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Abstract 24 

SUMOylation is involved in various aspects of plant biology, including drought 25 

stress. However, the relationship between SUMOylation and drought stress tolerance 26 

is complex; whether SUMOylation has a crosstalk with ubiquitination in response to 27 

drought stress remains largely unclear. In this study, we found that both increased and 28 

decreased SUMOylation led to increased survival of apple (Malus × domestica) under 29 

drought stress: both transgenic MdSUMO2A overexpressing (OE) plants and 30 

MdSUMO2 RNAi plants exhibited enhanced drought tolerance. We further confirmed 31 

that MdDREB2A is one of the MdSUMO2 targets. Both transgenic MdDREB2A OE 32 

and MdDREB2A
K192R

 OE plants (which lacked the key site of SUMOylation by 33 

MdSUMO2A) were more drought tolerant than wild-type plants. However, 34 

MdDREB2A
K192R

 OE plants had a much higher survival rate than MdDREB2A OE 35 

plants. We further showed SUMOylated MdDREB2A was conjugated with ubiquitin 36 

by MdRNF4 under drought stress, thereby triggering its protein degradation. In 37 

addition, MdRNF4 RNAi plants were more tolerant to drought stress. These results 38 

revealed the molecular mechanisms that underlie the relationship of SUMOylation 39 

with drought tolerance and provided evidence for the tight control of MdDREB2A 40 

accumulation under drought stress mediated by SUMOylation and ubiquitination. 41 

Key words: Apple, Drought, SUMOylation, Ubiquitination, MdSUMO2, 42 

MdDREB2A, MdRNF4 43 
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Introduction 45 

Drought stress is one of the main abiotic constraints that limit agricultural 46 

development and productivity (Li et al., 2019; Geng et al., 2020). As the global 47 

climate warms in the twenty-first century, the frequency of severe drought conditions 48 

is increasing (Dai, 2013). Water shortage impairs plant growth and development, 49 

limiting plant production and reducing the performance of crop plants and fruit trees 50 

(Basu et al., 2016). In fruit trees, water deficit inhibits flower bud differentiation and 51 

tree vegetative growth, thereby causing flowers and fruits to drop (Virlet et al., 2015; 52 

Niu et al., 2019). To cope with drought stress, plants respond at both the 53 

morphological and molecular levels, exhibiting changes in photosynthesis, stomatal 54 

movement, hormone content, leaf development, stem extension, root proliferation, 55 

hydraulic conductivity, and gene expression (Yordanov et al., 2000; Seiler et al., 2011; 56 

Basu et al., 2016; Liao et al., 2016; Sun et al., 2018; Geng et al., 2020; Li et al., 2020). 57 

Therefore, decoding the molecular mechanisms that underlie drought responses is 58 

critical to the development of new cultivars for future agriculture (Sun et al., 2013b; 59 

Liao et al., 2016; Geng et al., 2018; Sun et al., 2018; Li et al., 2020). 60 

Small Ubiquitin-like Modifier (SUMO) is a ~100-amino-acid polypeptide that is 61 

structurally related to ubiquitin (Vierstra and R., 2012). Similar to ubiquitin, SUMOs 62 

are encoded as precursor proteins. To attain their mature form, precursor SUMOs 63 

require SUMO protease to cleave a C-terminal peptide and expose two consecutive 64 

glycine residues that are essential for conjugation to substrates. The biochemical 65 

pathway of SUMOylation is also analogous to that of ubiquitination. The first step is 66 

SUMO activation, an ATP-dependent reaction that is catalyzed by the heterodimeric 67 

E1-activating enzyme, SAE1/SAE2. In the second step, activated SUMO is 68 

transferred from SAE to the SUMO-conjugating enzyme (SCE). Finally, the 69 

conjugation of SUMO to its substrates is catalyzed by SCE (Colby et al., 2006). The 70 

consensus sequence ψKXE/D (where ψ is a hydrophobic aliphatic residue; X can be 71 

any residue; K, E, and D are standard one-letter symbols for amino acids; and K is the 72 

attachment site for SUMO) is considered to be the canonical SUMO attachment site 73 
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(Novatchkova et al., 2004; Nabil et al., 2014), although other sites may exist. SUMO 74 

proteases de-SUMOylate the SUMOylated substrates to recycle SUMO. In addition to 75 

its covalent attachment to target proteins, SUMO can also attach to cellular proteins 76 

through noncovalent interactions (Galanty et al., 2012). 77 

In addition to the regulation of development and cellular homeostasis under 78 

normal growth conditions, SUMOylation is also involved in various biotic and abiotic 79 

stress responses, including the response to drought stress (Castro et al., 2012). 80 

OsbZIP23 is a SUMOylation substrate that is targeted by the SUMO protease OTS1. 81 

SUMOylation of OsbZIP23 causes the transcriptional activation of drought protection 82 

genes and improves drought tolerance (Srivastava et al., 2017). Overexpression of 83 

SUMO E2-conjugating enzyme (CE) in rice (Oryza sativa) impairs drought tolerance 84 

by reducing the accumulated proline content relative to the wild type (Nurdiani et al., 85 

2018). However, overexpression of SaSce9 from the halophyte grass Spartina 86 

alterniflora enhances salinity and drought stress tolerance in Arabidopsis (Karan and 87 

Subudhi, 2012), indicating that CE plays various roles in different plants. The SUMO 88 

E3 ligase MMS21 negatively influences Arabidopsis drought response through an 89 

ABA-dependent pathway (Zhang et al., 2013). Likewise, the rice SUMO protease 90 

OsOTS1 also plays a negative role in drought stress response through an 91 

ABA-dependent pathway (Srivastava et al., 2017). Another SUMO E3 ligase, SIZ1, 92 

plays more complicated roles in drought stress response in different plant species. 93 

Rice OsSIZ1 confers drought tolerance in transgenic bentgrass and cotton (Neelam et 94 

al., 2017). Transgenic tobacco plants ectopically expressing tomato SlSIZ1 are more 95 

tolerant to drought stress (Zhang et al., 2017b), as are Arabidopsis plants 96 

overexpressing SIZ1(Zhang et al., 2013). However, siz1 mutant plants displayed 97 

drought-sensitive or drought-tolerant phenotypes in three independent studies (Catala 98 

et al., 2007; Miura et al., 2013; Kim et al., 2017). Reports on Arabidopsis SIZ1 99 

overexpressing (OE) plants and siz1 mutants indicate that either increased or 100 

decreased SUMOylation levels can improve drought resistance. However, the 101 

physiological and molecular basis for this effect is unclear. In addition, despite the 102 
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identification of drought-related SUMO targets, the biological function of their 103 

SUMOylation modification is largely unknown.  104 

The SUMO-interacting proteins (SIPs) play a crucial role in the regulation of 105 

SUMOylated proteins; they usually interact with SUMO through SUMO-interacting 106 

motifs (SIMs). Proteins with SIMs include a group of RING-type ubiquitin E3 107 

ligases, DNA methyltransferses or demethylases, and histone methyltransferses or 108 

demethylases (Nabil et al., 2014; Kumar et al., 2017). The best-studied SIPs are the 109 

RING-type ubiquitin E3 ligases that target SUMOylated proteins for degradation by 110 

the proteasome pathway. RING finger protein 4 (RNF4, also known as 111 

SUMO-targeted ubiquitin E3 ligase or STUbL) ubiquitinates promyelocytic leukemia 112 

protein (PML) or the nuclear receptor NR4A1 that has been SUMOylated by 113 

SUMO2/3 in mammals (Valérie et al., 2008; Geoffroy and Hay, 2009; Zhang et al., 114 

2017a). RNF4 also ubiquitinates SUMOylated proteins in the fission yeast 115 

Schizosaccharomyces pombe (Sun et al., 2007) and promotes the ubiquitination of 116 

activated MEK1 in a RING-finger-dependent manner in Dictyostelium(Sobko et al.). 117 

SUMOylation of PML recruits RNF4, triggering its Lys 48-linked polyubiquitination 118 

and degradation (Tatham et al., 2008; Valérie et al., 2008). NR4A1 is SUMOylated by 119 

