Conserved and context-dependent roles for Pdgfrb signaling during zebrafish vascular mural cell development

Koji Ando^{1,2,*}, Yu-Huan Shih^{3,*}, Lwaki Ebarasi⁴, Ann Grosse³, Daneal Portman³, Ayano Chiba⁵, Kenny Mattonet⁶, Claudia Gerri^{6,7}, Didier Y.R. Stainier⁶, Naoki Mochizuki⁵, Shigetomo Fukuhara², Christer Betsholtz^{1,8,^}, Nathan D. Lawson^{3,^}

¹Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjölds väg 20, SE-751 85 Uppsala, Sweden ²Department of Molecular Pathophysiology, Institute of Advanced Medical Sciences, Nippon Medical School, Sendagi Bunkyo-ku, Tokyo 113 8602, JAPAN ³Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01650, United States ⁴Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institute, Stockholm, Sweden ⁵Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 564 8565, Japan ⁶Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231 Bad Nauheim, Germany ⁷Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT. UK ⁸Department of Medicine Huddinge (MedH), Karolinska Institutet, Campus Flemingsberg, Neo, Blickagången 16, Hiss S, plan 7, SE-141 57 Huddinge, Sweden

* - These authors contributed equally to this work.

^ - Equally contributing senior authors.

Running title: Analysis of *pdgfrb* mutant zebrafish.

Key Words: Pdgfrb, Mural cells, Pericytes, Vascular smooth muscle cells, Zebrafish

Corresponding authors:

Koji Ando, koji-ando@nms.ac.jp Nathan Lawson, <u>nathan.lawson@umassmed.edu</u>

word count: 6345

Summary statement: Genetic analysis in zebrafish demonstrates the conserved role of Pdgfb/Pdgfrb signaling in pericyte and vascular smooth muscle cell formation during vascular development in vertebrates.

ABSTRACT

Platelet derived growth factor beta and its receptor, Pdgfrb, play essential roles in the development of vascular mural cells, including pericytes and vascular smooth muscle. To determine if this role was conserved in zebrafish, we analyzed *pdgfb* and *pdgfrb* mutant lines. Similar to mouse, *pdgfb* and *pdgfrb* mutant zebrafish lack brain pericytes and exhibit anatomically selective loss of vascular smooth muscle coverage. Despite these defects, *pdgfrb* mutant zebrafish did not otherwise exhibit circulatory defects at larval stages. However, beginning at juvenile stages, we observed severe cranial hemorrhage and vessel dilation associated with loss of pericytes and vascular smooth muscle cells in *pdgfrb* mutants. Similar to mouse, *pdgfrb* mutant zebrafish also displayed structural defects in the glomerulus, but normal development of hepatic stellate cells. We also noted defective mural cell investment on coronary vessels with concomitant defects in their development. Together, our studies support a conserved requirement for Pdgfrb signaling in mural cells. In addition, these mutants provide an important model for definitive investigation of mural cells during early embryonic stages without confounding secondary effects from circulatory defects.

Analysis of pdgfrb Mutant Zebrafish

INTRODUCTION

1	During vasculogenesis in vertebrate embryos, endothelial cells initially form a
2	primitive vascular network that subsequently becomes invested by mural cells (MCs)
3	emerging de novo from the surrounding mesenchyme (Ando et al., 2019; Beck and D'Amore,
4	1997; Hungerford et al., 1996). Subsequently, pre-existing MCs co-migrate and co-proliferate
5	with endothelial cells during angiogenesis to cover newly established blood vessels (Benjamin
6	et al., 1998; Hellstrom et al., 1999). By morphology and gene expression, MCs are
7	categorized into at least two cell types: pericytes and vascular smooth muscle cells (VSMCs)
8	(Armulik et al., 2011; Vanlandewijck et al., 2018). Recent single-cell RNA sequencing of the
9	mouse brain vasculature has revealed that pericytes and venous VSMCs form a phenotypic
10	continuum distinguished by a progressive increase in the expression of contractile proteins in
11	the venous VSMCs (Vanlandewijck et al., 2018). Arterial and arteriolar VSMCs, on the other
12	hand, form a distinct continuum of gene expression patterns. Thus, the adult mouse brain
13	vasculature appears to contain two classes of MCs, arterial/arteriolar VSMCs and
14	pericyte/venous VSMCs, respectively, occupying distinct zones along the arterio-venous axis.
15	Similar to endothelial cells, pericytes specialize according to organ residence
16	(Augustin and Koh, 2017; Muhl et al., 2020; Vanlandewijck et al., 2018). For example,
17	mesangial cells reside within the kidney glomerulus where they contact endothelial cells and
18	basement membrane to bridge glomerular capillary loops (Farquhar and Palade, 1962; Latta et
19	al., 1960; Sakai and Kriz, 1987). Mesangial cells are considered specialized pericytes, but also
20	have properties of SMCs (Schlondorff, 1987) and fibroblasts (He et al., 2021). In the liver,
21	hepatic stellate cells, reside within the perisinusoidal space between the hepatocytes and
22	sinusoidal endothelial cells and play a role in the storage of vitamin A (Yin et al., 2013),
23	while in the brain, pericytes are essential for the function of the blood-brain barrier (Armulik

24	et al., 2010). In each case, pericytes play an important role in defining and maintaining the
25	organotypic function of the particular capillary bed with which they associate.
26	Analysis of mice lacking platelet-derived growth factor-B (Pdgfb) and its receptor,
27	Pdgfrb, demonstrated their requirement for MC development (Hellstrom et al., 1999; Levéen
28	et al., 1994; Lindahl et al., 1997; Soriano, 1994). Endothelial cells secrete Pdgfb, which
29	activates Pdgfrb on neighboring MCs (Armulik et al., 2005). While initial MC specification is
30	largely independent of Pdgfb or Pdgfrb, they are required for MC proliferation and
31	recruitment to new vessels (Armulik et al., 2005; Hellstrom et al., 1999). Pdgfb and Pdgfrb
32	mutant mice have also revealed insights into the requirements of MCs for endothelial
33	development and vascular stabilization. Pdgfb- and Pdgfrb-deficient mice develop multiple
34	vascular abnormalities, including structural defects in the glomerulus, dilation of heart and
35	blood vessels, and extensive hemorrhage in numerous organs. Interestingly, VSMC coverage
36	appears normal on major arteries in the absence of Pdgfb signaling despite defects in vascular
37	stability. Due to the numerous functional defects, Pdgfb and Pdgfrb null mutants are
38	perinatally lethal, preventing analysis of postnatal processes. Development of hypomorphic
39	and conditional alleles, such as the Pdgfb ^{ret/ret} , Pdgfb ^{EC-flox} (Armulik et al., 2010; Lindblom et
40	al., 2003), or <i>Pdgfrb</i> ^{F7/F7} (Tallquist et al., 2003), have provided insights into the functional role
41	of pericytes at postnatal stages (Armulik et al., 2010; Daneman et al., 2010; Vanlandewijck et
42	al., 2015). However, a more detailed analysis of the effects of Pdgfb/Pdgfrb deficiency during
43	early stages of embryonic development is challenging in mouse.
44	The zebrafish embryo is ideal for investigating cardiovascular development during
45	embryogenesis. Zebrafish embryos are transparent and exhibit rapid external development,
46	providing an accessible platform for visualizing the vascular system. Importantly, zebrafish
47	embryos are small enough to limit secondary effects of hypoxia due to circulatory defects.

