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ABSTRACT
Genome sequencing projects routinely generate haploid consensus sequences from diploid1

genomes, which are effectively chimeric sequences with the phase at heterozygous sites resolved2

at random. The impact of phasing errors on phylogenomic analyses under the multispecies3

coalescent (MSC) model is largely unknown. Here we conduct a computer simulation to evaluate4

the performance of four phase-resolution strategies (the true phase resolution, the diploid5

analytical integration algorithm which averages over all phase resolutions, computational phase6

resolution using the program PHASE, and random resolution) on estimation of the species tree7

and evolutionary parameters in analysis of multi-locus genomic data under the MSC model. We8

found that species tree estimation is robust to phasing errors when species divergences were9

much older than average coalescent times but may be affected by phasing errors when the species10

tree is shallow. Estimation of parameters under the MSC model with and without introgression is11

affected by phasing errors. In particular, random phase resolution causes serious overestimation12

of population sizes for modern species and biased estimation of cross-species introgression13

probability. In general the impact of phasing errors is greater when the mutation rate is higher, the14

data include more samples per species, and the species tree is shallower with recent divergences.15

Use of phased sequences inferred by the PHASE program produced small biases in parameter16

estimates. We analyze two real datasets, one of East Asian brown frogs and another of Rocky17

Mountains chipmunks, to demonstrate that heterozygote phase-resolution strategies have similar18

impacts on practical data analyses. We suggest that genome sequencing projects should produce19

unphased diploid genotype sequences if fully phased data are too challenging to generate, and20

avoid haploid consensus sequences, which have heterozygous sites phased at random. In case the21

analytical integration algorithm is computationally unfeasible, computational phasing prior to22

population genomic analyses is an acceptable alternative.23
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1. INTRODUCTION25

Next-generation sequencing technologies have revolutionized population genetics and26

phylogenetics by making it affordable to sequence whole genomes or large portions of the27

genome, even for non-model organisms. Many phylogenomic studies use the approach of28

reduced representation library to maximize their DNA sequencing efforts on a small subset of the29

genome. These strategies can generate thousands of genomic segments (called loci in this paper30

irrespective of whether they are protein-coding) with high coverage, and target sequences can be31

assembled with confidence. Examples include restriction site-associated DNA sequencing32

(RADseq), which is used frequently to identify single nucleotide polymorphisms (SNPs) for33

population genetic and phylogeographic studies (Andrews et al., 2016; Leaché and Oaks, 2017),34

although it has also been applied to address phylogenetic questions at deeper timescales (Eaton35

et al., 2017). A more common approach for phylogenomic studies is targeted sequence capture,36

generating so-called reduced-representation datasets, with typically longer sequences for37

distantly related species than with RADseq data. Examples include exome sequencing,38

ultraconserved elements (UCEs, Faircloth et al., 2012), anchored hybrid enrichment (AHE,39

Lemmon et al., 2012), conserved nonexonic elements (CNEEs, Edwards et al., 2017), or rapidly40

evolving long exon capture (RELEC, Karin et al., 2020).41

Typical sequencing technologies produce short fragments of sequenced DNA called42

‘reads’ that are either de novo assembled or mapped to a pre-existing reference genome. This43

leads to chromosomal positions being sequenced a variable number of times across the genome44

(usually referred to as the sequencing depth). A common practice in genome sequencing projects45

has been to produce the so-called “haploid consensus sequence” for a diploid individual, which46

uses the most common nucleotide at any heterozygous site to produce one genomic sequence.47

Assemblers like Velvet (Zerbino and Birney, 2008), ABySS (Simpson et al., 2009), and Trinity48

(Grabherr et al., 2011), pick up only one of the two nucleotide bases at any heterozygous site and49

essentially resolve the phase of heterozygous sites at random, producing chimeric sequence that50

may not exist in nature. Suppose a diploid individual is heterozygous at two sites in a genomic51

region, so that the diploid genotype may be represented Y...R, with two heterozygous sites Y (for52

T/C) and R (for A/G) (Fig. 1). Suppose the reads are 14×T and 6×C at the first site, and 7×A,53