SUMO2/3 and targeted by RNF4 for polyubiquitination and subsequent degradation 120 

to control macrophage cell death (Zhang et al., 2017a). Although several studies have 121 

reported the important and conserved role of RNF4 in multicellular eukaryotes, only 122 

one study has investigated the role of AT-STUbL4 in the floral transition in plants 123 

(Nabil et al., 2014) at-stubl4 mutant plants flowered later than the wild type, whereas 124 

AT-STUbL4 OE plants flowered earlier (Nabil et al., 2014). To date, it remains 125 

unclear whether RNF4 can recognize and ubiquitinate SUMOylated proteins in plants, 126 

especially during the response to drought stress.  127 

Dehydration-responsive element-binding factor (DREB2A) is a transcription 128 

factor that binds specifically to the DRE/CRT cis-element and is rapidly induced by 129 

dehydration (Liu et al., 1998; Li et al., 2019). DREB2A is a key factor in plant 130 

drought stress tolerance. Overexpression of full-length DREB2A in apple, Pennisetum 131 
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glaucum, Zea mays, and O. sativa enhances tolerance to drought stress (Agarwal et 132 

al., 2007; Qin et al., 2007; Cui et al., 2011; Liao et al., 2016). In Arabidopsis, 133 

DREB2A is unstable under control conditions owing to its negative regulatory domain 134 

(NRD) (Sakuma et al., 2006b; Qin et al., 2008; Mizoi et al., 2013; Sadhukhan et al., 135 

2014; Morimoto et al., 2017). The overexpression of DREB2A-CA (a constitutively 136 

active form of DREB2A with the NRD domain deleted) increases drought tolerance in 137 

Arabidopsis (Sakuma et al., 2006b). Various posttranslational modifications of 138 

DREB2A, including SUMOylation and ubiquitination, are tightly associated with its 139 

stability and transcriptional activity in Arabidopsis (Qin et al., 2008; Wang et al., 140 

2020). Two types of ubiquitin E3 ligase, BPMs and DRIPs, mediate the degradation 141 

of DREB2A in Arabidopsis (Qin et al., 2008; Morimoto et al., 2017). However, 142 

SUMOylation of DREB2A by SCE1 can repress the interaction between DREB2A 143 

and BPM2, thereby increasing DREB2A protein stability under high temperature 144 

(Wang et al., 2020). Whether SUMOylated DREB2A can be targeted by ubiquitin E3 145 

ligases for degradation remains unclear. 146 

Apple DREB2A does not contain the NRD domain that is targeted for 147 

degradation in Arabidopsis. Unlike Arabidopsis DREB2A, MdDREB2A is 148 

consistently stable under normal conditions (Li et al., 2019). Overexpression of 149 

MsDREB6.2 (a MdDREB2A homolog) or MpDREB2A enhanced drought tolerance of 150 

apple or Arabidopsis (Liao et al., 2016; Li et al., 2019). Given the lack of an NRD 151 

domain in MdDREB2A, its posttranslational modifications and the molecular 152 

mechanisms of its protein stability under stress require clarification. In this study, we 153 

found that both increased and decreased SUMOylation levels improved apple drought 154 

tolerance. We further identified MdDREB2A as one of the SUMOylation target 155 

proteins and demonstrated that SUMOylation of MdDREB2A was critical for protein 156 

stability and drought tolerance. In addition, we further provided evidence that 157 

SUMOylated MdDREB2A could be recognized and ubiquitinated by MdRNF4 under 158 

drought stress, leading to the degradation of MdDREB2A. Our results highlight the 159 

roles of SUMOylation in apple drought tolerance and provide insight into the 160 
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RNF4-mediated ubiquitination of SUMOylated MdDREB2A in response to drought. 161 

 162 

Results 163 

Expression patterns and localization of SUMO2s in apple 164 

The apple genome contains six SUMO2 genes (Fig. 1A). Due to genome duplication, 165 

each pair of genes on different chromosomes has almost identical coding sequences, 166 

and we therefore named the three pairs MdSUMO2A, MdSUMO2B, and 167 

MdSUMO2C. Protein alignment revealed a protein sequence similarity of 76%–88% 168 

among these three MdSUMO2 proteins (Fig. 1A). To characterize the function of 169 

apple SUMO2 proteins in response to drought stress, we first examined their 170 

expression patterns under drought. We found that the MdSUMO2s had similar 171 

expression patterns in response to drought (Fig. 1B), suggesting that they may have 172 

similar functions under drought stress. Apple SUMO2A and SUMO2B were more 173 

abundant in all tissues, whereas SUMO2C was less abundant in all tissues examined 174 

(Fig. S1A). When MdSUMO2A::GUS was ectopically expressed in Arabidopsis, 175 

similar results were observed, and GUS signal was detected in all tissues (Fig. S1B–176 

I). 177 

We aligned SUMO2A proteins from different plant species and found that their 178 

sequences were highly conserved throughout the plant kingdom (Fig. S2A). 179 

MdSUMO2A was highly similar to SUMO2A from Prunus mume (Fig. S2B). We 180 

then cloned SUMO2A, SUMO2B, and SUMO2C from the apple genome. 181 

Co-localization with mCherry suggested that apple SUMO2A, SUMO2B, and 182 

SUMO2C are localized in the nucleus, plasma membrane, and cytoplasm (Fig. 1C). 183 

Knocking down MdSUMO2s or knocking in one MdSUMO2 gene leads to 184 

drought stress tolerance  185 

To understand the biological function of the MdSUMO2s, we generated a series of 186 

transgenic plants: MdSUMO2A OE (over expression) with a higher MdSUMO2A 187 
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expression level; MdSUMO2A RNAi with reduced expression of MdSUMO2A only; 188 

and MdSUMO2 RNAi with reduced expression of MdSUMO2A, MdSUMO2B, and 189 

MdSUMO2C (Fig. S3).  190 

After transplant, the transgenic plants and non-transgenic plants (GL-3) were 191 

exposed to prolonged drought stress by maintaining soil volumetric water content of 192 

18-23% for three months. As shown in Fig. 2A and B, long-term moderate drought 193 

stress reduced the growth of all plants. However, compared with GL-3 plants, 194 

MdSUMO2A OE plants were taller, and MdSUMO2 RNAi plants were shorter (Fig. 195 

2A-B, Fig. S4). In addition to differences in plant height, MdSUMO2A OE plants had 196 

greater stem diameters and longer internodes than GL-3 plants under drought stress, 197 

whereas MdSUMO2 RNAi plants had smaller stem diameters and shorter internodes 198 

(Fig. S5). Moreover, MdSUMO2A OE plants had greater shoot dry weights under 199 

control and drought conditions, whereas MdSUMO2 RNAi plants had lower 200 

aboveground biomass (Fig. S6). These results indicate that MdSUMO2A OE plants 201 

grew more vigorously under long-term drought, whereas MdSUMO2 RNAi plants 202 

grew more slowly. 203 

Drought can adversely affect crop photosynthetic capacity, water use efficiency, 204 

and yield (Xu et al., 2008; Sun et al., 2013a; Mao et al., 2015), and drought stress 205 

reduced the photosynthetic capacity of all plants in the current experiment (Fig. S7). 206 

However, MdSUMO2A OE plants had a greater photosynthetic capacity than GL-3 207 

plants under drought stress, whereas that of MdSUMO2A RNAi plants was lower (Fig. 208 

S7A). Under drought stress, stomatal conductance and transpiration rate were also 209 

higher in MdSUMO2A OE plants than in GL-3 plants, and both parameters were 210 

lower in MdSUMO2 RNAi plants (Fig. S7B-C). We also measured the photosynthetic 211 

capacity of GL-3 and transgenic plants under drought during the daytime from 7:00 212 

AM to 5:00 PM. Similar results were observed. That is, MdSUMO2A OE plants 213 

maintained the highest photosynthetic rate under drought stress and exhibited a higher 214 

transpiration rate and stomatal conductance after noon, whereas MdSUMO2 RNAi 215 

plants had the lowest values for these parameters (Fig. 2C and Fig. S8). 216 
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The root system plays an important role in plant drought resistance (Liao et al., 217 

2016; Geng et al., 2018; Hu et al., 2018). After long-term drought, the root systems of 218 