48 These benefits allow more direct analysis of cellular and molecular defects when genetic

49	manipulations lead to loss of circulatory function. Previously, we have generated fluorescent
50	protein reporter lines driven by the <i>pdgfrb</i> and <i>abcc9</i> loci to directly visualize MCs in
51	developing zebrafish (Ando et al., 2016; Ando et al., 2019; Vanhollebeke et al., 2015;
52	Vanlandewijck et al., 2018). We have leveraged these lines to analyze and visualize the
53	developmental dynamics of MCs during their recruitment to blood vessels. In the course of
54	these studies, we presented a preliminary analysis of MCs in zebrafish embryos bearing a
55	point mutation in <i>pdgfrb</i> (Ando et al., 2016). However, a more comprehensive phenotypic
56	analysis is lacking. Here, using additional Pdgfb/Pdgfrb signaling mutants, together with
57	multiple MC reporter lines, we investigate the role of Pdgfb signaling for MC recruitment and
58	vascular maintenance in zebrafish. Our results demonstrate a conserved requirement for Pdgfb
59	signaling in MC development, while providing a model to assess proximal cellular and
60	molecular effects of Pdgfb signaling deficiency during embryonic development.
C1	
61	
62	RESULTS
	RESULTS Pdgfb/Pdgfrb signaling is required for zebrafish brain pericyte development
62	
62 63	Pdgfb/Pdgfrb signaling is required for zebrafish brain pericyte development
62 63 64	Pdgfb/Pdgfrb signaling is required for zebrafish brain pericyte development We previously generated a mutation in <i>pdgfrb (pdgfrb^{um148})</i> that leads to nonsense-
62 63 64 65	Pdgfb/Pdgfrb signaling is required for zebrafish brain pericyte development We previously generated a mutation in <i>pdgfrb (pdgfrb^{um148})</i> that leads to nonsense- mediated decay of <i>pdgfrb</i> transcript and loss of Pdgfrb protein (Kok et al., 2015). Embryos
62 63 64 65 66	Pdgfb/Pdgfrb signaling is required for zebrafish brain pericyte development We previously generated a mutation in <i>pdgfrb (pdgfrb^{um148})</i> that leads to nonsense- mediated decay of <i>pdgfrb</i> transcript and loss of Pdgfrb protein (Kok et al., 2015). Embryos mutant for <i>pdgfrb^{um148}</i> or the ENU-induced null mutant, <i>pdgfrb^{sa16389}</i> , appear morphologically
62 63 64 65 66 67	Pdgfb/Pdgfrb signaling is required for zebrafish brain pericyte development We previously generated a mutation in <i>pdgfrb (pdgfrb^{um148})</i> that leads to nonsense- mediated decay of <i>pdgfrb</i> transcript and loss of Pdgfrb protein (Kok et al., 2015). Embryos mutant for <i>pdgfrb^{um148}</i> or the ENU-induced null mutant, <i>pdgfrb^{sa16389}</i> , appear morphologically normal until 5 dpf, with no obvious defects in circulatory function (Ando et al., 2016; Kok et al.)
62 63 64 65 66 67 68	Pdgfb/Pdgfrb signaling is required for zebrafish brain pericyte development We previously generated a mutation in <i>pdgfrb (pdgfrb^{um148})</i> that leads to nonsense- mediated decay of <i>pdgfrb</i> transcript and loss of Pdgfrb protein (Kok et al., 2015). Embryos mutant for <i>pdgfrb^{um148}</i> or the ENU-induced null mutant, <i>pdgfrb^{sa16389}</i> , appear morphologically normal until 5 dpf, with no obvious defects in circulatory function (Ando et al., 2016; Kok et al., 2015). To characterize possible MC defects in this mutant, we crossed <i>pdgfrb^{um148}</i> onto the
62 63 64 65 66 67 68 69	Pdgfb/Pdgfrb signaling is required for zebrafish brain pericyte developmentWe previously generated a mutation in $pdgfrb$ ($pdgfrb^{um148}$) that leads to nonsense-mediated decay of $pdgfrb$ transcript and loss of Pdgfrb protein (Kok et al., 2015). Embryosmutant for $pdgfrb^{um148}$ or the ENU-induced null mutant, $pdgfrb^{sa16389}$, appear morphologicallynormal until 5 dpf, with no obvious defects in circulatory function (Ando et al., 2016; Kok etal., 2015). To characterize possible MC defects in this mutant, we crossed $pdgfrb^{um148}$ onto theTgBAC($pdgfrb:egfp$) ^{nev22} background and assessed brain MCs at 5 dpf, with a focus on
62 63 64 65 66 67 68 69 70	Pdgfb/Pdgfrb signaling is required for zebrafish brain pericyte developmentWe previously generated a mutation in $pdgfrb$ ($pdgfrb^{um148}$) that leads to nonsense-mediated decay of $pdgfrb$ transcript and loss of Pdgfrb protein (Kok et al., 2015). Embryosmutant for $pdgfrb^{um148}$ or the ENU-induced null mutant, $pdgfrb^{su16389}$, appear morphologicallynormal until 5 dpf, with no obvious defects in circulatory function (Ando et al., 2016; Kok etal., 2015). To characterize possible MC defects in this mutant, we crossed $pdgfrb^{um148}$ onto theTgBAC($pdgfrb:egfp$) ^{ncv22} background and assessed brain MCs at 5 dpf, with a focus onpericytes. As shown previously, $pdgfrb:egfp$ is expressed in MCs covering central arteries
62 63 64 65 66 67 68 69 70 71	Pdgfb/Pdgfrb signaling is required for zebrafish brain pericyte developmentWe previously generated a mutation in $pdgfrb$ ($pdgfrb^{um148}$) that leads to nonsense-mediated decay of $pdgfrb$ transcript and loss of Pdgfrb protein (Kok et al., 2015). Embryosmutant for $pdgfrb^{um148}$ or the ENU-induced null mutant, $pdgfrb^{sa16389}$, appear morphologicallynormal until 5 dpf, with no obvious defects in circulatory function (Ando et al., 2016; Kok etal., 2015). To characterize possible MC defects in this mutant, we crossed $pdgfrb^{um148}$ onto theTgBAC($pdgfrb:egfp$) ^{nev22} background and assessed brain MCs at 5 dpf, with a focus onpericytes. As shown previously, $pdgfrb:egfp$ is expressed in MCs covering central arteriesthroughout the brain at 5 dpf (Fig. S1A, B). Most $pdgfrb:egfp$ -positive MCs on brain

74	contrast, acta2:mcherry-positive VSMC appear deeper in the brain vasculature at the Circle of
75	Willis (CoW), a network of larger caliber vessels that integrate circulatory flow from the
76	paired carotid arteries (Fig. S1C). These cells also express <i>pdgfrb:egfp</i> , although more weakly
77	than pericytes (Fig. S1A-C), consistent with observations in mouse (Vanlandewijck et al.,
78	2018). At 5 dpf, <i>pdgrb</i> ^{um148} larvae show a severe loss of <i>pdgfrb:egfp</i> -positive pericytes from
79	the central arteries in the mid- and hindbrain when compared to homozygous wild type or
80	heterozygous siblings (Fig. 1A-C). An exception was the metencephalic artery, which
81	demarcates the boundary between the mid- and hindbrain (Isogai et al., 2001; arrowheads in
82	Fig. 1A, B). We also noted a small decrease in cranial vessel volume in $pdgfrb^{um148}$ mutants
83	(Fig. 1D), although mutants still showed severe pericyte loss when normalized to vessel
84	volume (Fig. 1E). Observed pericyte loss could be due to failure of <i>pdgfrb:egfp</i> expression.
85	Therefore, we assessed pericyte coverage of cranial arteries using transmission electron
86	microscopy (TEM). In homozygous wild type siblings, we found that a majority of
87	endothelial cells exhibited direct pericyte contact at their abluminal side and a shared
88	basement membrane (Fig. 1F, H). In heterozygous $pdgfrb^{um148}$ siblings we noted a small
89	decrease in endothelial cells with pericyte coverage (Fig. 1H). We failed to detect any
90	endothelial cells in association with pericytes in $pdgfrb^{um148}$ mutants (Fig. 1G, H). Together,
91	these results demonstrate that $pdgfrb^{um148}$ mutant embryos display a loss of brain pericytes.
92	As noted, <i>pdgfrb</i> encodes a receptor tyrosine kinase that is activated by Pdgfb
93	expressed by endothelial cells (reviewed in Gaengel et al., 2009). In zebrafish, there are
94	duplicate <i>pdgfb</i> genes, referred to as <i>pdgfba</i> and <i>pdgfbb</i> (Fig. S2A) and both show enriched
95	expression in RNA-seq from isolated kdrl:mcherry-positive cells, consistent with their
96	recently described endothelial expression in zebrafish (Fig. 1I; Lawson et al., 2020; Stratman
97	et al., 2020). By contrast, <i>pdgfrb</i> is enriched in <i>pdgfrb:citrine</i> cells from the same larvae (Fig.
98	1I). To test the requirement for $pdgfb$ genes in pericyte development, we generated

Analysis of pdgfrb Mutant Zebrafish

99 $pdgfba^{bns139}$ and $pdgfbb^{bns207}$ mutants (Fig. S2B). Similar to $pdgfrb^{um148}$ mutants,

- 100 $pdgfba^{bns139}$; $pdgfbb^{bns207}$ double mutant embryos appeared normal throughout larval
- 101 development (Fig. S2C) Both $pdgfba^{bns139}$ and $pdgfbb^{bns207}$ mutant larvae showed reduced
- 102 pericyte coverage in central arteries at 4 dpf, with a weaker defect in $pdgfbb^{bns139}$ mutants (Fig.
- **103 1J-M**). Furthermore, $pdgfba^{bns139}$ mutants with a single wild type copy of $pdgfbb^{bns207}$ or
- double mutants (Fig. 1M), showed more severe pericyte loss similar to $pdgrb^{um148}$ mutants

105 (see Fig. 1C), suggesting a cooperative role for these ligands in brain pericyte development.

106

107 Pdgfrb is required for vascular stability at post-larval stages

Despite loss of brain pericytes, *pdgfrb* mutant larvae do not exhibit hemorrhage or 108 109 other circulatory defects (Ando et al., 2016; Kok et al., 2015). To determine if there are defects at later stages, we grew embryos from respective incrosses of $pdgfrb^{um148}$ and 110 pdgfrb^{sal6389} heterozygous carriers to adulthood. By 3 months of age, we noted aberrant 111 swimming behavior in *pdgfrb* mutant fish (Movie S1, S2). Mutant siblings also presented 112 with misshapen cranial morphology and discoloration (Fig. 2A, B). Observation of brain 113 morphology revealed blood accumulation in *pdgfrb* mutant adults, compared to wild type 114 siblings at 3 months (Fig. 2C-E). The locations of apparent bleeds were not consistent 115 between individuals and appeared throughout the brain (Fig. 2E). Closer inspection of 116 vascular morphology using an endothelial-specific transgene ($Tg(fli1:myr-mcherry)^{ncv1}$) 117 revealed at least two mechanisms for blood accumulation. First, blood vessels in these areas 118 119 exhibited dilation, which likely resulted in lower velocity flow and blood pooling (Fig. 2E-E", arrow indicates same region in all three panels). Second, we observed blood in extra-120 vascular space, which is defined as a hemorrhage (arrowheads in Fig. 2E-E''). Furthermore, 121 we observed both of these defects as early as 30 dpf in *pdgfrb* mutant fish (**Fig. S3**). 122

Analysis of pdgfrb Mutant Zebrafish

123	Blood vessel dilation and hemorrhage may occur due to reduced VSMC coverage,
124	which provides structural support for larger caliber arteries. Major arterioles in the optic
125	tectum show expression of <i>acta2:mcherry</i> in a wild type adult brain at 3 months (Fig. 2F). By
126	contrast, arterioles in the same location in a $pdgfrb^{um148}$ mutant sibling fail to express
127	acta2:mcherry and appear dilated (Fig. 2G). We noted similar VSMC loss in pdgfrb ^{sal6389}
128	mutants, visualized using tagln:egfp (Fig. 2H, I). For example, an arterial trunk with three
129	branches showed extensive VSMC coverage in a wild type individual (Fig. 2H). By contrast,
130	pdgfrb ^{sa16389} mutant arteries at the same anatomical location lacked tagln:egfp-positive cells
131	and were dilated (Fig. 2I). Observation of wild type and $pdgfrb^{um148}$ mutant siblings as early as
132	45 dpf revealed loss of acta2:mcherry expression, with arterial dilation and hemorrhage (Fig.
133	S3C-H). In addition to VSMC defects, we observed a loss of pericytes from brain capillaries
134	compared to wild type siblings at 3 months (Fig. 2J, K) and an associated increase in
135	capillary diameter (Fig. 2L). Together, these observations suggest a requirement of Pdgfrb for
136	VSMCs development, concomitant with vascular stabilization between juvenile and adult
137	stages in the zebrafish.
138	
139	Loss of Pdgfb signaling selectively affects vascular smooth muscle development during
140	embryogenesis.
141	Based on VSMC loss in <i>pdgfrb</i> mutant adults, we analyzed larval stages for defects in
142	VSMC coverage. Consistent with previous observations using $Tg(acta2:mcherry)^{ca8}$
143	(Whitesell et al., 2014), we observed VSMC coverage predominantly on the ventral wall of
144	the dorsal aorta at 5 dpf (Fig. 3A). However, we did not observe any difference in the number
145	of <i>acta2:mcherry</i> -positive on the dorsal aorta in <i>pdgfrb^{um148}</i> mutants (Fig. 3B, C). VSMC
146	coverage of the ventral aorta at 4 dpf appeared similarly unaffected by loss of <i>pdgfrb</i> (Fig.

