6 Conclusion

Unsupervised methods including dimension reduction and clustering are essential to the analysis of single-
cell genomic data as the cell types are usually unknown. We have developed scAMACE, a model-
based approach for integratively clustering single-cell data on chromatin accessibility, gene expression
and methylation. scAMACE provides statistical inference of cluster assignments and achieves better cell
type seperation combining biological information across different types of genomic features. In the two
real data applications, the scRNA-Seq data are generated from the SMART-Seq platform (Li et al., 2017;
Tasic et al., 2018). To implement scAMACE on UMI-based scRNA-Seq data (10x data), we may need to
modify the distributions of the mixture components g0(·) and g1(·). The cells in our real data examples
are differentiated and mature cells. In the future, we will investigate the performance of scAMACE on
immature cells undergoing differentiation.
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SUPPLEMENTARY MATERIALS

S.1 Supplementary Text

S.1.1 Joint likelihood

• scCAS data

P (X,U i.,Oi.,Zi.|ψacc,ωacc,πi)

=
∏
i

∏
k

{
ψacc
k ∗

∏
g

[
ωacc
kg (πi1f1)

oig((1− πi1)f0)1−oig
]uig ∗

[
(1− ωacc

kg )f0
]1−uig

}zik

.

• scRNA-Seq data

P (Y ,U l.,V l.,Z l.|ψrna,ωrna,πl) =
∏
l

∏
k

[ψrna
k ∗A]zlk ,

A =
∏
g

{
ωrna
kg [πl1g1]

vlg ∗ [(1− πl1)g0]1−vlg
}ulg ∗

{
(1− ωrna

kg ) [πl0g1]
vlg ∗ [(1− πl0)g0]1−vlg

}1−ulg .

• sc-methylation data

P (T ,U d.,M d.,Zd.|ψmet,ωmet,πd) =
∏
d

∏
k

[ψmet
k ∗B]zdk ,

B =
∏
g

{
ωmet
kg (πd1h1)

mdg ∗ [(1− πd1)h0]1−mdg
}udg ∗

{
(1− ωmet

kg )(πd0h1)
mdg ∗ [(1− πd0)h0]1−mdg

}1−udg .

S.1.2 Q-function

Let Γ denote the missing data, and let Φ denote the parameters. the Q-function is Q(Φ|Φold) =
Eold(ln(P (Φ,Γ|obs.))), where the expectation is over Γ under distribution P (Γ|Φold, obs.) := P old(Γ).
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ln(P (Φ,Γ|obs.))

=
∑
i

∑
k

zikln(ψacc
k ) +

∑
i

∑
k

zik
∑
g

[
uigln(ωacc

kg ) + (1− uig)ln(1− ωacc
kg )
]

+
∑
i

∑
k

zik
∑
g

[uigoigln(πi1) + uig(1− oig)ln(1− πi1) + uigoigln(f1) + (1− uigoig)ln(f0)]

+
∑
l

∑
k

zlkln(ψrna
k ) +

∑
l

∑
k

zlk
∑
g

[
ulgln(ωrna

kg ) + (1− ulg)ln(1− ωrna
kg )

]
+
∑
l

∑
k

zlk
∑
g

[ulgvlgln(πl1) + ulg(1− vlg)ln(1− πl1)]

+
∑
l

∑
k

zlk
∑
g

[(1− ulg)vlgln(πl0) + (1− ulg)(1− vlg)ln(1− πl0)]

+
∑
l

∑
k

zlk
∑
g

[vlgln(g1) + (1− vlg)ln(g0)]

+
∑
d

∑
k

zdkln(ψmet
k ) +

∑
d

∑
k

zdk
∑
g

[
udgln(ωmet

kg ) + (1− udg)ln(1− ωmet
kg )

]
+
∑
d

∑
k

zdk
∑
g

[udgmdgln(πd1) + udg(1−mdg)ln(1− πd1)]

+
∑
d

∑
k

zdk
∑
g

[(1− udg)mdgln(πd0) + (1− udg)(1−mdg)ln(1− πd0)]

+
∑
d

∑
k

zdk
∑
g

[mdgln(h1) + (1−mdg)ln(h0)]

+
∑
k

ln(ψacc
k ) +

∑
k

ln(ψrna
k ) +

∑
k

ln(ψmet
k )

+
∑
i

[(αacc − 1)ln(πi1) + (βacc − 1)ln(1− πi1)] +
∑
l

[−ln(1− πl0)] +
∑
d

[−ln(πd0)]

+
∑
k

∑
g

[
(α1 − 1)ln(ωrna

kg ) + (β1 − 1)ln(1− ωrna
kg )