MdSUMO2A OE plants were much more extensive (Fig. 2D), as indicated by root dry 219 

weight in Fig. S10. However, the root systems of MdSUMO2 RNAi plants were much 220 

smaller than those of GL-3 under control and drought conditions (Fig. 2D and Fig. 221 

S9). Consistent with their strong root systems and greater shoot growth, MdSUMO2A 222 

OE plants had higher hydraulic conductivity of roots and shoots (Fig. 2E and F), 223 

whereas those of MdSUMO2 RNAi plants were lower. These results suggest that 224 

MdSUMO2A OE plants performed better under drought, exhibiting vigorous shoot 225 

and root growth, as well as higher hydraulic conductivity and photosynthetic capacity. 226 

Leaf morphology is important for drought tolerance (Anyia and Herzog, 2004; Sun 227 

et al., 2013a; Wu et al., 2014). MdSUMO2 RNAi leaves were smaller than those of 228 

GL-3 and MdSUMO2A OE plants under control and drought conditions (Fig. 3A), as 229 

indicated by leaf area measurements in Fig. 3B. Leaf lengths and widths were also 230 

smaller in MdSUMO2 RNAi plants under control and drought conditions (Fig. 231 

S10A-B). Likewise, under both conditions, single-leaf dry weight was much lower in 232 

MdSUMO2 RNAi plants than in GL-3 and MdSUMO2A OE plants (Fig. S10C). 233 

MdSUMO2 RNAi leaves were much thicker than GL-3 and MdSUMO2A OE leaves 234 

under control and drought conditions (Fig. 3C and D). Consistently, MdSUMO2 RNAi 235 

leaves had a greater water holding capacity (Fig. 3E). By contrast, the leaf area, dry 236 

weight, thickness, and water holding capacity of MdSUMO2A OE leaves were 237 

comparable to those of GL-3 leaves under control and drought conditions (Fig. 3A–238 

E). Water use efficiency was measured using 
13

C, and MdSUMO2 RNAi plants 239 

maintained a higher WUE than GL-3 and MdSUMO2 OE plants under control and 240 

drought conditions (Fig. 3F). Plants accumulate the phytohormone abscisic acid 241 

(ABA) after drought stimulus (Zhu, 2016). After drought stress, the ABA content of 242 

MdSUMO2A OE plants was lower than that of GL-3 plants, whereas that of 243 

MdSUMO2 RNAi plants was higher (Fig. S11). These results suggest that MdSUMO2 244 

RNAi plants resist drought by adjusting their leaf morphology, increasing their WUE, 245 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 31, 2021. ; https://doi.org/10.1101/2021.03.29.437542doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.29.437542
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 10 

and accumulating more ABA. 246 

There were no significant differences in the parameters mentioned above between 247 

MdSUMO2A RNAi and GL-3 plants under drought stress (Fig. 1–4, Fig. S4–12), 248 

suggesting that the MdSUMO2s have redundant functions in response to drought. 249 

To further support the notion that both MdSUMO2A OE and MdSUMO2 RNAi 250 

plants were tolerant to drought stress, we treated all plants with a shorter-term drought 251 

stress. After 3 weeks of drought treatment, 83% of the GL-3 plants had wilted, 252 

whereas 40% of the MdSUMO2A OE plants and 58% of the MdSUMO2 RNAi plants 253 

were still alive (Fig. 4A-D), suggesting that the MdSUMO2 RNAi plants had a higher 254 

survival capacity than the MdSUMO2A OE plants. By contrast, MdSUMO2A RNAi 255 

plants did not differ in survival rate from GL-3 plants under drought stress (Fig. 256 

S4E-F). We also performed an extreme drought treatment after the long-term drought 257 

treatment by withholding water for 10 days. Both the MdSUMO2 RNAi and 258 

MdSUMO2A OE plants performed better than the GL-3 plants under drought, and the 259 

MdSUMO2 RNAi plants were more drought tolerant than the MdSUMO2A OE plants 260 

(Fig. S4B). All these data suggest that MdSUMO2A OE and MdSUMO2 RNAi plants 261 

were more drought tolerant than GL-3 plants and that MdSUMO2 RNAi plants had 262 

higher survival ability than MdSUMO2A OE plants. 263 

In addition, we examined the SUMOylation of GL-3 and MdSUMO2 transgenic 264 

plants under control and prolonged drought stress conditions. As shown in Fig. S12, 265 

MdSUMO2A OE plants had a slightly higher SUMOylation level than GL-3 plants 266 

under control and drought conditions, whereas the SUMOylation level of MdSUMO2 267 

RNAi plants was lower. 268 

Identification of MdSUMO2 targets reveals SUMOylation of MdDREB2A by 269 

MdSUMO2s 270 

To identify potential targets of MdSUMO2 proteins, we performed proteomic 271 

analysis according to previous methods (Miller et al., 2010; Miller and Vierstra, 272 

2011). Since Arabidopsis SUMO1 has high sequence similarity with MdSUMO2 (Fig. 273 
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S3A), we used the anti-SUMO1 antibody to recognize three MdSUMO2s. After mass 274 

spectrometry, we identified 1314 potential targets of MdSUMO2A (Supplemental 275 

Data Set 1), including MdDREB2A, MdALI, MdAQP2, MdHSP20, MdH2B, 276 

MdCAT2, and MdbZIP (Fig. S13). Using a SUMOylation reconstitution assay in 277 

Escherichia coli in which MdSUMO2 and the candidate substrates were expressed 278 

(Elrouby and Coupland, 2010), we verified the SUMOylation of MdDREB2A, 279 

MdAQP2, and MdALI by the MdSUMO2s (Fig. 5A-G). Three and one lysine sites 280 

are potential SUMO conjugation sites in MdDREB2A and MdAQP2, respectively. To 281 

determine the actual SUMOylation sites, each candidate lysine (K) was replaced by 282 

arginine (R) singly or in combinations. SUMOylation assays using the E. coli system 283 

suggested that K192 and K272 were required for MdSUMO2A-mediated 284 

SUMOylation of MdDREB2A and MdAQP2, respectively (Fig. 5A and E). In 285 

addition, K192 was also required for MdDREB2A SUMOylation by MdSUMO2C, 286 

whereas K192, K217, and K369 were required for MdDREB2A SUMOylation by 287 

MdSUMO2B (Fig. 5B and C). For MdALI, there are five lysine sites and one SIM for 288 

potential SUMO conjugation. Deleting the SIM or mutating each lysine to R could not 289 

abolish the SUMOylation of MdALI by MdSUMO2A (Fig. S14). However, mutation 290 

of all five lysine sites to R or mutation of four lysine sites to R and in combination 291 

with SIM deletion could almost completely abolish the SUMO conjugation by 292 

MdSUMO2A, indicating that these five lysine sites and the SIM were all required for 293 

SUMOylation of MdALI by MdSUMO2A (Fig. 5G). 294 

Because it is an important factor in plant drought stress response (Sakuma et al., 295 

2006b; Chen et al., 2007; Qin et al., 2007; Reis et al., 2014), we next focused on 296 

MdDREB2A. Since MdDREB2A could be SUMOylated in the E.Coli system, and 297 

MdDREB2A did not contain the SIM, we tested the interaction of MdDREB2A and 298 

MdCE, the SUMO E2-conjugating enzyme. MST and CO-IP analysis revealed that 299 

MdCE interacts with MdDREB2A in vitro and vivo (Fig. S15). SUMOylation can 300 

affect target protein localization, protein–protein interaction, and protein stability. We 301 

co-localized MdSUMO2A with MdDREB2A and found that SUMOylation of 302 
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MdDREB2A did not affect its subcellular localization (Fig. S16). We also examined 303 

the effect of SUMOylation on the stability of MdDREB2A. As shown in Fig. 5H, 304 

MdDREB2A protein level was significantly increased in the MdSUMO2 RNAi plants 305 

under drought conditions but also slightly higher in the MdSUMO2A OE plants.  306 