147 **3D-F**). We next assessed VSMC coverage at the CoW, where we observed *acta2:mcherry*-

Analysis of pdgfrb Mutant Zebrafish

148	positive VSMC at 5 dpf in wild type siblings (Fig. 3G). By contrast, <i>pdgfrb</i> ^{um148} mutant
149	embryos exhibit a significant decrease in CoW VSMCs (Fig. 3H, I). We find a similar loss of
150	VSMC coverage in embryos lacking <i>pdgfba</i> and <i>pdgfbb</i> , as assessed using <i>pdgfrb:egfp</i> , which
151	is co-expressed with acta2:mcherry at this stage in CoW VSMCs (Fig. 3J-L; see Fig. S1C).
152	Thus, zebrafish VSMCs exhibit anatomically distinct requirements for signaling through
153	Pdgfrb.
154	
155	Pdgfra does not play a compensatory role in trunk VSMC development.
156	Development of trunk VSMC in <i>pdgfrb</i> ^{um148} mutant zebrafish is similar to Pdgfb
157	mutant mouse embryos (Hellstrom et al., 1999). However, zebrafish expressing a dominant
158	negative Pdgfrb show reduced VSMC coverage at the dorsal aorta (Stratman et al., 2017).
159	Dominant negative proteins can interfere with related molecules, while nonsense mediated
160	decay of the <i>pdgfrb</i> ^{um148} transcript may upregulate compensatory paralogous genes (El-
161	Brolosy et al., 2019) during trunk VSMC development. A candidate in this regard is the
162	related Pdgfra receptor (Andrae et al., 2008), which is enriched in <i>pdgfrb:citrine</i> positive cells
163	(Fig. S4). Notably, <i>pdgfra</i> and <i>pdgfrb</i> are known to play compensatory roles during zebrafish
164	and mouse craniofacial development (McCarthy et al., 2016). Therefore, we assessed VSMCs
165	in embryos lacking both <i>pdgfra</i> and <i>pdgfrb</i> . From an incross of <i>pdgfra</i> ^{b1059/+} ; <i>pdgfrb</i> ^{um148/+}
166	carriers, we observed that approximately one-half of $pdgfra^{b1059}$ mutants displayed severe
167	edema around the heart and gut, as well as the forebrain, concomitant with loss of blood
168	circulation at 4 dpf (Fig. 4A, E, Table S1). Remaining mutant siblings exhibited jaw defects,
169	as previously observed (Eberhart et al., 2008), but normal circulatory flow (Fig. 4B, E, Table
170	S1). By contrast, $pdgfrb^{um148}$ mutant siblings, including those heterozygous for $pdgfra^{b1059}$ or
171	doubly heterozygous, were normal (Fig. 4C- E). Notably, loss of <i>pdgfrb</i> did not increase the
172	penetrance of circulatory defects or edema in <i>pdgfra</i> mutants (Fig. 4E, Table S1). We also

Analysis of pdgfrb Mutant Zebrafish

173	noted focal hemorrhages, which occurred at very low penetrance in single mutants for
174	$pdgfra^{b1059}$ and were typically located ventral to the eye (Fig. 4F, G, Table S2). The
175	penetrance of hemorrhage increased slightly with the loss of one or two alleles of wild type
176	pdgfrb, but was never observed in $pdgfrb^{um148}$ mutants with homozygous wild type $pdgfra$
177	(Fig. 4F, Table S2).
178	We next assessed VSMC coverage on the dorsal aorta in <i>pdgfra;pdgfrb</i> larvae.
179	Previous studies have shown that circulation through the trunk vasculature is essential for
180	acquisition of dorsal aorta VSMC (Chen et al., 2017). Accordingly, we observed a loss of
181	dorsal aorta VSMCs in <i>pdgfra^{b1059}</i> mutant larvae without flow at 4 dpf, while genotypically
182	identical siblings with circulation appeared normal (Fig. 4H-J). Patterning of the trunk blood
183	vessels was otherwise relatively normal (Fig. 4H, I). We subsequently restricted our analyses
184	to embryos with normal circulation. In these cases, we did not observe any significant
185	decrease in the numbers of VSMC on the dorsal aorta of <i>pdgfra^{b1059};pdgfrb^{um148}</i> double mutant
186	embryos at 4 dpf compared to other genotypes, including wild type (Fig. 4K-M). These
187	results suggest that <i>pdgfra</i> and <i>pdgfrb</i> are dispensable for initial specification and recruitment
188	of VSMCs at the dorsal aorta at this stage.
189	
190	Pdgfrb is dispensable for mural cell coverage of large caliber trunk vessels
191	In <i>pdgfrb</i> mutant larvae, we observed a modest cranial VSMC defect that appears to
192	be more severe at adult stages. Therefore, we assessed the possibility that trunk MC
193	populations may be similarly affected at adult stages. At 3 months of age, both wild type and
194	pdgfrb ^{sa16389} mutant individuals showed similar degrees of coverage with pdgfrb:egfp-positive
195	MCs in the caudal artery (CA) and posterior cardinal vein (PCV; Fig. 5A-C). We observed
196	extensive pericyte coverage on small caliber capillaries within muscle trunk tissue, as well as

197 MC coverage on arterioles in wild type siblings (**Fig. 5D-F**). By contrast, capillaries lacked

Analysis of pdgfrb Mutant Zebrafish

any pdgfrb:egfp-positive pericytes in $pdgfrb^{sa16389}$ mutants, although MCs persisted on arterioles and larger caliber arteries (**Fig. 5G-I, J-L**). We noted that trunk capillaries were slightly dilated (**Fig. 5M**). Otherwise, the overall vascular anatomy in the trunk region was relatively normal in $pdgfrb^{sa16389}$ mutants and focal distensions (microaneurysms) similar to those in brain capillaries (see **Fig. 2E**) were rarely observed.

203

204 The pronephric glomerulus lacks mesangial cells in *pdgfrb* mutants

In mouse, *Pdgfb* or *Pdgfrb* deficiency leads to severe defects in kidney development 205 due to the failure to form Pdgfrb-positive mesangial cells (Levéen et al., 1994; Soriano, 206 1994). Therefore, we investigated the glomerular architecture in zebrafish pdgfrb mutants by 207 208 TEM. In pdgfrbum148/+ heterozygous larvae, pronephric glomerular capillary endothelial 209 cells, podocytes, and mesangial cells were readily identified at 4 dpf (Fig. 6A-F) using previously described criteria (Sakai and Kriz, 1987). For mesangial cells, we observed an 210 irregular-shaped cell surrounded by extracellular matrix, cytoplasmic processes extending 211 between the basement membrane and the fenestrated endothelium, and a prominent nucleus 212 (Fig. 6C, E, F). By contrast, $pdgfrb^{um148}$ mutant glomeruli showed a simplified architecture 213 with fewer cells, dilated capillaries and the absence of discernable mesangial cells (Fig. 6G). 214 215 However, podocytes, fenestrated endothelial cells, and their intervening glomerular basement membranes were still observed (Fig. 6G). These structural changes are reminiscent of the 216 217 glomerular phenotype in *Pdgfb* and *Pdgfrb* mutant mice suggesting a conserved role in 218 mesangial cell development (Levéen et al., 1994; Lindahl et al., 1998; Soriano, 1994). 219

220 The coronary vasculature lacks mural cells in adult *pdgfrb* mutants

Analysis of pdgfrb Mutant Zebrafish

221	Zebrafish coronary vessels develop from 1 to 2 months of age by angiogenic sprouting
222	of endothelial cells from the atrioventricular canal (Harrison et al., 2015). Although pericytes
223	in coronary capillaries have been reported (Hu et al., 2001), it is unclear when MC coverage
224	of coronary vessels begins. Already at 2 months of age, we found that all coronary vessels,
225	including those at the angiogenic front, were covered by <i>pdgfrb:egfp</i> -positive MCs (Fig. 7A).
226	This indicates that MCs are recruited to the newly formed vessels already during angiogenic
227	expansion of coronary vessels. By contrast, <i>pdgfrbsal6389</i> mutants lacked coronary vessel MCs
228	at 2 months of age (Fig. 7B). In addition, the angiogenic front of the coronary endothelial
229	network was reduced in <i>pdgfrb</i> ^{sal6389} mutants (Fig. 7B). By 4 months, the coronary vessel
230	network in <i>pdgfrb</i> ^{sa16389} mutants continued to be sparser than wild type siblings and capillaries
231	still lacked MC coverage (Fig. 7C-F). At 8 months, wild type coronary vessels had developed
232	further to cover the ventricle completely (Fig. 7G). In 8-month-old $pdgfrb^{sal6389}$ mutants, the
233	coronary vasculature had further expanded compared to 4-months, but was still sparser than in
234	wild type, and appeared immature (Fig. 7G-I). Moreover, <i>pdgfrb</i> ^{sa16389} mutants showed areas
235	where the vasculature appeared partially disconnected and displayed abnormal capillary loops
236	(Fig. 7H). These results suggest that coronary MCs are required for proper coronary vessel
237	development in zebrafish, as previously suggested (Mellgren et al., 2008).
220	

238

239 Liver sinusoids show normal stellate cell coverage in adult *pdgfrb* mutants

Hepatic stellate cells are viewed as the pericytes of the liver sinusoid. In contrast to other MCs, Pdgfra is constitutively expressed in quiescent hepatic stellate cells, while Pdgfrb is increased in activated hepatic stellate cells, which are regarded as the major Pdgfrb-positive cell type in the liver (Chen et al., 2008). In mice, Pdgfrb signaling is dispensable for stellate cell recruitment to sinusoids, as demonstrated in both *Pdgfb* and *Pdgfrb* null mutants (Hellstrom et al., 1999). In zebrafish, we detected *pdgfrb*:egfp-positive cells in direct contact

Analysis of pdgfrb Mutant Zebrafish

with sinusoidal endothelial cells in the liver, suggesting that these are likely hepatic stellate
cells. Furthermore, these cells were not reduced in number in *pdgfrb^{sa16389}* mutants (Fig.
8A,B), suggesting that Pdgfrb signaling is dispensable for hepatic stellate cell recruitment in
zebrafish, similar to mouse (Hellstrom et al., 1999).