]
+
∑
k

∑
g

{
(µacc

kg φ
acc − 1)ln(ωacc

kg ) + (φacc − µacc
kg φ

acc − 1)ln(1− ωacc
kg )− ln

[
Beta(µacc

kg φ
acc, φacc − µacc

kg φ
acc)
]}

+
∑
k

∑
g

{
(µmet

kg φ
met − 1)ln(ωmet

kg ) + (φmet − µmet
kg φ

met − 1)ln(1− ωmet
kg )− ln

[
Beta(µmet

kg φ
met, φmet − µmet

kg φ
met)

]}
+C,

where µacc
kg = 1

1+e
−f(ωrna

kg
) , µ

met
kg = 1

1+e
−g(ωrna

kg
) , and C is a constant that does not depend on the param-

eters.
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S.1.3 Expectations in E-Step

• scCAS data

Eold(zik) ∝ ψacc
k

∏
g

{[
ωacc
kg (πi1f1 + (1− πi1)f0)

]
+
[
(1− ωacc

kg )f0
]}
,

Eold(zikuig) =
ωacc
kg (πi1f1 + (1− πi1)f0)

ωacc
kg (πi1f1 + (1− πi1)f0) + (1− ωacc

kg )f0
∗ Pold(zik = 1),

Eold(zikuigoig) =
πi1f1

πi1f1 + (1− πi1)f0
∗ Pold(zik = 1, uig = 1).

• scRNA-Seq data

Eold(zlk) ∝ ψrna
k

∏
g

{
ωrna
kg [πl1g1 + (1− πl1)g0] + (1− ωrna

kg ) [πl0g1 + (1− πl0)g0]
}
,

Eold(zlkulg) =
ωrna
kg [πl1g1 + (1− πl1)g0]

ωrna
kg [πl1g1 + (1− πl1)g0] + (1− ωrna

kg ) [πl0g1 + (1− πl0)g0]
∗ Pold(zlk = 1),

Eold(zlk(1− ulg)) = Eold(zlk)− Eold(zlkulg),

Eold(zlkulgvlg) =
πl1g1

πl1g1 + (1− πl1)g0
∗ Pold(zlk = 1, ulg = 1),

Eold(zlk(1− ulg)vlg) =
πl0g1

πl0g1 + (1− πl0)g0
∗ Pold(zlk = 1, ulg = 0),

Eold(zlkvlg) = Eold(zlkulgvlg) + Eold(zlk(1− ulg)vlg).

• sc-methylation data

Eold(zdk) ∝ ψmet
k

∏
g

{
ωmet
kg [πd1h1 + (1− πd1)h0] + (1− ωmet

kg ) [πd0h1 + (1− πd0)h0]
}
,

Eold(zdkudg) =
ωmet
kg [πd1h1 + (1− πd1)h0]

ωmet
kg [πd1h1 + (1− πd1)h0] + (1− ωmet

kg ) [πd0h1 + (1− πd0)h0]
∗ Pold(zdk = 1),

Eold(zdk(1− udg)) = Eold(zdk)− Eold(zdkudg),

Eold(zdkudgmdg) =
πd1h1

πd1h1 + (1− πd1)h0
∗ Pold(zdk = 1, udg = 1),

Eold(zdk(1− udg)mdg) =
πd0h1

πd0h1 + (1− πd0)h0
∗ Pold(zdk = 1, udg = 0),

Eold(zdkmdg) = Eold(zdkudgmdg) + Eold(zdk(1− udg)mdg).
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S.1.4 Simulation scheme

We generated three different types of simulated data x, y and t following the model assumption. In the
simulated data, the sample sizes nx = 900, ny = 1100, and nt = 1000. The number of features p = 1000.
The numbers of clusters Kx = Ky = Kt = 3. f(ωy

kg) = η + γωy
kg + τ(ωy

kg)
2 = −1 + 7ωy

kg − 2(ωy
kg)

2,
g(ωy

kg) = δ + θωy
kg = −2 + 5ωy

kg, φ
x = 10 and φt = 10. The followings are the simulation scheme:

A. Generate ωy

For g = 1, ..., 150:

ωy
kg ∼

(1, . . . , 50) (51, . . . , 100) (101, . . . , 150)[ ]ω 0.5 1− ω
0.5 1− ω ω

1− ω ω 0.5

We set ω = 0.8.

For g = 151, ..., 1000:

ωy
kg ∼

{
Beta (α = 2, β = 2), for k = 1

ωy
1g, for k = 2, 3

To summarize, we set the first 150 features to be differential and for the remaining 151, . . . , p
features, we set ωy

kg to be the same across different clusters k.