In addition to the in vitro SUMOylation of MdDREB2A, we also examined the in 307 

vivo SUMOylation of MdDREB2A by MdSUMO2 under control and drought 308 

conditions. After immunoprecipitation using anti-MdDREB2A antibody, 309 

SUMOylation of MdDREB2A was detected in GL-3 plants under drought stress, but 310 

much less SUMOylation was observed in MdSUMO2 RNAi plants (Fig. 5H).  311 

SUMOylation of MdDREB2A is critical for drought stress tolerance and is 312 

coupled with ubiquitination during drought 313 

DREB2A is a positive regulator of plant drought and heat stress tolerance (Kim et al., 314 

2011; Meng et al., 2011; Li et al., 2019). Arabidopsis wild-type plants overexpressing 315 

DREB2A
K163R

 (in which K was mutated to R) exhibited decreased thermotolerance 316 

(Wang et al., 2020). We therefore examined whether SUMOylation of MdDREB2A 317 

affected apple drought stress resistance. We transformed 35S::MdDREB2A 318 

(MdDREB2A OE) and 35S::MdDREB2A
K192R

 (MdDREB2A
K192R

 OE, in which K192 319 

was mutated to arginine) into wild-type GL-3 apple plants. Both transgenic plants had 320 

better survival ability under drought stress compared with the wild type (Fig. 6A-B). 321 

However, MdDREB2A
K192R

 OE plants had a higher survival rate than MdDREB2A
 
OE 322 

plants (Fig. 6A-B). In addition, after drought stress, MdDREB2A OE plants had higher 323 

photosynthetic capacity than MdDREB2A
K192R

 OE plants (Fig. 6C). These data 324 

suggest that SUMOylation of MdDREB2A tightly controls plant drought tolerance. 325 

Because SUMOylation can affect protein stability, we then examined MdDREB2A 326 

protein levels in both transgenic plants under control and drought conditions. As 327 

shown in Fig. 6D, both transgenic plants had more MdDREB2A than GL-3 plants 328 

under control conditions. Under drought conditions, MdDREB2A
 

OE plants 329 

accumulated more MdDREB2A protein than GL-3 plants, but less than transgenic 330 
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plants carrying 35S::MdDREB2A
K192R

 (Fig. 6D). In addition, the transcripts of 331 

MdDREB2A were comparable between two transgenic plants (Fig. 6E). We also 332 

transformed 35S::MdDREB2A and 35S::MdDREB2A
K192R

 into apple calli and found 333 

that transgenic calli carrying either constructs were more tolerant to simulated drought 334 

treatment than wild-type calli. Furthermore, calli carrying 35S::MdDREB2A
K192R

 were 335 

more tolerant to PEG than calli carrying 35S::MdDREB2A (Fig. S17). In apple, 336 

MdDREB2A targets MdCKX4a to modulate drought tolerance (Liao et al., 2016). We 337 

next evaluated the MdCKX4a expression in transgenic plants and GL-3. As shown in 338 

Fig. 6F, MdCKX4a expression was higher in transgenic apple plants under normal and 339 

drought conditions and much higher in plants expressing 35S::MdDREB2A
K192R

 than 340 

in plants carrying 35S::MdDREB2A. These results indicate that SUMOylation of 341 

MdDREB2A is important for its stability and activity. 342 

The above phenomena prompted us to investigate whether other protein 343 

modifications were involved. Indeed, we found that MdDREB2A accumulation was 344 

similar in both genotypes of transgenic plants under drought stress when they were 345 

treated with MG132, a 26S proteasome inhibitor (Fig. 7A). The 26S proteasome is 346 

essential for the degradation of ubiquitin-modified proteins (Smalle et al., 2004). We 347 

then examined SUMOylation and ubiquitination in transgenic plants. As shown in 348 

Fig. 7B, both transgenic plants had higher levels of SUMOylation and ubiquitination 349 

after drought stress. Compared with that of MdDREB2A OE plants, the SUMOylation 350 

level of MdDREB2A
K192R

 OE plants was much lower. However, their ubiquitination 351 

level was also lower (Fig. 7B), suggesting that SUMOylated MdDREB2A may 352 

undergo ubiquitination in response to drought in MdDREB2A OE plants. 353 

MdRNF4 mediates ubiquitination of SUMOylated MdDREB2A 354 

To identify the proteins responsible for the ubiquitination of SUMOylated 355 

MdDREB2A, we performed affinity purified mass spectrometry (AP-MASS) analysis 356 

of MdDREB2A under control and drought stress conditions. We identified 1414 and 357 

1472 proteins that may associate with MdDREB2A in planta under control and 358 

drought conditions, respectively (Supplemental Data set 2). One of the potential 359 
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MdDREB2A interacting proteins under drought stress was MdRNF4, which encodes 360 

an E3 ubiquitin ligase. Homologs of MdRNF4 in mammalian cells and yeast target 361 

SUMOylated proteins for degradation by the proteasome pathway (Sun et al., 2007; 362 

Tatham et al., 2008; Kumar et al., 2017). We verified the in vivo association of 363 

MdDREB2A with MdRNF4 using co-immunoprecipitation (Co-IP) analysis (Fig. 364 

S18). MdRNF4 contains two SUMO interacting motifs (SIMs) (Fig. S19A). To 365 

investigate whether SUMO could be bound to the SIMs of MdRNF4, we performed 366 

an Y2H analysis and found that MdRNF4 could interact with MdSUMO2A. When 367 

both SIMs were deleted, no interaction was detected. However, deletions of only one 368 

SIM did not impair the interaction, indicating that both SIMs are required for the 369 

interaction of MdSUMO2A with MdRNF4 (Fig. S19B–C). A microscale 370 

thermophoresis (MST) approach and Co-IP assay further verified the interaction 371 

between MdSUMO2A and MdRNF4 (Fig. S19D-E).  372 

RNF4 is a SUMO-targeted ubiquitin E3 ligase that is required for degradation of 373 

SUMOylated substrates in mammals (Valérie et al., 2008; Geoffroy and Hay, 2009; 374 

Zhang et al., 2017a) and the fission yeast Schizosaccharomyces pombe (Sun et al., 375 

2007). We hypothesized that this protein is responsible for the ubiquitination of 376 

SUMOylated MdDREB2A. To test our hypothesis, we extracted total proteins from 377 

GL-3 and MdDREB2A OE plants under drought stress and then added purified 378 

MdRNF4 to the protein extracts for specific durations. The addition of MdRNF4 for 2 379 

h increased the ubiquitination level of MdDREB2A. However, greater MdDREB2A 380 

ubiquitination was observed in MdDREB2A OE plants that had higher MdDREB2A 381 

SUMOylation levels (Fig. 8A). When MG132 was applied, the ubiquitination of 382 

MdDREB2A decreased. To further confirm the requirement of MdRNF4 for 383 

degradation of SUMOylated MdDREB2A, we generated transgenic plants with a 384 

reduced level of MdRNF4 (Fig. S20). After immunoprecipitation with 385 

anti-MdDREB2A antibody, MdDREB2A ubiquitination decreased in MdRNF4 RNAi 386 

plants under drought conditions (Fig. 8B), further suggesting that MdRNF4 mediates 387 

the ubiquitination of MdDREB2A.  388 
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To further analyze the modulation of MdDREB2A stability by MdRNF4, we 389 

performed immunoblot analysis of plants under control and drought conditions. 390 

MdDREB2A protein levels were higher in MdRNF4 RNAi plants than in GL-3 plants, 391 

either under control or drought conditions; although drought stress induced 392 

MdDREB2A accumulation (Fig. 8C). In addition, the MdRNF4 RNAi plants were 393 

more tolerant to drought stress, consistent with the increased tolerance of MdRNF4 394 

RNAi calli to simulated drought (Fig. 8D-F; Fig. S21A-C). 395 

Because SUMO2s affect MdDREB2A SUMOylation and stability (Fig. 5G), we 396 

asked whether this effect was related to MdRNF4. We examined the ubiquitination of 397 