250

251 **DISCUSSION**

In this study, we used genetic approaches to assess the role of Pdgfb-Pdgfrb signaling 252 for MC development and blood vessel maturation in zebrafish. By analyzing different tissues 253 at multiple stages, we show that Pdgfb-Pdgfrb signaling is required for MC recruitment to 254 blood vessels in the brain, trunk, glomerulus, and heart, but not for the recruitment of hepatic 255 256 stellate cells to the liver sinusoids. In marked contrast to mice, zebrafish *pdgfb* and *pdgfrb* null mutants reach adulthood, in spite of extensive loss of MCs and resulting cerebral hemorrhage 257 and edema. This difference provides a unique opportunity to better study early MC 258 259 requirements and endothelial crosstalk without the confounding effects of hemorrhage and hypoxia. 260

261 The organotypic pattern of MC defects in *pdgfrb* mutant zebrafish largely parallels 262 what has been reported for *Pdgfrb/Pdgfb* null mice. In the zebrafish brain parenchyma, all MC recruitment appears to be accomplished through migration and subsequent proliferation 263 264 of MCs that emerged *de novo* at the cerebral base vasculature, or around the choroidal vascular plexus. The MC development in the CA and intersegmental vessels, i.e. the major 265 arteries or arterioles covered by VSMC in the zebrafish trunk, occurred independently of 266 Pdgfb-Pdgfrb signaling. These vessels acquire their original MC coverage through *de novo* 267 differentiation of surrounding naïve mesenchymal cells (Ando et al., 2016; Ando et al., 2019). 268 Therefore, the differences in the degree of MCs loss between brain and trunk vasculature of 269 *pdgfrb* mutant zebrafish fits the proposed function of Pdgfrb signaling, namely an 270

indispensable role in MC expansion, but not for the primary induction of MCs. The 271 glomerular capillary phenotype in *pdgfrb* mutants also phenocopies that observed in *Pdgfb* 272 and *Pdgfrb* null mice, suggesting an evolutionarily conserved function of Pdgfb-Pdgfrb 273 274 signaling in mesangial cell recruitment. Mesangial cells are thought to participate in intussusceptive splitting of capillary loops during the formation of the glomerular tuft. The 275 276 simplified glomerular structure in *pdgfrb* mutants is consistent with such a function. An alternative possibility is that mesangial cell loss leads to glomerular capillary distention due to 277 altered hemodynamics in the absence of mesangial support. The coronary vascular phenotype 278 279 in *pdgfrb* mutant zebrafish also strengthens the previous finding in mouse study (Mellgren et al., 2008) that Pdgfrb-dependent recruitment of MCs is essential for coronary vessel 280 development. Our observation indicates that the poor coronary vascularization in the absence 281 282 of MC coverage may primarily arise from defective sprouting angiogenesis, which contrasts to the brain where the reduction in vascular area may arise from destabilization/regression of 283 284 established vessels. The reason why coronary angiogenesis is severely affected by MC loss is 285 so far unclear. Finally, the hepatic stellate cell population was unaffected by the loss of pdgfrb, mirroring the normal appearance of these cells in Pdgfb or Pdgfrb null mice 286 287 (Hellstrom et al., 1999). Thus, the importance of the Pdgfb-Pdgfrb signaling axis for MC recruitment in different organs and vascular beds appears to be conserved between mouse and 288 zebrafish. 289

In spite of the similarities regarding mouse and zebrafish MC phenotypes in the absence of Pdgfrb, a major difference is the extent to which MC loss is tolerated. *Pdgfb* or *Pdgfrb* null mice die at late gestation or at birth (Levéen et al., 1994; Soriano, 1994), whereas *pdgfrb* null zebrafish survive into adulthood. In mice, microaneurysms and brain hemorrhage are observed from E11.5 onwards (Hellström et al., 2001), while similar defects occur much later in zebrafish. A likely reason for this discrepancy is differences in blood pressure. In

mice, systolic left ventricular blood pressure is 2 mmHg at E9.5, but in larval zebrafish it is 296 only 0.47 mmHg (Hu et al., 2000; Hu et al., 2001; Le et al., 2012). Zebrafish ventricular 297 systolic blood pressure subsequently increases to 2.49 mmHg in the adult, which is 298 299 comparable to that in mouse embryos (Hu et al., 2000). Hence, lower blood pressure in zebrafish larvae may potentially protect against hemorrhage despite absence of MCs. 300 Alternatively, the different phenotypes due to MC deficiency in mice and zebrafish may relate 301 302 to how oxygen is supplied to the respective embryos. In this case, pericyte deficiency may lead to hypoxia and increased production of pro-angiogenic factors, such as VEGF-A, that 303 304 promote subsequent vascular abnormality and leakage (Hellström et al., 2001). Since oxygen can be taken up directly through direct gas exchange in the small zebrafish larvae, zebrafish 305 do not typically exhibit hypoxia due to compromised circulatory function until much later 306 307 stages (Kimmel et al., 1995; Rombough, 2002). In either case, the late onset of secondary effects due to MC loss in *pdgfrb* mutant zebrafish will permit more straightforward molecular 308 309 analysis at embryonic stages (e.g. to investigate pericyte/endothelial crosstalk) than what is 310 currently available in mouse.

Despite the similarities between zebrafish and mouse *pdgfrb* mutants, we noted a 311 discrepancy with previous zebrafish studies regarding trunk VSMC development. As in 312 mouse, *pdgfrb^{um148}* display normal development of dorsal aorta VSMCs. However, previous 313 studies over-expressing a dominant negative form of Pdgfrb in zebrafish noted decreased 314 VSMC coverage on the dorsal aorta (Stratman et al., 2017). Since the *um148* allele causes 315 nonsense mediated decay (Kok et al., 2015), it is possible that lack of a VSMC defect is due 316 to genetic compensation (El-Brolosy et al., 2019). However, brain pericyte loss in pdgfrb^{um148} 317 318 mutants is fully penetrant and highly expressive. While it remains possible that there is tissuespecific compensation, it may be more likely that the dominant negative Pdgfrb used in 319 320 previous studies interfered with related receptors or downstream signaling molecules to block

VSMC differentiation. Alternatively, these discrepancies may reflect differences in the 321 responsiveness of the *tagln:egfp* and *acta2:mcherry* reporter transgenes employed in the 322 previous study and ours, respectively, to Pdgfb/Pdgfrb signaling rather than an actual loss of 323 324 cells. We would note that recent studies on *pdgfba;pdgfbb* double mutants shows a similar reduction of VSMC at the dorsal aorta using the *tagln:egfp* transgene as a reporter (Stratman 325 et al., 2020). Whether this was associated with a concomitant loss of VSMCs at the dorsal 326 aorta using other markers or electron microscopy was not investigated. Thus, further studies 327 are required to more definitively investigate the reasons for these differences. 328

329 Pericytes have received considerable attention in relation to the vascular abnormalities observed in several neurovascular disorders such as diabetic retinopathy, small vessel disease, 330 and stroke (Lendahl et al., 2019). Moreover, pericyte dysfunction has been highlighted as a 331 putative pathogenic driver in neurodegenerative diseases and aging-related cognitive decline 332 (Sweeney et al., 2018). Mouse models of pericyte deficiency caused by genetic impairment of 333 334 Pdgfb-Pdgfrb signaling have also been shown to have dysfunctional blood-brain barrier 335 (Armulik et al., 2010; Daneman et al., 2010; Mae et al., 2021) and be a model of the rare human disease primary familial brain calcification (Arts et al., 2015; Keller et al., 2013; 336 337 Nahar et al., 2019; Nicolas et al., 2013; Sanchez-Contreras et al., 2014; Vanlandewijck et al., 2015). The high degree of conservation of the mechanisms of Pdgfb/Pdgfrb-mediated MC 338 recruitment in zebrafish may suggest that it can now be explored as a model for several of 339 these conditions. Taking advantage of the tractability of zebrafish for chemical/genetic 340 screening and its resistance to early death in the absence of pericytes, *pdgfrb* mutant zebrafish 341 may prove useful in drug discovery for neurovascular diseases. 342

343

344 MATERIAL AND METHODS

345 Zebrafish husbandry

Analysis of pdgfrb Mutant Zebrafish

- 346 Zebrafish (Danio rerio) were maintained as previously described (Fukuhara et al., 2014).
- 347 Embryos and larvae were staged by hpf at 28-28.5 °C. All animal experiments were
- 348 performed in accordance with institutional and national regulations.
- 349

350 Transgenic and mutant fish lines

- 351 Transgenic and mutant zebrafish lines were established or provided as described below.
- 352 $TgBAC(pdgfrb:egfp)^{ncv22}, TgBAC(pdgfrb:citrine)^{s1010}, TgBAC(tagln:egfp)^{ncv25}, Tg(fli1:Myr-$
- 353 mCherry)^{*ncv1*}, $Tg(fli1a:egfp)^{y1}$, $Tg(kdrl:egfp)^{la116}$, $pdgfrb^{um148}$ mutant, and $pdgfra^{b1059}$ mutant
- zebrafish lines were described previously (Ando et al., 2016; Choi et al., 2007; Eberhart et al.,
- 2008; Fukuhara et al., 2014; Kok et al., 2015; Lawson and Weinstein, 2002; Vanhollebeke et
- al., 2015). *pdgfrb^{sa16389}* mutant zebrafish were obtained from European Zebrafish Resource
- 357 Center (Ando et al., 2016). $pdgfba^{bns139}$ and $pdgfbb^{bns207}$ mutants were generated by
- 358 CRISPR/Cas9-mediated genome editing (See also Fig. S2). The sgRNA 5'-
- 359 ggAAGGCCATAACATAAAGT-3' was used to target *pdgfba* (ENSDARG00000086778.3),
- and we identified an allele carrying a 10 bp frameshift indel in the 4th exon, which encodes
- 361 the conserved PDGF/VEGF homology domain. The sgRNA 5'-
- ggACTGCGCGGCAGACGGTTGC-3 was used to target the 3rd exon of *pdgfbb*
- 363 (ENSDARG00000038139.7), and we identified an allele carrying a 26 bp frame-shift
- 364 mutation and splice site deletion upstream of the region encoding the PDGF/VEGF homology
- domain. Guides were designed using Chopchop (Labun et al., 2019) and produced as
- described in Gagnon et al. (Gagnon et al., 2014) using the T7-promoter and
- 367 MEGAShortscript[™] Transcription kit (Invitrogen). Genotyping was performed by high
- 368 resolution melt analysis using the primer pairs BA_6_fwd1: 5'-
- 369 TTACAGCAGCCTGAACAGCG-3' and BA_6_rev1: 5'-
- 370 ACCCGTGCGATGTTTGATAGA-3' for *pdgfba* and BB_3_fwd1: 5'-

