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Figure S1. Control of the burst rate by a voltage based homeostatic inhibitory plasticity rule (A)
Network configuration with distal dendrites of L5 PCs under control of inhibitory synaptic inputs from SOMs (blue
circle). The inhibitory connections are plastic (arrow) and modified according to a homeostatic plasticity rule where
post-synaptic activity is modelled by a filtered version of the dendritic voltage (right, red trace)(methods). (B)
Bursts are activated by weak (light red, Idi 250 pA) or strong (dark red, Idi 650 pA) dendritic input with moderate
noise levels (σd = 100 pA). The somatic input is the same for both dendritic inputs (Isi = 500 pA, σs = 100 pA).
The target value was determined empirically (see C) so that the burst rate was 1 Hz (dashed line). (C) The burst
rate after learning the inhibitory weights for different target values. (D) Representative raster plots of the burst
activity for weak (light red) and strong (dark red) dendritic inputs , before and after learning. Each dot represents a
burst. (E) The distribution of the inter-burst intervals (IBI) before and after learning for weak (light red) and strong
(dark red) dendritic inputs.
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Figure S2. Control of the burst rate by spike-timing-independent homeostatic inhibitory plasticity.
(A) Network configuration with distal dendrites of L5 PCs under control of inhibitory synaptic inputs from SOMs
(blue circle). Bursts are activated by weak (light red, Idi = 250 pA) or strong (dark red, Idi = 650 pA) dendritic
input with moderate noise levels (σd = 100 pA). The somatic input is the same for both dendritic inputs (Isi = pA,
σs = 100 pA). The strength of the inhibitory connections W SOM→dend are plastic (arrow) and modified according to
a homeostatic plasticity rule dependent on dendritic post-synaptic activity (methods). The burst target rate (dashed
line) was set to 1 Hz. (B) The burst rate after learning the inhibitory weights for different target burst rates. (C)
Representative raster plots of the burst activity for weak (light red) and strong (dark red) dendritic inputs, before
and after learning. Each dot represents a burst. (D) The distribution of the inter-burst intervals (IBI) before and
after learning for weak (light red) and strong (dark red) dendritic inputs.
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Figure S3. Simultaneous control of somatic and dendritic activity without and with competition
between inhibitory plasticity rules The somatic and dendritic activity of L5 PCs is under control of plastic
inhibitory connections from PV (dark blue) and SOM (light blue) interneuron populations (see Fig 2. The somatic
and dendritic compartments receive strong external inputs with moderate noisy background input. (Idi = 650 pA, Isi
= 1100 pA, σd = σs = 100 pA). (A, B) No competition (target firing rate = 10 times target burst rate) versus
(C,D) competition (target firing rate = target burst rate) between the target burst rate and target firing rate.
(A,C) The burst and firing rate for different burst and firing target rates after learning the inhibitory weights (B,D).

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 30, 2021. ; https://doi.org/10.1101/2021.03.29.437548doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.29.437548
http://creativecommons.org/licenses/by-nc-nd/4.0/


31

all spikes events burstsA

B

C

ra
te

 (h
z)

ra
te

 (h
z)

ra
te

 (h
z)

Figure S4. A doubly asynchronous irregular state for both spikes and bursts. The network configuration
and stimulus condition are the same as for Fig 3 (A) (Top) Representative raster plots of all spikes, events and
bursts of 50 neurons after learning the inhibitory weights. (Bottom) Histogram of all spikes, events or bursts of the
entire PC population, normalized by the number of neurons (8000) and binsize (1 ms) to have units of rate. (B) The
distribution of the coefficient of variation of the inter-spike intervals (CV ISI, yellow), inter-event intervals (CV IEI)
and inter-burst intervals (CV IBI) after learning the inhibitory weights. (C) The distribution of the inter-spike
intervals (ISI, yellow), inter-event intervals (IEI) and inter-burst intervals (IBI) after learning the inhibitory weights.
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