B. Generate ωx and ωt.

For g = 1, ..., 150:
ωx
kg ∼ Beta (µx

kg = 1

1+e
−f(ω

y
kg

)
, φx), for k = 1, 2, 3

For g = 151, ..., 1000:

ωx
kg ∼

{
Beta (µx

kg = 1

1+e
−f(ω

y
1g)
, φx), for k = 1

ωx
1g, for k = 2, 3

For g = 1, ..., 150:
ωt
kg ∼ Beta (µt

kg = 1

1+e
−g(ω

y
kg

)
, φt), for k = 1, 2, 3

For g = 151, ..., 1000:

ωt
kg ∼

{
Beta (µt

kg = 1

1+e
−g(ω

y
1g)
, φt), for k = 1

ωt
1g, for k = 2, 3

C. Generate zx, zy and zt. The cluster labels are generated with equal probability, P (z. = 1) =
P (z. = 2) = P (z. = 3) = 1

3
.

D. Data type 1: x

• Generate ux. We generate uig from Bernoulli(ωx
kg) if zik = 1.
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• Generate ox. We generate oig from Bernoulli(πi1) if uig = 1, and set oig = 0 if uig = 0. We
set πi1 = 0.2 for i = 1, · · · , nx.

• Generate x. We generate xig = 1 if oig = 1, and generate xig = 0 if oig = 0.

E. Data type 2: y

• Generate uy. We generate ulg from Bernoulli(ωy
kg) if zlk = 1.

• Generate vy. We generate vlg from Bernoulli(πl1) if ulg = 1, and from Bernoulli(πl0) if
ulg = 0. We set πl1 = 0.7, πl0 = 0.3 for l = 1, · · · , ny.

• Generate y. We generate ylg from Gamma(shape = 7, scale = 0.5) if vlg = 1, and generate ylg
from Gamma(shape = 1, scale = 1) if vlg = 0.

F. Data type 3: t

• Generate ut. We generate udg from Bernoulli(ωt
kg) if zdk = 1.

• Generate mt. We generate mdg from Bernoulli(πd1) if udg = 1, and from Bernoulli(πd0) if
udg = 0. We set πd1 = 0.4, πd0 = 0.7 for d = 1, · · · , nt.

• Generate t. We generate tdg from Beta(α = 0.5, β = 0.5) if mdg = 1, and generate tdg from
Beta(α = 1, β = 10) if mdg = 0.

We set different parameter values for the four additional simulation settings mentioned in Section 4 as
following:

(1) Simulation setting 1: imbalanced dataset, where the numbers of cells, nx, ny, and nt are different
across modalities (Table S.1). Data is generated as described above, but we set nx = 1000, ny = 2000,
and nt = 500.

(2) Simulation setting 2: unequal number of clusters, where the numbers of clusters in the three
modalities, Kx, Ky, Kt are different (Table S.2). Data is generated as described above, but we applied
following scheme to generate ωy and ψx,ψy,ψt so that Kx = 3, Ky = 7, Kt = 5.

A. Generate ωy

For g = 1, ..., 350:

ωy
kg ∼

(1, . . . , 50) (51, . . . , 100) (101, . . . , 150) (151, . . . , 200) (201, . . . , 250) (251, . . . , 300) (301, . . . , 350)



0.800 0.733 0.533 0.500 0.467 0.267 0.200

0.733 0.533 0.500 0.467 0.267 0.200 0.800

0.533 0.500 0.467 0.267 0.200 0.800 0.733

0.500 0.467 0.267 0.200 0.800 0.733 0.533

0.467 0.267 0.200 0.800 0.733 0.533 0.500

0.267 0.200 0.800 0.733 0.533 0.500 0.567

0.200 0.800 0.733 0.533 0.500 0.467 0.267
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For g = 351, ..., 1000:

ωy
kg ∼

{
Beta (α = 2, β = 2), for k = 1

ωy
1g, for k = 2, . . . , 7

B. Generate ωx and ωt.

For g = 1, ..., 350:
ωx
kg ∼ Beta (µx

kg = 1

1+e
−f(ω

y
kg

)
, φx), for k = 1, . . . , 7

For g = 351, ..., 1000:

ωx
kg ∼

{
Beta (µx

kg = 1

1+e
−f(ω

y
1g)
, φx), for k = 1

ωx
1g, for k = 2, . . . , 7

For g = 1, ..., 350:
ωt
kg ∼ Beta (µt

kg = 1

1+e
−g(ω

y
kg

)
, φt), for k = 1, . . . , 7

For g = 351, ..., 1000:

ωt
kg ∼

{
Beta (µt

kg = 1

1+e
−g(ω

y
1g)
, φt), for k = 1

ωt
1g, for k = 2, . . . , 7

C. Generate zx, zy and zt. The cluster labels are generated by ψx = (0, 1
3
, 1
3
, 1
3
, 0, 0, 0), ψy =

(1
7
, 1
7
, 1
7
, 1
7
, 1
7
, 1
7
, 1
7
), and ψt = (0, 0, 1

5
, 1
5
, 1
5
, 1
5
, 1
5
) so that Kx = 3, Ky = 7, Kt = 5.

The remaining steps are the same as described above.