- 371 AGCCATCATGACAATGACTCC-3' and BB_3_rev1: 5'-
- 372 TGAGAGAATAAAAGAGAAGTGAACTGA-3' for *pdgfbb*. For *pdgfrb*^{um148}, genotyping
- was performed using KASP primer pairs (Biosearch Technologies) targeting the following
 sequence: 5'-
- 375 CTGCTCTGTCTGGGCACTTCAGGTCTGGAGCTCAGTCCCAGCGCTCCACA[GATC/-]
- 376 ATCCTGTCCATCAACTCGTCCTCCAGCATCACCTGCTCCGGCTGGAGTAA-3'.
- Genotyping for *pdgfra^{b1059}* was performed as described elsewhere (Eberhart et al., 2008).
 378
- 379 Image acquisition by confocal microscopy and processing
- 380 Larvae were anesthetized and mounted in 1% low-melting agarose on a 35-mm-diameter
- 381 glass-base dish (Asahi Techno Glass or Thermo Scientific Nunc), as previously described
- 382 (Fukuhara et al., 2014). Confocal images were obtained using a FluoView FV1200 confocal
- upright microscope (Olympus) equipped with a water-immersion 20x (XLUMPlanFL, 1.0
- NA) lens, a Leica TCS SP8 confocal microscope (Leica Microsystems) equipped with a
- 385 water-immersion 25x (HCX IRAPOL, 0.95 NA) or a dry 10x (HC PLAPO CS, 0.40 NA) or a
- 386 Zeiss NLO710 equipped with a 20x (W Plan-APOCHROMAT 20×/1.0, DIC D=0.17 M27 70
- mm) lens. The 473 nm (for GFP), 559 nm (for mCherry), and 633 nm (for Qdot 655) laser
- lines in FluoView FV1200 confocal microscope and the 488 nm (for GFP) and 587 nm (for
- mCherry) in Leica TCS SP8 confocal microscope were employed, and 488 nm and 651 nm on
- the Zeiss NLO710, respectively. Where indicated, adult brain vasculature was imaged by two-
- 391 photon imaging using a Zeiss NLO710 equipped with a Chameleon Ti:Sapphire pulsed laser
- switched between 900 and 1040 nm excitation by section to capture green and red
- 393 fluorescence, respectively. Confocal or 2-photon image stacks were processed using Olympus
- 394 Fluoview (FV10-ASW), Leica Application Suite 3.2.1.9702, or IMARIS 8 software
- 395 (Bitplane). All images are presented as maximum intensity projections (Leica Application

Suite 3.2.1.9702). Bright field images were taken with a fluorescence stereozoom microscope
(SZX12, Olympus) or MZ125 microscope (Leica).

398

399 Image acquisition by transmission electron microscopy and processing

- 400 Zebrafish embryos or adults were euthanized prior to processing. The mesonephros was
- 401 dissected while the euthanized fish were on ice. The zebrafish embryos or dissected
- 402 mesonephros were fixed in 2% glutaraldehyde/0.5% paraformaldehyde/0.1M
- 403 cacodylate/0.1M sucrose/3 mM Cacl2 and washed in 0.1M cacodylate buffer pH 7.4 prior to
- staining in 2% OsO4 for 1 hour at room temperature. Samples were dehydrated and en bloc
- staining was performed in 2% uranyl acetate in absolute ethanol for 1 hour at room
- 406 temperature. Tissue was then taken through an Epon 812/acetone series and embedded at
- 407 60°C in pure Epon 812. Thin sections of 70 nm thickness were made on a Leica EM UC6
- 408 ultramicrotome and mounted on formvar coated copper slot grids. Post-staining was done
- 409 with 5% uranyl acetate pH3.5 and Venable and Cogglesall's lead citrate. Grids were washed
- 410 extensively in water. Samples were analyzed on a JEOL 1230 electron microscope.

411

412 Statistical analysis

Data are expressed as means ± s.e.m. Statistical significance was determined by a Student's t
test for paired samples, one-way analysis of variance with Turkey's test for multiple
comparisons, or Dunnett's Multiple Comparison Test. Data were considered statistically
significant if P-values < 0.05.

417

418 Acknowledgements

419 We thank to S. Schulte-Merker for providing plasmids for BAC recombineering, K.

420 Kawakami for the Tol2 system. We also thank Sarah Childs for providing

421	Tg(acta2:mcherry) ^{ca8} fish. We are grateful to Y. Ando, E. Nakamura, and T. Miyazaki for
422	technical assistance. We thank Patrick White and John Polli for excellent fish care and
423	maintenance.
424	
425	Competing interests
426	The authors declare no competing or financial interests.
427	
428	Author Contributions
429	K.A., C.B., and N.L. conceived and designed the research. K.A., L.E., N.L., and C.B. wrote
430	the manuscript with significant input from all co-authors. A. G. analyzed adult brain
431	phenotype in <i>pdgfrb^{um148}</i> mutant; YH. S., A. G., and D. P. analyzed phenotypes at larval
432	stages in <i>pdgfrb</i> and <i>pdgfra/b</i> double mutants. K.A. analyzed brain, trunk, and liver vascular
433	phenotype in <i>pdgfrb^{sa16389}</i> mutants with assistance from A.C. L.E. analyzed kidney vascular
434	phenotype. K.A. and A.C. analyzed coronary vascular phenotype. C.G., K.M., and D.S.
435	established the <i>pdgfb</i> mutants. All authors reviewed the manuscript.
436	
437	Funding
438	This work was supported by the Swedish Research Council (C.B.: 2015-00550), European
439	Research Council (C.B.: AdG294556), Leducq Foundation (C.B.: 14CVD02), Swedish
440	Cancer Society (C.B.:150735), and Knut and Alice Wallenberg Foundation (C.B.:
441	2015.0030), by Grants-in-Aid for Scientific Research on Innovative Areas "Fluorescence Live
442	Imaging" (No. 22113009 to S.F.) and "Neuro-Vascular Wiring" (No. 22122003 to N.M.) from
443	Ministry of Education, Culture, Sports, Science, and Technology, Japan, by Grants-in-Aid for
444	Young Scientists (Start-up) (No. 26893336 and No. 19K23835 to K.A.), for Scientific
445	Research (B) (No. 25293050 to S.F. and No. 24370084 to N.M.), for Exploratory Research

Analysis of pdgfrb Mutant Zebrafish

446 (No. 26670107 to S.F.), and Overseas Research Fellowships

- 447 (to K.A) from Japan Society for the Promotion of Science, by grants from Ministry of Health,
- 448 Labour, and Welfare of Japan (to N.M.); Japan Science and Technology Agency for Act-X
- 449 (No. JPMJAX1912 to K.A.); Core Research for Evolutional Science and Technology
- 450 (CREST) program of Japan Agency for Medical Research and Development (AMED) (to
- 451 N.M.); PRIME, AMED (to S.F.); Takeda Science Foundation (to S.F., N.M.); Naito
- 452 Foundation (to S.F.); Mochida Memorial Foundation for Medical and Pharmaceutical
- 453 Research (to S.F.) and Daiichi Sankyo Foundation of Life Science (to S.F.). Funding for
- 454 R.N.K. was provided by Medical Research Council grant MR/J001457/1. N. D. L. was
- 455 supported by an R35 from National Heart, Lung, and Blood Institute (NHLBI/NIH).

456

457 **References**

- 458
- Ando, K., Fukuhara, S., Izumi, N., Nakajima, H., Fukui, H., Kelsh, R. N. and Mochizuki, N.
 (2016). Clarification of mural cell coverage of vascular endothelial cells by live imaging of zebrafish. *Development* 143, 1328-1339.
- Ando, K., Wang, W., Peng, D., Chiba, A., Lagendijk, A. K., Barske, L., Crump, J. G., Stainier,
 D. Y. R., Lendahl, U., Koltowska, K., et al. (2019). Peri-arterial specification of vascular
 mural cells from naïve mesenchyme requires Notch signaling. *Development* 146, dev165589.
- Andrae, J., Gallini, R. and Betsholtz, C. (2008). Role of platelet-derived growth factors in physiology and medicine. *Genes Dev* 22, 1276-1312.
- 467 Armulik, A., Abramsson, A. and Betsholtz, C. (2005). Endothelial/pericyte interactions. *Circulation* 468 *research* 97, 512-523.
- 469 Armulik, A., Genové, G. and Betsholtz, C. (2011). Pericytes: developmental, physiological, and
 470 pathological perspectives, problems, and promises. *Developmental cell* 21, 193-215.
- Armulik, A., Genové, G., Mäe, M., Nisancioglu, M. H., Wallgard, E., Niaudet, C., He, L., Norlin,
 J., Lindblom, P. and Strittmatter, K. (2010). Pericytes regulate the blood-brain barrier.
 Nature 468, 557.
- Arts, F. A., Velghe, A. I., Stevens, M., Renauld, J. C., Essaghir, A. and Demoulin, J. B. (2015).
 Idiopathic basal ganglia calcification-associated PDGFRB mutations impair the receptor
 signalling. *J Cell Mol Med* 19, 239-248.
- 477 Augustin, H. G. and Koh, G. Y. (2017). Organotypic vasculature: From descriptive heterogeneity to
 478 functional pathophysiology. *Science* 357, eaal2379.
- Beck, L. and D'Amore, P. A. (1997). Vascular development: cellular and molecular regulation. *The FASEB Journal* 11, 365-373.
- 481 Benjamin, L. E., Hemo, I. and Keshet, E. (1998). A plasticity window for blood vessel remodelling
 482 is defined by pericyte coverage of the preformed endothelial network and is regulated by
 483 PDGF-B and VEGF. *Development* 125, 1591-1598.
- 484 Chen, S. W., Chen, Y. X., Zhang, X. R., Qian, H., Chen, W. Z. and Xie, W. F. (2008). Targeted
 485 inhibition of platelet-derived growth factor receptor-beta subunit in hepatic stellate cells
 486 ameliorates hepatic fibrosis in rats. *Gene Ther* 15, 1424-1435.