MdDREB2A in MdSUMO2 transgenic plants under control and drought conditions. 398 

After drought stress, MdSUMO2A OE plants had higher levels of MdDREB2A 399 

ubiquitination, and MdSUMO2 RNAi plants had lower levels (Fig. 8G). In addition, 400 

less MdRNF4 accumulated in MdSUMO2 RNAi plants under drought stress, while 401 

more in MdSUMO2A OE plants (Fig. 8H), implying the involvement of ubiquitination 402 

mediated by MdRNF4 in the MdDREB2A SUMOylation and stability. 403 

 404 

Discussion 405 

Drought stress is one of the major environmental fluctuations that affect plant 406 

productivity and survival (Geng et al., 2018; Li et al., 2019). During evolution, plants 407 

have acquired divergent strategies to respond to water deficiency, including 408 

shortening their life cycles to complete vegetative growth and reproduction before soil 409 

water is depleted, evolving unique morphologies and root systems to avoid drought 410 

stress, and developing the ability to withstand low tissue water content under drought 411 

stress. The latter ability may involve processes such as osmotic adjustment, cellular 412 

elasticity, and epicuticular wax formation (Polania et al., 2016; Wei et al., 2016; 413 

Yıldırım and Kaya, 2017). In our study, both MdSUMO2A OE plants and 414 

MdSUMO2A RNAi plants were more drought tolerant than the wild type. The 415 

MdSUMO2A OE plants exhibited greater root system development, more vigorous 416 
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growth, and higher photosynthetic capacity and hydraulic conductivity (Fig. 2-3; Fig. 417 

S4–11). The MdSUMO2A RNAi transgenic plants had smaller but thicker leaves, 418 

much lower stomatal conductance, and higher water use efficiency (Fig. 2-3; Fig. 419 

S4-11). However, the MdSUMO2A RNAi plants had a much higher survival rate than 420 

the MdSUMO2A OE plants. These results suggested that both increased and decreased 421 

SUMOylation levels can increase plant drought tolerance.  422 

SUMO is a crucial post-translational modifier in plants that is covalently 423 

conjugated with target substrates to maintain chromatin integrity, transduce signals, 424 

stabilize proteins, and change cell locations (Dohmen, 2004; Elrouby, 2015; Rytz et 425 

al., 2016). Previous studies identified a large number of SUMO substrates in 426 

Arabidopsis under heat and oxidative stress, including TPL (TOPLESS), ARF, JAZ, 427 

ABF, and NAC proteins (Miller et al., 2010; Rytz et al., 2016; Rytz et al., 2018). Here, 428 

we identified 1314 potential targets modified by MdSUMO2A in apple (Supplemental 429 

Data set 1). Some MdSUMO2A target proteins were homologous to proteins in 430 

Arabidopsis, whereas the majority was unique proteins in the apple genome. The 431 

reconstituted Arabidopsis SUMOylation cascade in E. coli is a rapid and effective 432 

method for evaluating the SUMOylation of potential SUMO target proteins (Okada et 433 

al., 2009; Saitoh et al., 2009). We used the apple SUMOylation cascade in E. coli as a 434 

powerful tool to elucidate the SUMOylation level of targets and confirmed that 435 

MdDREB2A, MdALI, and MdAQP2 were MdSUMO2 substrates in apple (Fig. 5), 436 

highlighting the power and reliability of this system.  437 

DREB2A encodes a transcription factor that binds to the dehydration-responsive 438 

element (DRE) (Yamaguchishinozaki and Shinozaki, 1994; Liu et al., 1998). 439 

Numerous studies have reported the positive role of DREB2A in response to drought 440 

stress in various plants, including apple, Arabidopsis, rice, maize, and Pennisetum 441 

glaucum. However, DREB2A sequences from these species did not show high 442 

similarity outside of the conserved DNA binding domain in the N-terminal region that 443 

may function as a nuclear localization signal (Agarwal et al., 2007; Qin et al., 2007; 444 

Qin et al., 2008; Cui et al., 2011; Liao et al., 2016). The N-terminal region of 445 
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DREB2A that contains the DNA binding and NRD domains is responsible for its 446 

protein stability. The DREB2A NRD domain has been shown to interact with DRIP 447 

and BPM ubiquitin E3 ligases, leading to ubiquitination and degradation of DREB2A 448 

(Qin et al., 2008; Morimoto et al., 2017). DREB2A can be transformed into a stable 449 

and constitutively active form (DREB2A-CA) by deleting its NRD domain, thereby 450 

facilitating plant drought and heat stress tolerance (Sakuma et al., 2006a). In addition, 451 

SUMOylation of DREB2A can increase its protein stability under heat stress by 452 

suppressing its interaction with BPM2 (Wang et al., 2020). However, apple 453 

MdDREB2A does not contain the NRD domain (Fig. S22). Whether apple 454 

MdDREB2A undergoes any protein modifications was previously unknown. In this 455 

study, we found that MdDREB2A was a SUMOylation target of the MdSUMO2s 456 

(Fig. 5A–C). The critical SUMOylation site of MdDREB2A by MdSUMO2A was the 457 

K192 (Fig. 5A). Similar to DREB2As in other plant species, MdDRBE2A was a 458 

positive regulator of apple drought stress resistance (Fig. 6A–C). SUMOylation of 459 

targets often increases their stability, as well as overall environmental stress resistance 460 

(Miura et al., 2007; Zhou et al., 2017; Wang et al., 2020). To our surprise, we found 461 

that the mutation of K192 to R caused MdDREB2A protein levels to be more stable in 462 

MdDREB2A
K192R 

OE plants (Fig. 6D). In addition, transgenic plants carrying 463 

MdDREB2A
K192R

 had a higher survival rate than MdDREB2A OE plants, implying that 464 

DREB2A SUMOylation may serve different functions and proceed by different 465 

mechanisms in different plant species in response to stress.  466 

In addition to its covalent attachment to target substrates, SUMO can also interact 467 

noncovalently with proteins that contain SIMs (Sun et al., 2007; Nabil et al., 2014; 468 

Kumar et al., 2017). SIPs in mammals and Arabidopsis include ubiquitin E3 ligases, 469 

DNA methyltransferases or demethylases, and histone methyltransferases or 470 

demethylases (Nabil et al., 2014; Kumar et al., 2017). We also identified SIPs in the 471 

apple genome and obtained similar results (Supplemental Data set 3). Among the 472 

SIPs, we identified a RING finger protein 4, MdRNF4, that appeared with the highest 473 

frequency in the Y2H screen. Similar RING-type ubiquitin E3 ligases (RNF4s) have 474 
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been reported to interact with SUMO and ubiquitinate SUMOylated substrates via the 475 

26S proteasome in mammals and yeast (Sun et al., 2007; Valérie et al., 2008; 476 

Geoffroy and Hay, 2009; Zhang et al., 2017a). Our study found that MdRNF4 477 

mediated ubiquitination of SUMOylated MdDREB2A by a 26S proteasome pathway, 478 

resulting in the degradation of SUMOylated MdDREB2A (Fig. 8). These results 479 

suggest a widely conserved function for RNF4 in ubiquitination among eukaryotes.  480 

In summary, we investigated the relationship between SUMOylation and drought 481 

stress tolerance in perennial apple trees. Using MdSUMO2A OE and MdSUMO2 482 

RNAi plants, we observed that both decreased and increased SUMOylation can 483 

increase plant drought tolerance, although decreased SUMOylation was associated 484 

with relatively higher survival rates. We also showed that increased SUMOylation of 485 

MdDREB2A in MdSUMO2A OE and MdDREB2A OE plants was associated with 486 

MdRNF4-mediated greater ubiquitination under drought stress, thereby relatively 487 

decreasing MdDREB2A accumulation in MdSUMO2A OE and MdDREB2A OE 488 

plants compared with MdSUMO2 RNAi and MdDREB2A
K192R

 OE plants. 489 

 490 

Methods 491 

Plant materials and growth conditions 492 

The experiments were conducted at Northwest A&F University, Yangling, China 493 

(34°20’N, 108°24’E). The transgenic lines and GL-3 plants after rooting on MS were 494 

transplanted to soil and grown for 3 months at 25°C under a long day photoperiod (14 495 

h : 10 h, light : dark). The general management was conducted using the method 496 

described by Xie (Xie et al., 2017).  497 

The leaves of apple ‘Golden delicious’ (Malus x domestica) were used for gene 498 

cloning. A line isolated from ‘Royal Gala’ (Malus x domestica) named GL-3 (Dai et 499 

al., 2013), which has high regeneration capacity, was used for genetic transformation. 500 