10×G, and 1×T at the second (with the single T to be most likely a sequencing error). The54

haploid consensus sequence is constructed as T...G. In effect a heterozygote site with high quality55

scores for the two nucleotides is represented as one consensus nucleotide with a low quality56

score. Because it is largely pure chance which of the two nucleotides at a heterozygous site has57

the greater number of reads, this strategy is equivalent to resolving the phase at random and using58

only one of the constructed sequences. The resulting haploid consensus sequence may not be a59

real biological sequence and may not represent the biology of the diploid individual. Besides loss60

of information, a more serious problem is that the artefactual phased haploid sequence may be61

unusually divergent from other sequences in the sample, potentially introducing systematic biases62

in downstream inference. Currently constructing true diploid de novo assemblies is expensive. A63

sequencing platform has been developed in combination with bioinformatic algorithms to64

determine the true diploid genome sequence but the strategy still involves high cost (Weisenfeld65
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Fig. 1. Example of heterozygote phase resolution. (a) A hypothetical diploid chromosome with two heterozygous sites (T/C and
A/G). The true haploid genotypes are T...A and C...G. (b) Sequence reads around the two heterozygous sites, assuming that they
are far apart on the chromosome so that they are not present on any single read (in which case phase would be determined) while
they are close enough to be on one locus. In this case genome assemblers should produce the unphased genotype sequence (c),
using the IUPAC ambiguity codes to represent heterozygote sites, but instead they produce the so-called ‘haploid consensus
sequence’ (d), picking up the most common nucleotide at each heterozygote site (T...G since T and G are by chance the most
common sequence reads at the two sites), which may not match either of the true haploid sequences. (e) Analytical integration of
phase resolution takes the unphased genotype sequences as data and averages over all possible phase resolutions, weighting each
one appropriately according to their relative likelihood based on the whole sequence alignment at the locus.

et al., 2017). If a read is long and fully covers a locus, multiple heterozygous sites in the same66

locus will be naturally phased. However, if the reads are short, and the two heterozygous sites do67

not occur in the same read, their genotypic phase resolution will become an issue.68

How the heterozygote phase is resolved may have a significant impact on population69

genomic and phylogenomic inference using genomic sequence data. Phase information is70

well-known to be important for relating genotype to phenotype in human disease mapping71

(Tewhey et al., 2011). Similarly, Gronau et al. (2011) found that use of an analytical integration72

method (which averages over all possible phase resolutions) leads to nearly identical performance73

as the use of true phase resolutions for estimating population parameters, and that random phase74

resolution produced unreliable estimates. Andermann et al. (2019) developed a bioinformatics75

pipeline to recover allelic sequences from sequence capture data, and found it to produce more76

accurate estimation of species divergence times under the MSC model (Rannala and Yang, 2003)77

than other strategies such as use of consensus haploid sequences, random phasing, or ambiguity78

encoding. Overall little is known about the effects of heterozygote phase resolution on many79

inference problems using multilocus genomic sequence data under the MSC model, including80

species tree estimation, estimation of population sizes and species divergence times, and81

inference of cross-species introgression/hybridization.82

We have implemented in BPP (Flouri et al., 2018) an analytical integration algorithm to83

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 29, 2021. ; https://doi.org/10.1101/2021.03.29.437575doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.29.437575
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 HUANG ET AL.

handle unphased diploid sequences, developed by Gronau et al. (2011) in their G-PhoCS84

program, which is an orthogonal extension of an earlier version of BPP (Rannala and Yang, 2003;85

Burgess and Yang, 2008). Previously Kuhner and Felsenstein (2000) implemented an Markov86

chain Monte Carlo (MCMC) algorithm to average over different phase resolutions in the87

likelihood calculation for estimating θ under the single-population coalescent. The algorithm was88

found to mix slowly even for small datasets. The analytical integration algorithm uses a89

data-augmentation strategy, in which the unknown fully resolved haploid sequences constitute the90

complete data or latent variables, and enumerates and averages over all possible phase91

resolutions, weighting them according to their likelihoods based on the whole sequence92

alignment. For example, if a diploid sequence has two heterozygous sites, Y...R, the approach93

will average over both phased genotypic resolutions: (i) T...A and C...G versus (ii) T...G and94