487	Chen, X., Gays, D., Milia, C. and Santoro, M. M. (2017). Cilia Control Vascular Mural Cell
488	Recruitment in Vertebrates. <i>Cell Rep</i> 18, 1033-1047.
489	Choi, J., Dong, L., Ahn, J., Dao, D., Hammerschmidt, M. and Chen, J. N. (2007). FoxH1
490	negatively modulates flk1 gene expression and vascular formation in zebrafish. <i>Dev Biol</i> 304 ,
491	735-744.
492	Daneman, R., Zhou, L., Kebede, A. A. and Barres, B. A. (2010). Pericytes are required for blood-
493	brain barrier integrity during embryogenesis. <i>Nature</i> 468 , 562-566.
494	Eberhart, J. K., He, X., Swartz, M. E., Yan, Y. L., Song, H., Boling, T. C., Kunerth, A. K.,
495	Walker, M. B., Kimmel, C. B. and Postlethwait, J. H. (2008). MicroRNA Mirn140
496	modulates Pdgf signaling during palatogenesis. Nat Genet 40, 290-298.
497	El-Brolosy, M. A., Kontarakis, Z., Rossi, A., Kuenne, C., Gunther, S., Fukuda, N., Kikhi, K.,
498	Boezio, G. L. M., Takacs, C. M., Lai, S. L., et al. (2019). Genetic compensation triggered by
499	mutant mRNA degradation. Nature 568, 193-197.
500	Farquhar, M. G. and Palade, G. E. (1962). FUNCTIONAL EVIDENCE FOR THE EXISTENCE
501	OF A THIRD CELL TYPE IN THE RENAL GLOMERULUS : Phagocytosis of Filtration
502	Residues by a Distinctive "Third" Cell. J Cell Biol 13, 55-87.
503	Fukuhara, S., Zhang, J., Yuge, S., Ando, K., Wakayama, Y., Sakaue-Sawano, A., Miyawaki, A.
504	and Mochizuki, N. (2014). Visualizing the cell-cycle progression of endothelial cells in
505	zebrafish. Developmental biology 393, 10-23.
506	Gaengel, K., Genove, G., Armulik, A. and Betsholtz, C. (2009). Endothelial-mural cell signaling in
507	vascular development and angiogenesis. Arterioscler Thromb Vasc Biol 29, 630-638.
508	Gagnon, J. A., Valen, E., Thyme, S. B., Huang, P., Akhmetova, L., Pauli, A., Montague, T. G.,
509	Zimmerman, S., Richter, C. and Schier, A. F. (2014). Efficient mutagenesis by Cas9
510	protein-mediated oligonucleotide insertion and large-scale assessment of single-guide RNAs.
511	<i>PLoS One</i> 9 , e98186.
512	Harrison, M. R., Bussmann, J., Huang, Y., Zhao, L., Osorio, A., Burns, C. G., Burns, C. E.,
513	Sucov, H. M., Siekmann, A. F. and Lien, CL. (2015). Chemokine-guided angiogenesis
514	directs coronary vasculature formation in zebrafish. Developmental cell 33, 442-454.
515	He, B., Chen, P., Zambrano, S., Dabaghie, D., Hu, Y., Möller-Hackbarth, K., Unnersjö-Jess, D.,
516	Korkut, G., Charrin, E., Jeansson, M., et al. (2021). Single-cell RNA sequencing reveals
517	the mesangial identity and species diversity of glomerular cell transcriptomes Nature
518	Communications in press.
519	Hellström, M., Gerhardt, H., Kalén, M., Li, X., Eriksson, U., Wolburg, H. and Betsholtz, C.
520	(2001). Lack of pericytes leads to endothelial hyperplasia and abnormal vascular
521	morphogenesis. The Journal of cell biology 153, 543-554.
522	Hellstrom, M., Lindahl, P., Abramsson, A. and Betsholtz, C. (1999). Role of PDGF-B and
523	PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic
524	blood vessel formation in the mouse. Development 126, 3047-3055.
525	Hu, N., Sedmera, D., Yost, H. J. and Clark, E. B. (2000). Structure and function of the developing
526	zebrafish heart. The Anatomical Record 260, 148-157.
527	Hu, N., Yost, H. J. and Clark, E. B. (2001). Cardiac morphology and blood pressure in the adult
528	zebrafish. The Anatomical Record 264, 1-12.
529	Hungerford, J. E., Owens, G. K., Argraves, W. S. and Little, C. D. (1996). Development of the
530	aortic vessel wall as defined by vascular smooth muscle and extracellular matrix markers.
531	Developmental biology 178, 375-392.
532	Isogai, S., Horiguchi, M. and Weinstein, B. M. (2001). The vascular anatomy of the developing
533	zebrafish: an atlas of embryonic and early larval development. <i>Dev Biol</i> 230 , 278-301.
534	Keller, A., Westenberger, A., Sobrido, M. J., Garcia-Murias, M., Domingo, A., Sears, R. L.,
535	Lemos, R. R., Ordonez-Ugalde, A., Nicolas, G., da Cunha, J. E., et al. (2013). Mutations in
536	the gene encoding PDGF-B cause brain calcifications in humans and mice. <i>Nat Genet</i> 45 , 1077–1082
537	1077-1082.
538	Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B. and Schilling, T. F. (1995). Stages of
539 540	embryonic development of the zebrafish. <i>Developmental dynamics</i> 203 , 253-310.
540 541	Kok, F. O., Shin, M., Ni, C. W., Gupta, A., Grosse, A. S., van Impel, A., Kirchmaier, B. C., Peterson-Maduro, J., Kourkoulis, G., Male, I., et al. (2015). Reverse genetic screening
741	i viei son-iviauui o, o., ivoui kounis, O., iviait, i., ti ai. (2015). Reveise genetic seleciling

542	reveals poor correlation between morpholino-induced and mutant phenotypes in zebrafish.
543	<i>Dev Cell</i> 32 , 97-108.
544	Labun, K., Montague, T. G., Krause, M., Torres Cleuren, Y. N., Tjeldnes, H. and Valen, E.
545	(2019). CHOPCHOP v3: expanding the CRISPR web toolbox beyond genome editing.
546	Nucleic Acids Research 47, W171-W174.
547	Latta, H., Maunsbach, A. B. and Madden, S. C. (1960). The centrolobular region of the renal
548	glomerulus studied by electron microscopy. J Ultrastruct Res 4, 455-472.
549	Lawson, N. D., Li, R., Shin, M., Grosse, A., Yukselen, O., Stone, O. A., Kucukural, A. and Zhu,
550	L. (2020). An improved zebrafish transcriptome annotation for sensitive and comprehensive
551	detection of cell type-specific genes. <i>Elife</i> 9.
552	Lawson, N. D. and Weinstein, B. M. (2002). In vivo imaging of embryonic vascular development
553	using transgenic zebrafish. Developmental biology 248, 307-318.
554	Le, V. P., Kovacs, A. and Wagenseil, J. E. (2012). Measuring left ventricular pressure in late
555	embryonic and neonatal mice. Journal of visualized experiments: JoVE.
556	Lendahl, U., Nilsson, P. and Betsholtz, C. (2019). Emerging links between cerebrovascular and
557	neurodegenerative diseases—a special role for pericytes. EMBO reports 20.
558	Levéen, P., Pekny, M., Gebre-Medhin, S., Swolin, B., Larsson, E. and Betsholtz, C. (1994). Mice
559	deficient for PDGF B show renal, cardiovascular, and hematological abnormalities. Genes &
560	development 8, 1875-1887.
561	Lindahl, P., Hellstrom, M., Kalen, M., Karlsson, L., Pekny, M., Pekna, M., Soriano, P. and
562	Betsholtz, C. (1998). Paracrine PDGF-B/PDGF-Rbeta signaling controls mesangial cell
563	development in kidney glomeruli. Development 125, 3313-3322.
564	Lindahl, P., Johansson, B. R., Levéen, P. and Betsholtz, C. (1997). Pericyte loss and
565	microaneurysm formation in PDGF-B-deficient mice. Science 277, 242-245.
566	Lindblom, P., Gerhardt, H., Liebner, S., Abramsson, A., Enge, M., Hellström, M., Bäckström,
567	G., Fredriksson, S., Landegren, U. and Nyström, H. C. (2003). Endothelial PDGF-B
568	retention is required for proper investment of pericytes in the microvessel wall. Genes &
569	development 17, 1835-1840.
570	Mae, M. A., He, L., Nordling, S., Vazquez-Liebanas, E., Nahar, K., Jung, B., Li, X., Tan, B. C.,
571	Chin Foo, J., Cazenave-Gassiot, A., et al. (2021). Single-Cell Analysis of Blood-Brain
572	Barrier Response to Pericyte Loss. Circ Res 128, e46-e62.
573	McCarthy, N., Liu, J. S., Richarte, A. M., Eskiocak, B., Lovely, C. B., Tallquist, M. D. and
574	Eberhart, J. K. (2016). Pdgfra and Pdgfrb genetically interact during craniofacial
575	development. Dev Dyn 245, 641-652.
576	Mellgren, A. M., Smith, C. L., Olsen, G. S., Eskiocak, B., Zhou, B., Kazi, M. N., Ruiz, F. R., Pu,
577	W. T. and Tallquist, M. D. (2008). Platelet-derived growth factor receptor β signaling is
578	required for efficient epicardial cell migration and development of two distinct coronary
579	vascular smooth muscle cell populations. Circulation research 103, 1393-1401.
580	Muhl, L., Genové, G., Leptidis, S., Liu, J., He, L., Mocci, G., Sun, Y., Gustafsson, S.,
581	Buyandelger, B., Chivukula, I. V., et al. (2020). Single-cell analysis uncovers fibroblast
582	heterogeneity and criteria for fibroblast and mural cell identification and discrimination.
583	Nature Communications 11, 3953.
584	Nahar, K., Lebouvier, T., Andaloussi Mae, M., Konzer, A., Bergquist, J., Zarb, Y., Johansson,
585	B., Betsholtz, C. and Vanlandewijck, M. (2019). Astrocyte-microglial association and
586	matrix composition are common events in the natural history of primary familial brain
587	calcification. Brain Pathol.
588	Nicolas, G., Pottier, C., Charbonnier, C., Guyant-Marechal, L., Le Ber, I., Pariente, J., Labauge,
589	P., Ayrignac, X., Defebvre, L., Maltete, D., et al. (2013). Phenotypic spectrum of probable
590	and genetically-confirmed idiopathic basal ganglia calcification. Brain 136, 3395-3407.
591	Rombough, P. (2002). Gills are needed for ionoregulation before they are needed for O2 uptake in
592	developing zebrafish, Danio rerio. Journal of Experimental Biology 205, 1787-1794.
593	Sakai, F. and Kriz, W. (1987). The structural relationship between mesangial cells and basement
594	membrane of the renal glomerulus. <i>Anatomy and Embryology</i> 176 , 373-386.
595	Sanchez-Contreras, M., Baker, M. C., Finch, N. A., Nicholson, A., Wojtas, A., Wszolek, Z. K.,
596	Ross, O. A., Dickson, D. W. and Rademakers, R. (2014). Genetic screening and functional