(3) Simulation setting 3: imbalanced cluster sizes, where the proportions of different cell types in the
three modalities, ψx, ψy, ψt are different (Table S.3). Data is generated as described above, but we set
ψx = (0.3, 0.1, 0.6),ψy = (0.6, 0.3, 0.1),ψt = (0.6, 0.1, 0.3). There are rare cell types (10% of the cells) in
the three modalities.

(4) Simulation setting 4: smaller number of features (Table S.4). Data is generated as described
above, but we set p = 500.
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S.2 Supplementary Figures

S.2.1 Histograms for two real data applications

Figure S.1: Histograms for Application 1 (Left) and Appliation 2 (Right) scCAS data (Upper), scRNA-
Seq data (Middle) and sc-methylation data(Lower).
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S.2.2 Determination of number of clusters K for real data applications

We applied the Silhouette method (Kaufman and Rousseeuw, 1990) mentioned in Section 2.9 on the two
real data applications to determine K before we apply scAMACE. The result for real application 1 is
presented in Figure S.2: K̂ = 2 is chosen for the three single-cell datasets, where the true number of
cell types is 2. The results for real data application 2 are presented in Figure S.3. There are five cell
types in scRNA-Seq data (Tasic et al., 2018), including astrocytes, oligodendrocytes, and three subtypes of
neurons. There are three cell types in sci-ATAC-Seq data (Cusanovich et al., 2018b), including astrocytes,
oligodendrocytes, and excitatory neurons CPN. And there are three cell types in sc-methylation dataset
(Luo et al., 2017), including three subtypes of neurons. In the three datasets, the optimal numbers of
clusters chosen by the Silhoutte method (K̂ = 2) tend to be smaller than the numbers of cell types, which
is likely due to the similarity of the neuronal subtypes. We chose K = 5 when we implement scAMACE,
instead of the suggested K̂ = 2 by the Silhoutte method.

Figure S.2: Average Silhouette width v.s. K for Application 1, K562 and GM12878 cells: scATAC-Seq
(Left), scRNA-Seq (Middle), and sc-methylation data (Right).
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Figure S.3: Average Silhouette width v.s. K for Application 2, mouse neocortex data: sci-ATAC-Seq
(Left), scRNA-Seq (Middle), and sc-methylation data (Right).

−0.050

−0.025

0.000

0.025

1 2 3 4 5 6 7 8 9 10
Number of clusters k

A
ve

ra
ge

 s
ilh

ou
et

te
 w

id
th

Silhouette method

Optimal number of clusters

0.0

0.2

0.4

1 2 3 4 5 6 7 8 9 10
Number of clusters k

A
ve

ra
ge

 s
ilh

ou
et

te
 w

id
th

Silhouette method

Optimal number of clusters

0.00

0.05

0.10

1 2 3 4 5 6 7 8 9 10
Number of clusters k

A
ve

ra
ge

 s
ilh

ou
et

te
 w

id
th

Silhouette method

Optimal number of clusters

25

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 26, 2021. ; https://doi.org/10.1101/2021.03.29.437485doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.29.437485
http://creativecommons.org/licenses/by-nc-nd/4.0/


S.2.3 Empirical distribution of ω

To assess whether the linear and quadratic models work well, we performed the following steps. We first
obtain ω̂acc

kg , ω̂rna
kg , ω̂met

kg as described in Section 2.6 by setting K = 1 and fitting the model on the three
modalities separately. We plotted the distributions of ω̂rna

kg v.s. ω̂acc
kg and ω̂rna

kg v.s. ω̂met
kg for the two real

data applications in the left panels in Figures S.4 and S.5, respectively. For better visualization on how
ω̂acc
kg and ω̂met

kg change with ω̂rna
kg , we plotted the boxplots of ω̂acc

kg and ω̂met
kg in different ranges of ω̂rna

kg . We
estimated {η, γ, τ, δ, θ, φacc, φmet} by beta regression (Silvia and Francisco, 2004) using ω̂acc

kg , ω̂rna
kg , ω̂met

kg .

Using ω̂rna
kg and {η̂, γ̂, τ̂ , δ̂, θ̂, φ̂acc, φ̂met}, we then generated ωacc

kg and ωmet
kg by random sampling following

the quadratic and linear models. The distributions of the generated ωacc
kg and ωmet

kg are plotted in the right
panels in Figures S.4 and S.5, respectively. In comparison of the generated values (left panels in Figures
S.4 and S.5) with the estimated ω̂acc

kg and ω̂met
kg (right panels in Figures S.4 and S.5), we can see that the

linear and quadratic models capture the trends on how ω̂acc
kg and ω̂met

kg changes with ω̂rna
kg .
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Figure S.4: Application 1: Distribution of ω̂rna
kg v.s. ω̂acc

kg where ω̂rna
kg and ω̂acc

kg are obtained by setting
K = 1 and fitting the model on scRNA-Seq data and scCAS data seperately (Top left); Distribution of
ω̂rna
kg v.s. generated ωacc

kg by random sampling from the quadratic model with {η̂, γ̂, τ̂ , φ̂acc} and ω̂rna
kg (Top

right). Distribution of ω̂rna
kg v.s. ω̂met

kg where ω̂rna
kg and ω̂met

kg are obtained by setting K = 1 and fitting the
model on scRNA-Seq data and sc-methylation data seperately (Bottom left); Distribution of ω̂rna

kg v.s.