C...A (Fig. 1). Note that there may be rich information about the phase resolution of any95

unphased sequence in an alignment of many sequences, either from the same species or from96

different but closely related species. Consider for example the phase resolutions for a human97

diploid sequence Y...R (Fig. 1). If we observe in the chimpanzee fully resolved sequences T...A98

and C...G (e.g., in an individual homozygous at both sites, with genotypes T/T...A/A) and never99

observe sequences T...G and C...A, then very likely the human diploid sequence has the haploid100

genotypes T...A and C...G. Our implementation of the algorithm works with all four analyses101

under the MSC model in BPP (Yang, 2015; Flouri et al., 2018, 2020b), including species tree102

estimation (Yang and Rannala, 2014; Rannala and Yang, 2017) and species delimitation through103

Bayesian model selection (Yang and Rannala, 2010, 2014; Leaché et al., 2019). We also104

implemented the algorithm under the multispecies-coalescent-with-introgression (MSci) model105

(Flouri et al., 2020a).106

Here we use computer simulation to evaluate different phase-resolution strategies in terms107

of their precision and accuracy in Bayesian species tree estimation under the MSC and in108

parameter estimation under both the MSC and MSci models. In addition to using the true phase109

resolution, which is generated during the simulation and is known with certainty, we also include110

analytical phase integration (Gronau et al., 2011; Flouri et al., 2018), phase resolution using the111

program PHASE (Stephens et al., 2001; Stephens and Donnelly, 2003), and random resolution.112

The strategy of random resolution is largely equivalent to the common method of using haploid113

consensus sequences. The PHASE program was developed for population data from the same114

species, but is here applied to unphased sequences from both within and between species. We115

note that a number of computational phasing algorithms have been developed, such as116

Haplotyper (Niu et al., 2002) and fastPHASE (Scheet and Stephens, 2006). These are mostly117

developed to improve the computational efficiency and to handle long sequences (Choi et al.,118

2018), and are expected to produce similar results to PHASE in analysis of short sequences.119

2. METHODS AND MATERIALS120

Simulation to Estimate Species Trees121

We use the program MCCOAL in BPP3.4 (Yang, 2015) or the simulate switch of BPP4.3 (Flouri122

et al., 2020b) to simulate gene trees and multi-locus sequence data using four fixed species trees123

for eight species (Figs. 2a, a′, b, & b′). The trees have very short branches, mimicking124

challenging species trees generated during radiative speciation events. In the two deep trees125
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Fig. 2. (a & a′) Deep and shallow balanced species trees, and (b & b′) deep and shallow unbalanced species trees for eight species
used for simulating data under the MSC model. (c & c′) Deep and shallow species trees with introgression used to simulate data
under the MSci model. The ages of internal nodes (τs) are shown next to the nodes, with θ = 0.01 (high rate) or 0.001 (low rate).
The blue indexes at internal nodes of the tree are used to identify the parameters.

species divergences are much older than average coalescent times (θ/2). In the two shallow trees,126

species divergences are very recent relative to coalescent times, mimicking different populations127

of the same species. Note that in this study, we make no distinction between species and128

populations. The MSC model has two sets of parameters: the species divergence times (τs) and129

the population size parameters (θs). Both are measured by the expected number of130

mutations/substitutions per site. For each species/population, θ = 4Nµ , where N is the effective131

population size and µ is the mutation rate per site per generation. We consider two mutation132

rates, with θ = 0.001 (low rate) or 0.01 (high rate), respectively, for all populations on the tree.133

The species divergence times (τs) are given as multiples of θ . We consider 10, 20, 50, or 100134

loci, with each locus having 500 sites. On average there should be 0.5 and 5 heterozygous sites135

between the two sequences of any individual at the low and high rates, respectively. We sample136

S = 2 or 4 haploid sequences (or 1 or 2 diploid individuals) per species at each locus. Gene trees137

with branch lengths (coalescent times) are generated independently among loci using the MSC138

density given the species tree and parameters (Rannala and Yang, 2003). The JC model (Jukes139

and Cantor, 1969) is then used to ‘evolve’ the sequences along the gene tree to generate the140

sequence alignments at the tips of the tree. Analysis of this full dataset by BPP is strategy ‘F’.141

To simulate unphased diploid sequences, two sequences from the same species are142

combined into one diploid sequence, using the International Union of Pure and Applied143