GL-3 tissue-cultured plants were subcultured every 4 weeks. They were grown on MS 501 
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medium (4.43 g/L MS salts, 30 g/L sucrose, 0.2 mg/L 6-BA, 0.2 mg/L IAA, and 7.5 502 

g/L agar, pH 5.8) under long-day conditions (14 h : 10 h, light : dark) at 25°C. 503 

Generation of transgenic apple plants and calli 504 

201-bp (3’ UTR region), 121-bp (conserved CDS of MdSUMO2s), or 74-bp  505 

fragments of MdSUMO2A, MdSUMO2, or MdRNF4 were individually cloned into the 506 

pDONR222 vector by multisite Gateway recombination, as described by Karimi et al. 507 

(Karimi and Hilson, 2007) and subsequently transferred to RNA silencing vector 508 

pK7GWIWG2, a destination vector containing an N-terminal GFP tag by LR 509 

recombination. To overexpress genes, the coding sequences of MdSUMO2A, 510 

MdDREB2A, or MdDREB2A
K192R

 were constructed to pCambia 2300 with N-myc tag 511 

or pGWB418. All the constructed vectors were transformed into Agrobacterium strain 512 

EHA105. Agrobacterium-mediated transformation of apple was carried out as 513 

described, using GL-3 as the genetic background (Holefors et al., 1998; Dai et al., 514 

2013).  515 

To generate transgenic apple calli, ‘Orin’ (Malus× domestica) calli grown on MS 516 

media (1.5 mg/ L 2,4-Dichlorophenoxyacetic acid (2,4-D), and 0.4 mg/L 6-BA at the 517 

dark environment) were used as the wild type. The coding sequence of MdDREB2A, 518 

MdDREB2A
K192R

, or MdRNF4 was cloned into plant binary vector pGWB418.  A 519 

300-bp sequence of MdRNF4 was cloned into pK7GWIWG2 to knock down 520 

MdRNF4 expression. The resulting plasmids were transformed into Agrobacterium 521 

strain EHA105 and then tranformed to ‘Orin’ calli according to previous methods (An 522 

et al., 2019; An et al., 2020) The primers used for constructing these vectors are 523 

shown in Supplemental Data Set 4.  524 

Stress treatment 525 

For long-term drought treatment, 3-month-old GL-3 and transgenic apple  526 

plants were transplanted to a greenhouse at the beginning of April, 2019. The drought 527 

treatment was performed two months later in June. The plants were grown in plastic 528 

pots (15 cm × 20 cm, ~1.3 L) filled with a mixture of sand and substrate 529 
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(PINDSTRUP, Denmark) (1:1, v/v). The measurement of soil volumetric water 530 

content (VWC) was conducted by TDR (FS6430，USA). At the beginning of drought 531 

treatment, uniform trees of each line (30 trees for each line) were divided into two 532 

groups for the following treatments (15 trees for each treatment for each line): (1) 533 

control, well-watered, irrigated daily to maintain 43-48% of VWC and (2) moderate 534 

drought, irrigated daily to maintain 18-23% of VWC. The treatment was lasted for 535 

three months. The photosynthetic capacity was determined with LI-Cor 6400 portable 536 

photosynthesis system (LI-COR, Huntington Beach, CA, USA). Hydraulic 537 

conductivity of roots and shoots were conducted by an HPFM (Dynamax, Houston) as 538 

described previously (Geng et al., 2018). The thickness of leaves were measured by 539 

using tungsten filament scanning electron microscope (JSM-6360LV, Japan) 540 

according to the methods described by Liao (Liao et al., 2016) with modifications. For 541 

the detection of leaves δ
13

C ‰, mature leaves were colltected. Leaves were 542 

oven-dried at 105℃ for 0.5 h, and then 70°C for 3 days to dry completely. Dried 543 

leaves were ground and filtered through a sieve (80 holes per cm
2
). The δ

13
C ‰ of 544 

leaves was determined with an elementary analysis-isotope ratio mass spectrometer 545 

(Flash EA 1112 HT-Delta V Advantages, Thermo Fisher Scientific) as described 546 

previously (Wang et al., 2018). 547 

For short-term drought treatment, 3-month-old uniform trees of GL-3 and 548 

transgenic apples were used. Before treatment, plants were irrigated to maintain 549 

saturation of soil water content. Then plants were withheld with water until VWC 550 

reached 0, and survival rate was calculated after rewatering for one week. The soil 551 

VWC was measured by TDR (FS6430, USA).  552 

RNA extraction and quantitative real-time RT–PCR  553 

Total RNA from apple leaves was extracted by a CTAB method. DNase I (Fermentas) 554 

was used to remove residual genomic DNA. We used total RNA to generate cDNA 555 

according to the manufacturer’s instructions by using the RevertAid
TM

 First Strand 556 

cDNA synthesis kit (Thermo Scientific, USA). The qRT-PCR was performed in a 557 
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reaction containing GoTaq
®

 qPCR Master Mix (Promega, USA), cDNA, and primers 558 

(described in Supplemental Data Set 4) on an CFX96 real-time PCR detection 559 

systems (Bio-Rad, USA). MdMDH (malate dehydrogenases) was used as the 560 

reference gene.  561 

Subcellular localization  562 

To generate the constructs for subcellular localization assay, coding region of 563 

MdSUMO2A, MdSUMO2B, or MdSUMO2C was amplified and cloned into 564 

pEarleyGate104 vector by BP and LR reactions (Invitrogen), and were then 565 

transformed into Agrobacterium strain C58C1. The empety vector pGWB455 which 566 

carries 35S::mCherry was also transformed into Agrobacterium strain C58C1. The 567 

C58C1 carrying the resulting plasmid, 35S::mCherry, and 35S:p19 (p19 is an RNA 568 

silencing repressor protein from Tomato bushy stunt virus)  was coinfiltrated into 569 

tobacco leaves (Nicotiana benthamiana). Three days later, the leaf epidermal cells 570 

were observed by Nikon A1R/A1 confocal microscope system (Nikon, Tokyo, Japan) 571 

for yellow fluorescence observation.  572 

For colocalization of MdSUMO2A with MdDREB2A or MdDREB2A
K192R， the 573 

full length sequence of MdDREB2A or MdDREB2A
K192R

 was cloned into pGWB455 574 

and then transformed into C58C1. Mature fragments of MdSUMO2A, MdSUMO2B 575 

and MdSUMO2C (MdSUMO2s with exposed GG) were amplified and individually 576 

cloned into pEarleyGate104 vector by BP and LR reactions (Invitrogen), and were 577 

then transformed into Agrobacterium strain C58C1. The C58C1 carrying 578 

mCherry-MdDREB2A, 35S:p19, and  YFP-MdSUMO2A, YFP-MdSUMO2B, or 579 

YFP-MdSUMO2C were resuspended in the buffer containing 10 mM MgCl2, 10 mM 580 

MES–KOH, 180 μM acetosyringone and then co-infiltrated into the tobacco leaves 581 

for 3 d to detect signals with confocal microscope. The primers used are listed in 582 

Supplemental Data Set 4. 583 

Histochemical and fluorometric assays for GUS activity 584 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 31, 2021. ; https://doi.org/10.1101/2021.03.29.437542doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.29.437542
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 22 

For the promoter-GUS reporter assay, an ~1000 bp DNA fragment upstream of the 585 

MdSUMO2A was cloned into pMDC164, and then transformed into Agrobacterium 586 

strain GV3101. The resulting plasmid was introduced into Col-0 using the 587 

floral-dipping method (Clough and Bent, 1998)  for stable transformation in 588 

Arabidopsis. GUS activity was observed after staining with 0.5 mg/mL 589 

5-bromo-4-chloro-3-indolyl-b-Dglucoronide as described previously (Guan et al., 590 