generated ωmet
kg by random sampling from the linear model with {δ̂, θ̂, φ̂met} and ω̂rna

kg (Bottom right). The

estimated values η̂ = −1.190, γ̂ = 4.376, τ̂ = −3.036, φ̂acc = 2.684, δ̂ = 0.117, θ̂ = 0.731, φ̂met = 3.186.

27

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 26, 2021. ; https://doi.org/10.1101/2021.03.29.437485doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.29.437485
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S.5: Application 2: Distribution of ω̂rna
kg v.s. ω̂acc

kg where ω̂rna
kg and ω̂acc

kg are obtained by setting
K = 1 and fitting the model on scRNA-Seq data and scCAS data seperately (Top left); Distribution of
ω̂rna
kg v.s. generated ωacc

kg by random sampling from the quadratic model with {η̂, γ̂, τ̂ , φ̂acc} and ω̂rna
kg (Top

right). Distribution of ω̂rna
kg v.s. ω̂met

kg where ω̂rna
kg and ω̂met

kg are obtained by setting K = 1 and fitting the
model on scRNA-Seq data and sc-methylation data seperately (Bottom left); Distribution of ω̂rna

kg v.s.

generated ωmet
kg by random sampling from the linear model with {δ̂, θ̂, φ̂met} and ω̂rna

kg (Bottom right). The

estimated values η̂ = −2.713, γ̂ = 4.334, τ̂ = −2.826, φ̂acc = 4.799, δ̂ = −0.735, θ̂ = 2.008, φ̂met = 0.804.
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S.3 Supplementary Tables

Table S.1: Simulation setting 1: imbalanced datasets across the three modalities. Data is generated as
described in Section 4, but we set the numbers of cells in the three modalities, nx, ny, and nt to be
different. Mean and sd (in parentheses) of purity, rand index, adjusted rand index (ARI) and normalized
mutual information (NMI) for 50 independent runs are shown.

nx = 1000
ny = 2000
nt = 500

Data type Purity Rand Index ARI NMI

scAMACE (joint)
x 0.697(0.022) 0.688(0.017) 0.299(0.037) 0.254(0.031)
y 0.911(0.006) 0.890(0.007) 0.752(0.016) 0.673(0.017)
t 0.705(0.025) 0.693(0.019) 0.311(0.043) 0.268(0.035)

scAMACE (seperate)
x 0.658(0.023) 0.661(0.015) 0.239(0.034) 0.203(0.029)
y 0.872(0.008) 0.846(0.008) 0.652(0.018) 0.572(0.018)
t 0.650(0.031) 0.655(0.019) 0.227(0.043) 0.196(0.036)

K-Means
x 0.382(0.019) 0.558(0.003) 0.007(0.007) 0.008(0.006)
y 0.811(0.011) 0.784(0.010) 0.514(0.023) 0.442(0.021)
t 0.394(0.024) 0.559(0.005) 0.009(0.009) 0.011(0.009)

Hierarchical Clustering
x 0.358(0.008) 0.493(0.045) 0.001(0.001) 0.002(0.002)
y 0.356(0.007) 0.526(0.023) 0.001(0.001) 0.002(0.001)
t 0.372(0.014) 0.524(0.033) 0.002(0.002) 0.005(0.004)

Spectral Clustering
x 0.390(0.022) 0.560(0.004) 0.011(0.009) 0.012(0.009)
y 0.806(0.010) 0.779(0.010) 0.503(0.021) 0.431(0.019)
t 0.399(0.025) 0.560(0.005) 0.010(0.010) 0.013(0.009)

Table S.2: Simulation setting 2: unequal number of clusters across the three modalities. Data is generated
as described in Section 4, but we set the numbers of clusters in the three modalities, Kx, Ky, Kt to be
different. Mean and sd (in parentheses) of purity, rand index, adjusted rand index (ARI) and normalized
mutual information (NMI) for 50 independent runs are shown.