Chemistry (IUPAC) ambiguity characters to represent heterozygous sites (for example, Y means144

a T/C heterozygote) (Fig. 1c). The data of unphased diploid sequences are analyzed using the145

diploid or phase option of the BPP program (strategy ‘D’), which analytically averages over all146
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possible phase resolutions (Gronau et al., 2011). With strategy ‘P’, we use the program PHASE147

(Stephens et al., 2001) to resolve the phase, and then analyze the phased sequences using BPP148

(with 16 or 32 sequences in the alignment per locus for S = 2 and 4, respectively). Lastly, we use149

random phase resolution, referred to as strategy ‘R’. The simulation program automatically150

generates the sequence alignments for strategies F, D, and R. For strategy P, we ran PHASE 2.1151

(Stephens et al., 2001) to reconstruct the phased sequences for each locus, and used the PERL152

program SeqPhase (Flot, 2010) to convert files.153

The number of replicate datasets is 100. With four trees, two mutation rates (θ = 0.001 or154

0.01), two sampling configurations (S = 2 or 4), four numbers of loci (L = 10,20,50,100), we155

generated in total 4×2×2×4×100 = 6400 datasets, each of which is analyzed using the four156

strategies. The BPP program (Flouri et al., 2018) was used in the analysis. Inverse-gamma priors157

are assigned on parameters under the MSC model, with the shape parameter 3 so that the priors158

are diffuse and with the mean to be close to the true value. We use θ ∼ IG(3, 0.02) with mean159

0.01 and τ0 ∼ IG(3, 0.08) with mean 0.04 for the age of the root of the species tree for data160

simulated with the high rate (θ = 0.01). For data of the low rate (θ = 0.001), the priors are θ ∼161

IG(3, 0.002) with mean 0.001 and τ0 ∼ IG(3, 0.008) with mean 0.004. The prior means for τ0 are162

close to the true values for the deep trees but are larger than the true values for the shallow trees,163

although the priors are diffuse. For species tree estimation, we integrate out θs analytically164

through the use of the conjugate inverse-gamma priors. We conducted pilot runs to determine the165

chain lengths needed for convergence. The final settings for the MCMC are 20,000 iterations for166

burn-in, then taking 2×105 samples, sampling every 2 iterations.167

Strategy P requires running the Bayesian MCMC program PHASE L times if there are L168

loci in the dataset, to generate the fully resolved sequence alignments at the loci. This is169

somewhat expensive if there is a large number of loci and the mutation rate is high resulting in170

many heterozygous sites at each locus. After the datasets are generated, the BPP analysis of each171

dataset by strategies F, P, and R involves about the same amount of computation. Strategy D is172

more expensive as the method averages over all possible phase resolutions, which may involve173

likelihood calculation for many site patterns, especially if there are many sequences per locus174

with many heterozygous sites.175

For species tree estimation (A01 analysis in Yang, 2015), we calculated the proportion176

(among the 100 replicates) with which each node on the true species tree is found in the maximum177

a posteriori (MAP) species tree in the BPP analysis. This is a measure of accuracy since the MAP178

tree is the best ‘point estimate’ of the species tree (Rannala and Yang, 1996). We examined the179

size and coverage probability of the 95% credibility set of species trees. The coverage probability180

is the proportion among the 100 replicate datasets in which the credibility set includes the true181

species tree. The size of the set indicates the precision or power of the method, but the method is182

considered reliable only if the coverage probability exceeds the nominal 95%.183

Simulation to Estimate Parameters under the MSC Model184

The same data simulated under the MSC model for species tree estimation are analyzed using the185

four phase-resolution strategies to estimate parameters in the MSC model (θs and τs), with the186

species tree fixed. This is the A00 analysis in Yang (2015). We calculated the posterior means and187

the 95% HPD CI intervals for each parameter and examine the relative root mean square error188
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(rRMSE), using the posterior means as point estimates. This is defined as189

rRMSE =
1
ω

[
1
R

R

∑
i=1

(ω̂i−ω)2

] 1
2

, (1)

where ω is the true value of any parameter, and ω̂i its estimate (posterior mean) in the ith190

replicate dataset, with i = 1, · · · ,R over the R = 100 replicates. For example, rRMSE = 0.1 means191

that the mean square error is 10% of the true value. The rRMSE is a combined measure of bias192

and variance.193

Simulation to Estimate Parameters under the MSci Model194

The MSci models for three species of Figures 2c&c′ are assumed to generate gene trees and195

sequence alignments using the simulate option of BPP4.3 (Flouri et al., 2020a). The three196

species have the phylogeny (A,(C,B)), but there was introgression from A to C at the time197