2013). The primers used are listed in Supplemental Data Set 4. 591 

Endogenous ABA determination 592 

After three months of moderate drought treatment, the mature leaves were collected 593 

from GL-3 and MdSUMO2 transgenic lines to determine ABA content. Leaves were 594 

weighed and immediately frozen in liquid nitrogen. Frozen leaves were then 595 

pulverized and ABA was extracted as described previously (Chen et al., 2012; Xie et 596 

al., 2020). Quantitative determination of endogenous ABA was performed on a 597 

UPLC–MS/MS system (QTRAP™ 5500 LC/MS/MS, USA) and a Shimadzu 598 

LC-30AD UPLC system (Tokyo, Japan). 599 

SUMOylation assay in E. coli 600 

SUMOylation assays in E. coli were conducted as described previously (Elrouby and 601 

Coupland, 2010). The coding region of MdAE1 or MdAE2 were amplified and cloned 602 

into binary expression vector pCDFDuet-1, and mature MdSUMO2s or MdCE was 603 

cloned into pACYCDuet-1. Prokaryotic expression vector PGEX-4T-1 was used to 604 

express GST-MdDREB2A, MdALI, and MdAQP2 protein. Subsequently, the 605 

resulting plasmids in certain combination were introduced into Escherichia coli stain 606 

BL21 (DE3). After incubation at 37°C until OD600 reached 0.6, 1 mM IPTG 607 

(Isopropyl β-D-1-thiogalactopyranoside) was added to induce protein expression. 608 

Eight hours later, the bacterium was harvested and denaturized for western blot 609 

analysis with GST antibody (M20007, Abmart). The primers used are listed in 610 

Supplemental Data Set 4. 611 

Immunoblot analysis 612 
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The proteins of transgenic apple plants and GL-3 were extracted with protein 613 

extraction buffer [50 mM Tris-HCl, pH 8.0, 150 mM NaCl, 2 mM EDTA, 1 mM DTT, 614 

10% glycerol, 1% Triton X-100, 1 mM phenylmethylsulfonyl fluoride (PMSF), and 1615 

× Halt protease inhibitor cocktail (Fisher Scientific)] and centrifuged at 14,000 g at 616 

4°C for 10 min. The extracted proteins were used for western blot analysis with 617 

polyclonal MdDREB2A antibody against rabbit, or anti-SUMO (ab5316, Abcam), 618 

anti-Ubiquitin (P4D1, Cell Signaling Technology
®

),  anti-MdRNF4 (rabbit 619 

polyclonal antibody, ABclonal Technology), or anti-Actin (AC009, ABclonal 620 

Technology).  621 

In vivo SUMOylation and ubiquitination analysis 622 

Total proteins extracted from transgenic plants (MdSUMO2A OE, MdSUMO2 RNAi, 623 

MdDREB2A OE, MdDREB2A
K192R

 OE, MdRNF4 RNAi, and GL-3) were 624 

immunoprecipitated with anti-MdDREB2A and immunoblotted with anti-SUMO 625 

(ab5316, Abcam), or anti-Ubiquitin (P4D1, Cell Signaling Technology
®

) antibodies. 626 

To examine the ubiquitination and SUMOyltion of MdDREB2A under drought stress 627 

conditions, plants were dehydrated for 2 hours.  628 

To dectect the effects of recombinant MdRNF4 on ubiquitination and 629 

SUMOylation of MdDREB2A under simulated drought stress, proteins were extracted 630 

from PEG-treated GL-3 and MdDREB2A OE plants, and recombinant MdRNF4 or 50 631 

μM MG132 was added for 2 hours (An et al., 2019; An et al., 2020). Total proteins 632 

were extracted and immunoprecipitated with anti-MdDREB2A and immunoblotted 633 

with anti-SUMO (ab5316, Abcam), or anti-Ubiquitin (P4D1, Cell Signaling 634 

Technology
®

) antibodies. 635 

Yeast two-hybrid assay 636 

To identify MdSUMO2 interacting proteins, 1-95 aa of MdSUMO2A (mature 637 

MdSUMO2A with exposed GG) was amplified and cloned into pGBKT7 vector to 638 

generate bait plasmid. Y2H screen was performed to screen the apple library 639 
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according to the user manual of MatchmakerTM Gold Yeast Two Hybrid System 640 

(Clontech, Japan) by using Saccharomyces cerevisiae strain Y2H Gold.  641 

To perform the point-to-point Y2H, full length MdSUMO2A was cloned into 642 

pGBKT7, resulting in MdSUMO2A-pGBKT7. Full-length or truncated MdRNF4 643 

with SIM deltion was constructed to pGADT7 vector. MdSUMO2A-pGBKT7 and 644 

MdRNF4-pGADT7 or truncated MdRNF4-pGADT7 were co-transformed into yeast 645 

strain Y2H Gold. The positive clones were selected on SD-Leu-Trp, and then on 646 

SD-Leu-Trp-His-Ade + x-α-gal plates for growth observation and the x-α-gal assay. 647 

The primers used are listed in Supplemental Data Set 4. 648 

CO-IP assay 649 

For Co-IP analysis, the leaves of GL-3 were dehydrated for 2 hours. Total proteins 650 

were extracted from leaf samples with extraction buffer [50 mM Tris-HCl, pH 8.0, 651 

150 mM NaCl, 2 mM EDTA, 1 mM DTT, 10% glycerol, 1% Triton X-100, 1 mM 652 

phenylmethylsulfonyl fluoride (PMSF), and 1×  Halt protease inhibitor cocktail 653 

(Fisher Scientific)]. The protein extracts were incubated overnight with polyclonal 654 

MdDREB2A antibody. The immunocomplexes were collected by adding protein A/G 655 

agarose beads (Thermo Fisher) and were washed with immunoprecipitation buffer [50 656 

mM Tris-HCl, pH 8.0, 150 mM NaCl, 2 mM EDTA, 1 mM DTT, 10% glycerol, 657 

0.15% Triton X-100, 1 mM PMSF, and 1× Halt protease inhibitor cocktail (Fisher 658 

Scientific]]. The pellet (immunocomplexes with beads) was resuspended in 1× 659 

SDS-PAGE loading buffer. Eluted proteins were analyzed by immunoblotting using 660 

anti-MdRNF4 antibody or anti-MdDREB2A antibody. Chemiluminescence signals 661 

were detected by autoradiography. 662 

AP-MASS assay 663 

To identify the interacting proteins of MdDREB2A in vivo, AP-MASS assay was 664 

performed as described previously (Maio et al., 2020) with modifications. Total 665 

proteins were extracted in leaves of GL-3 plants with or without 2 h dehydation 666 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 31, 2021. ; https://doi.org/10.1101/2021.03.29.437542doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.29.437542
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 25 

treatments using extraction buffer [50 mM Tris-HCl, pH 8.0, 150 mM NaCl, 2 mM 667 

EDTA, 1 mM DTT, 10% glycerol, 1% Triton X-100, 1 mM phenylmethylsulfonyl 668 

fluoride (PMSF), and 1× Halt protease inhibitor cocktail (Fisher Scientific)]. The 669 

protein extracts were incubated overnight with polyclonal MdDREB2A antibody and 670 

then added protein A/G agarose beads (Thermo Fisher) to incubate at 4 °C for 671 

additional 4-5 hours. After incubation, the beads were captured with a magnetic rack 672 

and washed three times in 0.5 ml of washing buffer (10 mM Tris–HCl pH 7.5, 150 673 

mM NaCl, 0.5 mM EDTA, 1 mM PMSF protease inhibitor). The pellet 674 

(immunocomplexes with beads) was resuspended in 1× SDS-PAGE loading buffer 675 

and subjected to mass spectrometry analysis (Applied protein technology, China). 676 

Microscale thermophoresis (MST) assay 677 

Full length of MdSUMO2A and MdDREB2A were cloned into pET-32a. MdCE or 678 

MdRNF4 was cloned into pGEX-4T and pMAL-c5X, respectively. The resulting 679 

plasmids were expressed in E. coli BL21. Recombinant protein MdSUMO2A-HIS 680 

and MdDREB2A were purified by HIS Sepharose beads (GE Healthcare, Fairfield, 681 

CT, USA), GST-MdCE was purfied by Pierce™ Glutathione Spin Columns (16105, 682 

Thermo Scientific™, USA) and MBP-MdRNF4 was purified by MBP TRAP HP (GE 683 

Healthcare). MST was conducted according the manuferturer’s manual (NanoTemper, 684 