Kx = 3
Ky = 7
Kt = 5

Data type Purity Rand Index ARI NMI

scAMACE (joint)
x 0.727(0.023) 0.714(0.017) 0.353(0.039) 0.291(0.032)
y 0.775(0.015) 0.889(0.006) 0.549(0.024) 0.559(0.022)
t 0.628(0.019) 0.773(0.008) 0.325(0.076) 0.291(0.020)

scAMACE (seperate)
x 0.717(0.020) 0.705(0.014) 0.322(0.033) 0.231(0.024)
y 0.710(0.018) 0.864(0.007) 0.446(0.027) 0.466(0.026)
t 0.591(0.017) 0.762(0.006) 0.241(0.020) 0.236(0.018)

K-Means
x 0.416(0.027) 0.566(0.008) 0.285(0.016) 0.024(0.016)
y 0.282(0.024) 0.767(0.004) 0.050(0.016) 0.079(0.020)
t 0.276(0.016) 0.684(0.002) 0.190(0.008) 0.023(0.008)

Hierarchical Clustering
x 0.363(0.012) 0.485(0.050) 0.372(0.062) 0.003(0.002)
y 0.188(0.006) 0.704(0.038) 0.002(0.001) 0.012(0.003)
t 0.240(0.009) 0.637(0.029) 0.215(0.024) 0.007(0.002)

Spectral Clustering
x 0.434(0.031) 0.573(0.010) 0.292(0.017) 0.039(0.022)
y 0.323(0.022) 0.774(0.004) 0.079(0.014) 0.121(0.018)
t 0.295(0.019) 0.688(0.003) 0.197(0.009) 0.036(0.010)
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Table S.3: Simulation setting 3: imbalanced cluster sizes across the three modalities. Data is generated
as described in Section 4, but we set the proportions different cell types across the three modalities, ψx,
ψy, and ψt to be different. Mean and sd (in parentheses) of purity, rand index, adjusted rand index
(ARI) and normalized mutual information (NMI) for 50 independent runs are shown.

ψx = (0.3, 0.1, 0.6)
ψy = (0.6, 0.3, 0.1)
ψt = (0.6, 0.1, 0.3)

Data type Purity Rand Index ARI NMI

scAMACE (joint)
x 0.732(0.023) 0.680(0.023) 0.350(0.047) 0.238(0.034)
y 0.908(0.010) 0.872(0.013) 0.743(0.026) 0.603(0.030)
t 0.756(0.017) 0.689(0.017) 0.376(0.034) 0.243(0.030)

scAMACE (seperate)
x 0.729(0.025) 0.673(0.024) 0.336(0.050) 0.222(0.038)
y 0.870(0.012) 0.823(0.015) 0.644(0.030) 0.499(0.029)
t 0.729(0.017) 0.665(0.015) 0.326(0.031) 0.208(0.026)

K-Means
x 0.601(0.016) 0.516(0.006) 0.007(0.006) 0.008(0.006)
y 0.769(0.021) 0.625(0.016) 0.230(0.031) 0.198(0.028)
t 0.598(0.015) 0.519(0.007) 0.011(0.001) 0.011(0.008)

Hierarchical Clustering
x 0.601(0.016) 0.500(0.012) 0.007(0.007) 0.002(0.002)
y 0.600(0.014) 0.505(0.008) 0.006(0.005) 0.003(0.002)
t 0.598(0.015) 0.506(0.010) 0.008(0.008) 0.003(0.002)

Spectral Clustering
x 0.601(0.016) 0.519(0.007) 0.011(0.010) 0.011(0.008)
y 0.754(0.034) 0.620(0.017) 0.220(0.031) 0.189(0.026)
t 0.601(0.017) 0.525(0.009) 0.022(0.015) 0.021(0.013)

Table S.4: Simulation setting 4: smaller number of features. Data is generated as described in Section 4,
but we set the number of features p to be smaller. Mean and sd (in parentheses) of purity, rand index,
adjusted rand index (ARI) and normalized mutual information (NMI) for 50 independent runs are shown.

p = 500

Data type Purity Rand Index ARI NMI

scAMACE (joint)
x 0.557(0.029) 0.605(0.013) 0.115(0.029) 0.101(0.025)
y 0.770(0.012) 0.746(0.010) 0.429(0.023) 0.368(0.020)
t 0.564(0.024) 0.603(0.014) 0.120(0.025) 0.107(0.020)

scAMACE (seperate)
x 0.507(0.027) 0.585(0.010) 0.070(0.022) 0.063(0.0198)
y 0.658(0.021) 0.660(0.014) 0.238(0.030) 0.205(0.025)
t 0.511(0.023) 0.581(0.011) 0.072(0.019) 0.065(0.016)

K-Means
x 0.373(0.013) 0.557(0.002) 0.003(0.004) 0.005(0.004)
y 0.461(0.045) 0.577(0.013) 0.049(0.028) 0.045(0.024)
t 0.377(0.017) 0.557(0.002) 0.005(0.005) 0.006(0.004)

Hierarchical Clustering
x 0.359(0.010) 0.472(0.045) 0.001(0.001) 0.003(0.002)
y 0.359(0.009) 0.501(0.038) 0.001(0.001) 0.002(0.002)
t 0.360(0.010) 0.527(0.023) 0.001(0.001) 0.002(0.001)