597 598	characterization of PDGFRB mutations associated with basal ganglia calcification of unknown etiology. <i>Hum Mutat</i> 35 , 964-971.
599 600	Schlondorff, D. (1987). The glomerular mesangial cell: an expanding role for a specialized pericyte. <i>The FASEB Journal</i> 1, 272-281.
601	Soriano, P. (1994). Abnormal kidney development and hematological disorders in PDGF beta-
602 603	receptor mutant mice. <i>Genes Dev</i> 8, 1888-1896. Stratman, A. N., Burns, M. C., Farrelly, O. M., Davis, A. E., Li, W., Pham, V. N., Castranova,
604	D., Yano, J. J., Goddard, L. M., Nguyen, O., et al. (2020). Chemokine mediated signalling
605	within arteries promotes vascular smooth muscle cell recruitment. <i>Commun Biol</i> 3 , 734.
606	Stratman, A. N., Pezoa, S. A., Farrelly, O. M., Castranova, D., Dye, L. E., 3rd, Butler, M. G.,
607	Sidik, H., Talbot, W. S. and Weinstein, B. M. (2017). Interactions between mural cells and
608	endothelial cells stabilize the developing zebrafish dorsal aorta. Development 144, 115-127.
609	Sweeney, M. D., Sagare, A. P. and Zlokovic, B. V. (2018). Blood-brain barrier breakdown in
610	Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol 14, 133-150.
611	Tallquist, M. D., French, W. J. and Soriano, P. (2003). Additive effects of PDGF receptor beta
612	signaling pathways in vascular smooth muscle cell development. <i>PLoS Biol</i> 1, E52.
613	Vanhollebeke, B., Stone, O. A., Bostaille, N., Cho, C., Zhou, Y., Maquet, E., Gauquier, A.,
614	Cabochette, P., Fukuhara, S., Mochizuki, N., et al. (2015). Tip cell-specific requirement for
615	an atypical Gpr124- and Reck-dependent Wnt/beta-catenin pathway during brain
616	angiogenesis. <i>Elife</i> 4. Vanlandewijck, M., He, L., Mäe, M. A., Andrae, J., Ando, K., Del Gaudio, F., Nahar, K.,
617 618	Lebouvier, T., Laviña, B. and Gouveia, L. (2018). A molecular atlas of cell types and
618	zonation in the brain vasculature. <i>Nature</i> 554 , 475.
620	Vanlandewijck, M., Lebouvier, T., Mäe, M. A., Nahar, K., Hornemann, S., Kenkel, D., Cunha, S.
621	I., Lennartsson, J., Boss, A. and Heldin, CH. (2015). Functional characterization of
622	germline mutations in PDGFB and PDGFRB in primary familial brain calcification. <i>PloS one</i>
623	10 , e0143407.
624	Whitesell, T. R., Kennedy, R. M., Carter, A. D., Rollins, E. L., Georgijevic, S., Santoro, M. M.
625	and Childs, S. J. (2014). An alpha-smooth muscle actin (acta2/alphasma) zebrafish transgenic
626	line marking vascular mural cells and visceral smooth muscle cells. PLoS One 9, e90590.
627	Yin, C., Evason, K. J., Asahina, K. and Stainier, D. Y. R. (2013). Hepatic stellate cells in liver
628	development, regeneration, and cancer. The Journal of Clinical Investigation 123, 1902-1910.
629	
630	Figure Legends
631	Figure 1. Pdgfb signaling is essential for brain pericyte development. (A, B) Confocal
632	micrographs of central arteries in (A) wild type or (B) $pdgfrb^{um148}$ mutants bearing
633	$TgBAC(pdgfrb:egfp)^{ncv22}$ (green) and $Tg(kdrl:memCherry)^{s896}$ (red) transgenes at 5 dpf. Arrows
634	denote selected brain pericytes; metencephalic artery indicated by arrowheads. (C) Pericyte
635	numbers in embryos of indicated genotype. n=13 per genotype. (D) Vascular volume in
636	indicated genotype (n=9 for each genotype), data not normally distributed, analysis of
637	variance (P=0.0002), multiple comparisons by Kruskal-Wallis. (E) Pericytes per vessel
638	volume in indicated genotype (n=9 per genotype). (C, E) Data normally distributed; one-way
639	ANOVA, P<0.0001; multiple comparison by Dunnett's. (C-E) Quantification at 5 dpf. (F, G)
	24

640	Transmission electron microscopy (TEM) sections of cranial blood vessels from (\mathbf{F}) wild type
641	and (G) $pdgfrb^{um148}$ mutant embryos at 5 dpf. (F, G) Scale bar is 2 microns; P – pericyte, E –
642	endothelial cell, RBC – red blood cell. (H) Quantification of pericyte coverage on cranial
643	vessels in TEM sections. Fisher's exact test. (I) Expression of indicated gene in triplicate
644	RNA-seq libraries from indicated cell type at 5dpf. ****adjP<0.0001; see Lawson et al
645	(2020). (J-L) Confocal images of (J) wild type, (K) $pdgfba^{bns139}$ mutant and (L)
646	$pdgfba^{bns139/bns139}$; $pdgfb^{bbns207/+}$ embryos at 5 dpf expressing $TgBAC(pdgfrb:egfp)^{ncv22}$ (green) and
647	$Tg(kdrl:dsRed2)^{pd27}$ (red). Arrows denote selected brain pericytes; metencephalic artery
648	indicated with arrowheads. (M) Quantification of periyctes at 5 dpf of indicated genotype. (C-
649	E , H , M) ****p<0.001, ***p<0.005, **p<0.01, *p<0.05, ns – not statistically significant. (A ,
650	B , J-L) Dorsal views, scale bar is 30 μm.

651

Figure 2. Vascular instability in *pdgfrb* mutant brains. (A-D) Transmitted light images of 652 3 month old (A) wild type and (B) $pdgfrb^{um148}$ mutant zebrafish heads; lateral view, anterior to 653 right and brains dissected from (C) wild type and (D) $pdgfrb^{um148}$ mutant zebrafish; dorsal 654 view, anterior is up. Arrowheads denote areas of blood accumulation. OT - optic tectum, C -655 cerebellum. (E) Lateral view of the right hemisphere from a *pdgfrb*^{sa16389} mutant brain. Boxed 656 region magnified in (E'). (E'') Boxed region in (E'), endothleial cells visualized with 657 658 Tg(fli1:myr-mcherry)^{ncv1} transgene. (E-E'') Arrow denotes blood accumulation in dilated arteriole; arrowheads denote hemorrhages. (**F**, **G**) Two-photon micrographs of $Tg(flila:egfp)^{yl}$ 659 (endothelial cells, green) and Tg(acta:mcherry)^{ca8} (vascular smooth muscle cells [VSMC], 660 red) in (F) wild type and (G) pdgfrb^{um148} mutant blood vessels in OT at 3 months. Arrows 661 denote arteriole. (H, I) Confocal images of $TgBAC(tagln:egfp)^{ncv25}$ (VSMC, green) and 662 $Tg(fli1:myr-mCherry)^{ncv1}$ (red) in forebrain vasculature of (**H**) wild type or (**I**) $pdgfrb^{sa16389}$ 663 664 mutant. Arrows denote arteriole branches, arrowhead is arterial trunk in same anatomical

665	region. Scale bars, 50 μ m. (J , K) Confocal images of $TgBAC(pdgfrb:egfp)^{ncv25}$ (green) and
666	$Tg(fli1:myr-mCherry)^{ncv1}$ in forebrain vasculature of (J) wild type or (K) $pdgfrb^{sa16389}$ mutant.
667	Boxed areas denote magnified views to the right. Autofluorescence from circulating blood is
668	indicated by asterisks. Scale bars, 100 μ m or 20 μ m (enlarged view). (L) Quantification of
669	forebrain capillary diameter at 3 months in adults of indicated genotype. Error bars are mean
670	with SD of at least 80 capillary diameter measuerments each from 4 animals. Data are not
671	normally distributed; ****p<0.0001 by Mann-Whitney test.
672	
673	Figure 3. Pdgfrb is selectively required for embryonic vascular smooth muscle
674	development. (A, B, D, E, G, H) Confocal images of <i>Tg(acta2:mcherry)</i> ^{ca8} (red, VSMCs)
675	larvae subjected to microangiography to visualize patent blood vessels (blue). Arrows denote
676	selected VSMCs. (A , B) VSMC on dorsal aorta (da) in (A) wild type and (B) <i>pdgfrb</i> ^{um148}
677	mutants at 5 dpf. pcv - posterior cardinal vein, int - intestine. Lateral view, anterior to left,
678	dorsal is up. (D , E) VSMC on ventral aorta (va) in (D) wild type and (E) <i>pdgfrb</i> ^{um148} mutants
679	at 4 dpf. Ventral view, anterior is up. (G, H) VSMC on Circle of Willis in (G) wild type and
680	(H) $pdgfrb^{um148}$ mutants at 5 dpf. Dorsal view, anterior is up. (C , F , I) Quantification of
681	VSMCs on (C) da, (F) va, and (I) CoW in larvae of indicated genotype. (C, I) Data not
682	normally distributed. Analysis of variance using Kruskal-Wallis test (not significant for da;
683	p<0.0001 for CoW), multiple comparisons using Dunn's, ****p<0.0001, ns - not statistically
684	significant. (\mathbf{F}) Data normally distributed, no significant differences by one-way ordinary
685	ANOVA (p=0.6873). (\mathbf{J}, \mathbf{K}) Confocal images of the CoW in (\mathbf{J}) wild type and (\mathbf{K})
686	$pdgfba^{bns139/bns139}$; $pdgfbb^{bns207/+}$ mutant embryos bearing $TgBAC(pdgfrb:egfp)^{ncv22}$;
687	$(kdrl:dsred2)^{pd27}$. (L) Quantification of $pdgfrb:egfp$ -positive cells on CoW. Data normally
688	distributed; one-way ANOVA, p=0.0008; Tukey's multiple comparison test, **p<0.01, ns –
689	not statistically significant.