Germany). The primers used are listed in Supplemental Data Set 4. 685 

Accession numbers 686 

The accession numbers in GDR are as follows: MdSUMO2B (MD17G1103900, 687 

MD09G1113800), MdSUMO2A (MD03G1194700, MD11G1211000), MdSUMO2C 688 

(MD05G1173700, MD10G1161600); and in NCBI under the following: MdDREB2A 689 

(NP_001280947.1), MdAE1 (XP_028948277.1), MdAE2 (XP_008382303.1), MdCE 690 

(XP_008338336.1), MdRNF4 (XP_008346210.1), MdALI (XP_008341016.1), 691 

MdAQP2 (XP_008363507.1). 692 
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MdSUMO2A

MdSUMO2B

MdSUMO2C

Fig. 1. Sequences, responses to drought stress, and localization of MdSUMO2s. (A) Comparison

of amino acid sequences of MdSUMO2A, MdSUMO2B, MdSUMO2C in apple. MD03G1194700

and MD11G1211000 were named MdSUMO2A; MD17G1103900 and MD09G1113800 were

named MdSUMO2B; MD5G1173700 and MD10G1161600 were named MdSUMO2C. (B)

MdSUMO2 expression in response to drought in 2-month old GL-3 plants which were exposed to

drought for 0 and 6 days. (C) Subcellular localization of MdSUMO2s. YFP-MdSUMO2A, YFP-

MdSUMO2B, or YFP-MdSUMO2C was transformed into 5-week-old tobacco (Nicotiana

benthamiana) leaves for 3 days, and YFP and mCherry fluorescent signals were then observed. Bars

= 40 μm. Error bars indicate standard error (n = 3). Asterisks indicate significant differences based

on one-way ANOVA and Tukey test (**, P < 0.01).
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Fig. 2. MdSUMO2A OE plants show increased tolerance to drought stress. (A) Morphology of

MdSUMO2 transgenic plants under control and long-term drought stress. (B)-(F) Plant height (B), net

photosynthesis (C), root morphology (D), root hydraulic conductivity (E), and shoot hydraulic

conductivity (F) of GL-3 and MdSUMO2 transgenic plants under control and long-term drought stress.

Plants were exposed to drought for up to 3 months. During treatment, 43-48% soil volumetric water

content (VWC) was maintained as control and 18-23% of VWC was maintained as drought treatment.

Error bars indicate standard error [n = 12 in (B), 7 in (C), 5 in (E) and (F)]. Asterisks indicate

significant differences based on one-way ANOVA and Tukey test (*, P < 0.05; **, P < 0.01). OE,

overexpression.
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Fig. 3. MdSUMO2 RNAi plants display increased tolerance to drought stress. (A)-(F) Leaf

morphology (A), leaf area (B), leaf thickness (C and D), water holding capacity (E), and water use

efficiency (F) of GL-3 and MdSUMO2 transgenic plants under control and long-term drought stress.

Leaf thickness was observed using tungsten filament scanning electron microscope (TEM); water

holding capacity = (leaf saturated weight-dry weight) /dry weight; water use efficiency was detected by

carbon isotope (13C) composition. Plants were exposed to drought for up to 3 months. During treatment,

43-48% soil volumetric water content (VWC) was maintained as control and 18-23% of VWC was

maintained as drought treatment. Error bars indicate standard error [n = 9 in (B), 16 in (D), 6 in (E), 3

in (F)]. Asterisks indicate significant differences based on one-way ANOVA and Tukey test (*, P < 0.05;

**, P < 0.01). OE, overexpression.
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SUMOylation sites (K) or SIM of MdALI was mutated to arginine (R). (H) SUMOylation of
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control or dehydration conditions. * indicates SUMOylated substrates; arrows indicate substrates. OE,

overexpression.

α-MdDREB2A

MdE1
MdE2
MdSUMO2B
MdDREB2A
MdDREB2AK192R

MdDREB2AK217R

MdDREB2AK369R

MdDREB2AK192,217,369R

+
+
+
+
-
-
-
-

-
-
-
+
-
-
-
-

+
+
+
-
+
-
-
-

+
+
+
-
-
+
-
-

+
+
+
-
-
-
+
-

+
+
+
-
-
-
-
+

+
+
+
+
-
-
-
-

-
-
-
+
-
-
-
-

+
+
+
-
+
-
-
-

+
+
+
-
-
+
-
-

+
+
+
-
-
-
+
-

+
+
+
-
-
-
-
+

MdE1
MdE2
MdSUMO2C
MdDREB2A
MdDREB2AK192R

MdDREB2AK217R

MdDREB2AK369R

MdDREB2AK192,217,369R

C

* *

* *

*

*

MdE1

MdE2

MdSUMO2A

MdALI

H

M
d

S
U

M
O

2
A

 O
E

 

M
d

S
U

M
O

2
R

N
A

i

G
L

-3

M
d

S
U

M
O

2
A

 O
E

 

M
d

S
U

M
O

2
R

N
A

i

G
L

-3

0 2 

IP: α-MdDREB2A

IB: α-SUMO1

Input

Dehydration (h) 

1.0    1.1    1.0     1.5    1.7    2.0 

*

MdE1
MdE2
MdSUMO2A
MdDREB2A
MdDREB2AK192R

MdDREB2AK217R 

MdDREB2AK369R

MdDREB2AK192,217,369R

+
+
+
+
-
-
-
-

-
-
-
+
-
-
-
-

+
+
+
-
+
-
-
-

+
+
+
-
-
+
-
-

+
+
+
-
-
-
+
-

*

+
+
+
-
-
-
-
+

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 31, 2021. ; https://doi.org/10.1101/2021.03.29.437542doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.29.437542
http://creativecommons.org/licenses/by-nc-nd/4.0/


0

5

10

15

20

25
GL-3

MdDREB2A OE

MdDREB2AK192R OE 

MdDREB2A

S
u
rv

iv
al

 r
at

e 
%

Fig. 6. SUMOylation of MdDREB2A is critical for drought stress tolerance. (A) Morphology of

MdDREB2A OE and MdDREB2AK192R OE transgenic plants under drought treatment for 3 weeks. (B)

Survival rate of the plants shown in (A). (C) Net photosynthesis rate of MdDREB2A OE and

MdDREB2AK192R OE transgenic plants under drought treatment. (D) MdDREB2A accumulation in

MdDREB2AK192R OE and MdDREB2A OE plants under dehydration treatment. (E) and (F) mRNA

level of MdDREB2A and MdCKX4a in MdDREB2A OE and MdDREB2AK192R OE transgenic plants

under dehydration treatment. Error bars indicate standard error [n = 4 in (B), 13 in (C), 3 in (E) and

(F)]. Asterisks indicate significant differences based on one-way ANOVA and Tukey test (*, P < 0.05;

**, P < 0.01). OE, overexpression.
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Fig. 8. MdRNF4 mediates degradation of SUMOylated MdDREB2A under dehydration

conditions. (A) Effects of recombinant MdRNF4 on ubiquitination of MdDREB2A under simulated

drought stress. Proteins were extracted from PEG-treated GL-3 and MdDREB2A OE plants, and

recombinant MdRNF4 or 50 μM MG132 was added. (B) Ubiquitination of MdDREB2A in MdRNF4

RNAi plants in response to dehydration. (C) MdDREB2A accumulation in MdRNF4 RNAi plants in

response to dehydration. (D) Morphology of GL-3 and MdRNF4 RNAi plants under control and

drought stress conditions. (E) and (F) Survival rate (E) and photosynthetic capacity (F) of the plants

shown in (D). (G) Ubiquitination of MdDREB2A in MdSUMO2 RNAi or MdSUMO2A OE plants in

response to dehydration. (H) MdRNF4 level in MdSUMO2 RNAi or MdSUMO2A OE plants in

response to dehydration. Error bars indicate standard error [n = 8 in (D), 3 in (E), 20 in (F)]. Asterisks

indicate significant differences based on one-way ANOVA and Tukey test (*, P < 0.05; **, P < 0.01).

OE, overexpression. ★ indicates ubiquitinated substrates. OE, overexpression.
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