Spectral Clustering
x 0.374(0.015) 0.557(0.002) 0.004(0.004) 0.005(0.004)
y 0.501(0.052) 0.591(0.015) 0.079(0.034) 0.072(0.028)
t 0.379(0.002) 0.558(0.002) 0.004(0.004) 0.006(0.004)
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Table S.5: Clustering tables for K562, GM12878 scRNA-Seq, scATAC-Seq and sc-methylation data before
and after the transformation on sc-methylation data.

scAMACE (joint) scAMACE (seperate)
Before transformation After transformation Before transformation After transformation
1 2 ARI 1 2 ARI 1 2 ARI 1 2 ARI

scATAC-Seq GM12878 368 5 0.958 368 5 0.958 254 119 0.192 254 119 0.192
K562 6 660 6 660 171 495 171 495

scRNA-Seq GM12878 128 0 1.000 128 0 1.000 128 0 1.000 128 0 1.000
K562 0 73 0 73 0 73 0 73

sc-methyl GM12878 19 0.000 16 3 0.628 19 0.000 7 12 0.260
K562 11 0 11 11 11 0

Table S.6: Clustering tables for the mouse neocortex scRNA-Seq, sci-ATAC-Seq, and sc-methylation data
before and after the transformation on sc-methylation data.

scAMACE (joint)
Before transformation After transformation

1 2 3 4 5 ARI 1 2 3 4 5 ARI
sci-ATAC-Seq Astro 550 0 1 0.998 550 0 1 0.998

Ex. neurons CPN 0 1391 0 0 1391 0
Oligo 0 1 457 0 1 457

scRNA-Seq Astro 368 0 0 0 0 0.997 368 0 0 0 0 0.997
L4 0 1401 0 0 0 0 1401 0 0 0

L6 CT 0 0 960 0 0 0 0 960 0 0
Oligo 25 0 0 66 0 25 0 0 66 0
Pvalb 0 0 0 0 1337 0 0 0 0 1337

sc-methyl L4 412 0.000 411 1 0 0 0.932
L6-2 729 20 703 6 0
Pvalb 154 0 0 1 153

scAMACE (seperate)
Before transformation After transformation

1 2 3 4 5 ARI 1 2 3 4 5 ARI
sci-ATAC-Seq Astro 550 0 1 0.998 550 0 1 0.998

Ex. neurons CPN 1 1390 0 1 1390 0
Oligo 0 0 458 0 0 458

scRNA-Seq Astro 368 0 0 0 0 0.997 368 0 0 0 0 0.997
L4 0 1401 0 0 0 0 1401 0 0 0

L6 CT 0 0 960 0 0 0 0 960 0 0
Oligo 27 0 0 64 0 27 0 0 64 0
Pvalb 0 0 0 0 1337 0 0 0 0 1337

sc-methyl L4 412 0.000 412 0.000
L6-2 729 729
Pvalb 154 154
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Table S.7: Supplementary clustering tables for K562, GM12878 scRNA-Seq, scATAC-Seq and sc-
methylation data.

LIGER scMC
1 2 3 4 5 1 2 3 4

scATAC-Seq GM12878 2 346 24 1 0 353
K562 649 0 15 0 2 611

scRNA-Seq GM12878 2 1 30 95 0 13 115 0
K562 0 0 9 0 64 11 0 62

sc-methyl GM12878 19 19
K562 11 11

Table S.8: Supplementary comparison of the performance of different methods on the K562, GM12878
dataset by adjusted rand index (ARI).

LIGER scMC
scATAC-Seq 0.918 0.000
scRNA-Seq 0.603 0.771
sc-methyl 0.000 0.000
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Table S.9: Supplementary clustering tables for the mouse neocortex scRNA-Seq, sci-ATAC-Seq, and
sc-methylation data.

LIGER
1 2 3 4 5 6 7 8 9 10 11 12

sci-ATAC-Seq Astro 145 184 31 58 12 34 16 10 37 6 0
Ex. neurons CPN 582 112 194 135 51 58 87 36 49 3 7

Oligo 156 62 51 64 45 25 14 3 13 17 0
scRNA-Seq Astro 49 250 5 27 5 5 0 8 16 3 0

L4 1153 82 66 1 13 16 13 14 5 38 0
L6 CT 791 17 52 3 40 5 6 27 0 12 7
Oligo 41 25 3 3 0 0 2 1 7 9 0
Pvalb 1078 24 78 3 8 6 9 36 1 22 72

sc-methyl L4 137 328 23 174 3 3 6 1 3 6 3 3
L6-2 68 223 18 95 1 1 1 0 3 2 0 0
Pvalb 79 27 2 41 2 0 0 0 0 0 1 2

scMC
1 2 3 4 5 6 7

sci-ATAC-Seq Astro 8 1 7 326 52 23 133
Ex. neurons CPN 103 18 27 836 164 29 212

Oligo 13 2 10 226 86 16 105
scRNA-Seq Astro 0 362 4 1 1

L4 1 1 1362 0 37
L6 CT 0 0 959 0 1
Oligo 0 14 58 1 18
Pvalb 1 0 1331 0 5

sc-methyl L4 1 689
L6-2 0 412
Pvalb 0 154

Table S.10: Supplementary comparison of the performance of different methods on the mouse neocorex
dataset by adjusted rand index (ARI).