Analysis of pdgfrb Mutant Zebrafish

690

691	Figure 4. Pdgfra does not compensate for Pdgfrb deficiency during vascular smooth
692	muscle development. (A-D) Transmitted light images of embryos of the following genotype
693	at 5 dpf: (A , B) $pdgfra^{b1059/b1059}$; $pdgfrb^{+/+}$, (C) $pdgfra^{+/b1059}$; $pdgfrb^{um148/148}$, (D)
694	$pdgfra^{+/b1059}$; $pdgfrb^{um148}$. Lateral views, dorsal is up, anterior to left. (A) Arrows denote edema.
695	(B) Arrow indicates jaw. (E) Proportion of embryos of indicated genotype with or without
696	blood circulation. (F) Proportion of embryos of indicated genotype with or without
697	hemorrhage. (E , F) Fisher's exact test, *p<0.05, **p<0.005, ***p<0.0005, ns – not
698	significant. (G) Transmitted light images of wild type and $pdgfra^{b1059}$ mutant siblings at 5 dpf.
699	Ventral views, anterior is up. Arrowhead indicates hemorrhage. (H, I, L, M) Confocal images
700	of trunk vessels in (H , I) $pdgfra^{b1059/b1059}$; $pdgfrb^{+/um148}$, (L) $pdgfra^{+/b1059}$; $pdgfrb^{+/um148}$, and (M)
701	$pdgfra^{b1059/b1059}$; $pdgfrb^{um148/um148}$ larvae bearing $Tg(acta2:mcherry)^{ca8}$ (red, VSMC) and
702	$Tg(fli1a:egfp)^{y1}$ (green, endothelial cells). Embryos in (H , L , and M) have normal circulatory
703	flow; embryo in (I) has no flow. (H', I', L', M') Red channel showing VSMC coverage on
704	dorasal aorta (da) for each corresponding overlay panel; arrows denote selected VSMCs. pcv
705	– posterior cardinal vein, int – intestine. (\mathbf{J}, \mathbf{K}) Number of VSMCs per 100 μ m da in embryos
706	of indicated genotype. (J) Embryos with or without flow (n=10 individual embryos for each
707	class). Paired t-test, ****p<0.00001. (K) Only embryos with circulation considered. Data not
708	normally distributed. Analysis of variance by Kruskal-Wallis (P=0.1035); no statistically
709	significant comparisons (ns).

710

711	Figure 5. Trun	k vasculature o	of <i>pdgfrb</i> mutant	s at 3 months. (A-L) Confocal images of
-----	----------------	-----------------	-------------------------	---------------------	----------------------

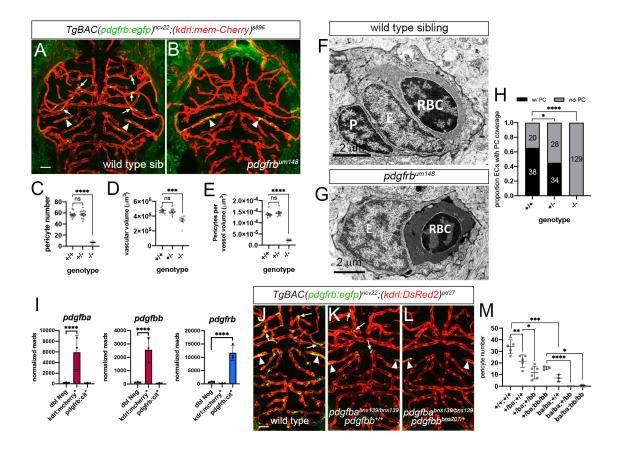
- trunk vessels in (A, D-F) wild type or (B, C, G-L) *pdgfrb*^{sa16389} mutants bearing
- 713 $TgBAC(pdgfrb:egfp)^{ncv22}$ (mural cells, green) and $Tg(fli1:myr-mCherry)^{ncv1}$ (endothelial cells,

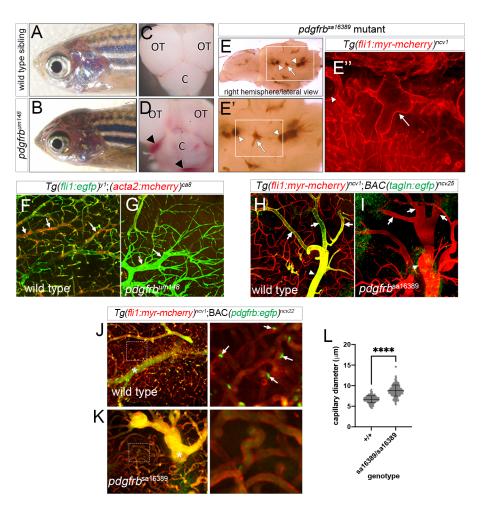
714	red) at 3 months from cross-section (300 μ m-thick) through caudal region, as depicted at
715	right. Boxed areas ("d-f, "g-l") magnified to the right. Red arrows, MC on caudal artery.
716	Yellow arrows, MCs on caudal vein. White arrows, MCs on arteriole. Scale bars, 1 mm or
717	100 μ m (enlarged view). (M) Quantification of trunk capillary diameter in wild type or
718	pdgfrb ^{sa16389} mutants at 3 months. Lines and dots indicate average and value of each capillary
719	diameter from 4 animals, respectively. More than 80 points of capillary diameter were
720	randomly measured in individual zebrafish. ***p<0.001, significant difference between two
721	groups.

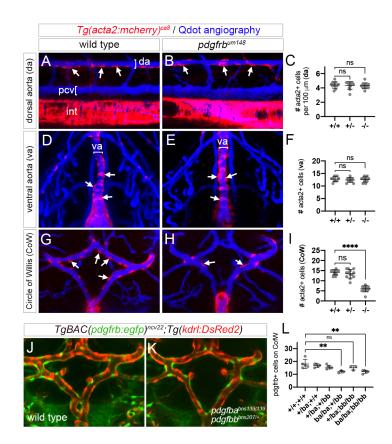
722

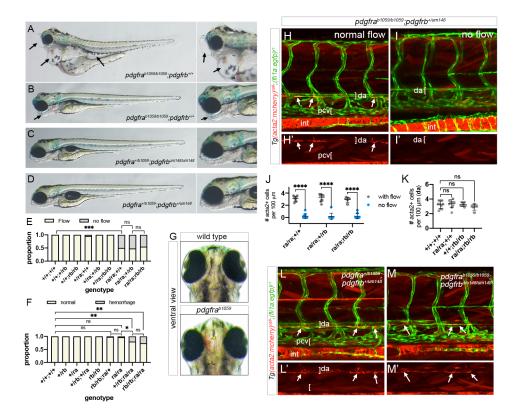
Figure 6. Mesangial cells in pdgfrb mutants. (A) Schematic of glomerular tuft. Fenestrated 723 724 ECs (E) lining capillary lumen (*) and mesangial cells (Me) found within the mesangium 725 (ms) shown on blood side of glomerular basement membrane (GBM; black line). Podocytes (Po) and their foot processes are on urinary side of GBM. (B-E) Electron micrographs of 726 727 transverse sections of 4 dpf zebrafish pronephric glomerulus. Mesangial cells (Me) are identified on the blood side of the GBM. Arrowheads in A, C, and E show mesangial 728 729 processes that embed between the glomerular ECs on one side and the GBM. Arrows in A and D show the fenestrated ECs of the glomerular tuft. (F, G) TEM micrographs of transverse 730 sections of mesonephric glomeruli from adult (F) $pdgfrb^{um148/+}$ and (G) $pdgfrb^{um148}$ mutant fish. 731 Ultra-structurally, mutants exhibit large aneurysmal capillaries (*) and absence of mesangial 732 733 cells (Me). (F', G') Higher magnification images of areas denoted in (F, G).

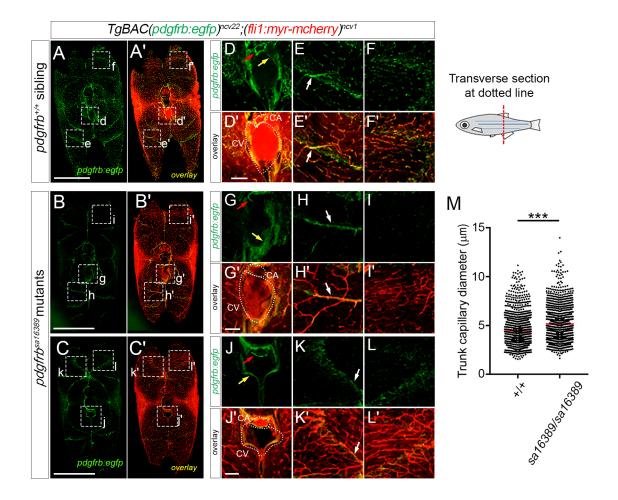
734


Figure 7. Coronary vessel defects in *pdgfrb* mutants. (A-F) Confocal images of coronary
vessels on ventricular wall showing *TgBAC(pdgfrb:egfp)^{ncv22}* expression in (A, C, D) wild
type and (B, E, F) *pdgfrb^{sa16389}* mutant siblings at (A, B) 2 months and (C-F) 4 months. (A'-


Analysis of pdgfrb Mutant Zebrafish


738	F') Overlay of images from <i>pdgfrb:egfp</i> (MCs, green) and $Tg(fli1:myr-mCherry)^{ncv1}$
739	(endothelial cells, magenta). Scale bars are (A , B) 100 μ m, (C , E) 40 μ m, or (D, F) 20 μ m.
740	Coronary vessels on ventricular wall facing (C, E) atrium or (D, F) opposite wall. White
741	dotted lines in <i>pdgfrb^{sa16389}</i> mutant depict ventricle shape. Boxes indicate magnified areas.
742	AVC, atrioventricular canal. BA, bulbus arteriosus. Scale bars, 100 μ m (left and center) or 20
743	μ m (enlarged view). (G, H) Confocal images of coronary vessel endothelial cells on
744	ventricular wall facing pericardial cavity in (G) wild type or (H) $pdgfrb^{sal6389}$ mutants with
745	$Tg(fli1a:egfp)^{y1}$ at 8 months. Boxed areas are magnified to left or right of original images.
746	Scale bars, 200 μ m or 50 μ m (enlarged view). Bars and circles indicate average and value of
747	each vascular area in ventricular wall facing pericardial cavity, respectively (right). **p<0.01.
748	
749	Figure 8. Hepatic stellate cells in <i>pdgfrb</i> mutants. (A) Confocal images of liver sinusoidal
750	endothelial cells in wild type, heterozygous or homozygous $pdgfrb^{sa16389}$ mutant with
751	<i>TgBAC</i> (<i>pdgfrb:egfp</i>) ^{ncv22} ;Tg(<i>fli1:myr-mCherry</i>) ^{ncv1} background at 2 months. Most right
752	column shows sinusoid of heterozygote with $Tg(fli1:myr-mCherry)^{ncv1}$ but without
753	$TgBAC(pdgfrb:egfp)^{ncv22}$ background. Scale bar, 40 μ m. (B) Quantification of pdgfrb:egfp-


positive cell number divided by the volume of 3D images of the randomly observed sinusoid.


The graph shows mean \pm s.e.m. (n \geq 3).