LIGER scMC
sci-ATAC-Seq 0.052 0.019

scRNA-Seq 0.099 0.145
sc-methyl 0.031 0.001
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Table S.11: Summary of the computation time by scAMACE and other clustering methods for Application
1. The unit of measurement is second. We implemented scAMACE (jointly on the three datastes, and
seperately on the three datasets) by R and Python, run in 200 iterations. Seurat V3, scMC and LIGER
are run in R by the downloaded R packages. Unless specified, all methods are implemented on one
3.4GHz Intel Xeon Gold CPU.

scAMACE (joint) by R scAMACE (seperate) by R
153.348 91.200(scATAC-Seq)+21.619(scRNA-Seq)+3.282(sc-methyl)=116.101

scAMACE (joint) by Python scAMACE (seperate) by Python
19.731 7.519(scATAC-Seq)+1.957(scRNA-Seq)+0.881(sc-methyl)=10.357

scAMACE (joint) by Python (using GPU) scAMACE (seperate) by Python (using GPU)
7.640 1.971(scATAC-Seq)+0.671(scRNA-Seq)+0.364(sc-methyl)=3.006

Seurat V3 (scATAC-Seq+scRNA-Seq) scMC(scATAC-Seq+scRNA-Seq+sc-methyl)
30.689 52.391

LIGER(scRNA-Seq+sc-methyl) LIGER(scATAC-Seq+scRNA-Seq+sc-methyl)
23.100 73.788

Table S.12: Summary of the computation time by scAMACE and other clustering methods for Application
2. The unit of measurement is second. We implemented scAMACE (jointly on the three datastes, and
seperately on the three datasets) by R and Python, run in 200 iterations. Seurat V3, scMC and LIGER
are run in R by the downloaded R packages. Unless specified, all methods are implemented on one
3.4GHz Intel Xeon Gold CPU.

scAMACE (joint) by R scAMACE (seperate) by R
2317.787 249.891(sci-ATAC-Seq)+950.388(scRNA-Seq)+171.823(sc-methyl)=1372.102

scAMACE (joint) by Python scAMACE (seperate) by Python
418.858 51.878(sci-ATAC-Seq)+217.728(scRNA-Seq)+25.994(sc-methyl)=295.6

scAMACE (joint) by Python (using GPU) scAMACE (seperate) by Python (using GPU)
69.652 7.651(sci-ATAC-Seq)+33.435(scRNA-Seq)+4.161(sc-methyl)=45.247

Seurat V3 (sci-ATAC-Seq+scRNA-Seq) scMC(sci-ATAC-Seq+scRNA-Seq+sc-methyl)
116.688 372.323

LIGER(scRNA-Seq+sc-methyl) LIGER(sci-ATAC-Seq+scRNA-Seq+sc-methyl)
1618.965 80.389

Table S.13: Summary of the computation time by scAMACE and other clustering methods using 30,000
bootstrap samples (nacc = nrna = nmet = 10, 000) from Application 2. The unit of measurement is second.
We implemented scAMACE (jointly on the three datastes, and seperately on the three datasets) by R
and Python, run in 200 iterations. Seurat V3, scMC and LIGER are run in R by the downloaded R
packages. Unless specified, all methods are implemented on one 3.4GHz Intel Xeon Gold CPU.

scAMACE (joint) by R scAMACE (seperate) by R
7663.651 1366.109(sci-ATAC-Seq)+2570.669(scRNA-Seq)+1391.464(sc-methyl)=5328.242

scAMACE (joint) by Python scAMACE (seperate) by Python
1534.631 307.066(sci-ATAC-Seq)+548.065(scRNA-Seq)+373.092(sc-methyl)=1228.223

scAMACE (joint) by Python (using GPU) scAMACE (seperate) by Python (using GPU)
250.089 64.549(sci-ATAC-Seq)+82.53(scRNA-Seq)+49.898(sc-methyl)=196.977

Seurat V3 (sci-ATAC-Seq+scRNA-Seq) scMC(sci-ATAC-Seq+scRNA-Seq+sc-methyl)
290.640 3667.878

LIGER(scRNA-Seq+sc-methyl) LIGER(sci-ATAC-Seq+scRNA-Seq+sc-methyl)
5319.259 555.574
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