τH = τS, with the introgression probability ϕ = 0.1 and 0.3. Other settings are the same as above198

for the simulation under the MSC model. We consider two mutation rates (with θ = 0.001 and199

0.01) and four datasizes (with L = 10,20,50, and 100 loci), with each locus having 500 sites. We200

sample either S = 2 or 4 sequences per species per locus. The JC model is used both to simulate201

and to analyze the data.202

For data simulated at the high rate (θ = 0.01), the priors are θ ∼ IG(3, 0.02) and τ0 ∼203

IG(3, 0.06) for the root age. At the low rate (θ = 0.001), the priors are θ ∼ IG(3, 0.002) and τ0 ∼204

IG(3, 0.006). A U(0,1) prior is used for the introgression probability ϕ .205

Analyses of two real datasets206

We applied different phase-resolution strategies (D, P, and R) to analyze two previously207

published datasets, one of East Asian brown frogs (Zhou et al., 2012) and another of Rocky208

Mountains chipmunks (Sarver et al., 2021), to demonstrate that the effects discovered in the209

simulations apply to real data analysis. With real data, the option of true phase resolution (F) is210

unavailable, and the analytical phase resolution (D) is expected to perform the best. In addition,211

we include an approach of treating heterozygote sites in the alignment as ambiguity characters in212

the likelihood calculation, and refer to it as strategy ‘A’ (for ambiguity). This is considered a213

mistaken approach of handling the data and is not included in our simulation, but we use it in the214

real data analysis to illustrate its effects.215

We re-analyzed a dataset of five nuclear loci from the East Asia brown frogs in the Rana216

chensinensis species complex (Zhou et al., 2012) to infer the species tree (the A01 analysis) and217

to estimate the parameters under the MSC on the MAP tree (the A00 analysis). There are three218

morphologically recognized species or four populations: R. chensinensis (clades C and L), R.219

kukunoris (K) and R. huanrensis (H) (Fig. 3a). The dataset was previously analyzed by Yang220

(2015), treating heterozygotes as ambiguities (strategy A). Each locus has 20-30 sequences, with221

sequence lengths to be 285–498 sites. We assign inverse-gamma priors on parameters: θ ∼ IG(3,222

0.002) with mean 0.001 and τ0 ∼ IG(3, 0.004) with mean 0.002 for the root age. We used a223

burnin of 8000 iterations, then taking 105 samples, sampling every two iterations. The same224

analysis was run at least twice to confirm consistency between runs. This is a small dataset and225
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(a) Species tree for frogs

(b) Species tree for chipmunks
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7

Fig. 3. Inferred species trees (a) for East Asian brown frogs and (b) for Rocky Mountains chipmunks. Branch lengths reflect the
posterior means of divergence times, with branch bars representing the 95% HPD intervals, obtained under the MSC using the
analytical phase integration algorithm (strategy D). Estimates of other parameters are in table 6.

the MCMC algorithm mixes well.226

The second dataset consist of nuclear loci from six species of Rocky Mountains227

chipmunks in the Tamias quadrivittatus group: T. canipes (C), T. cinereicollis (I), T. dorsalis (D),228

T. quadrivittatus (Q), T. rufus (R), and T. umbrinus (U) (Fig. 3b). Sarver et al. (2021) used a229

targeted sequence-capture approach to sequence 51 Rocky Mountains chipmunks from those six230

species. As a reference genome assembly was lacking, reads were assembled iteratively into231

contigs using an approach called “assembly by reduced complexity”. A dataset of 1060 nuclear232

loci was compiled for molecular phylogenomic and introgression analyses, including 3233

individuals from an outgroup species, T. striatus. High-quality heterozygotes, judged by mapping234

quality and read depth, are represented in the alignments using the IUPAC ambiguity codes. The235

filters applied by the authors suggest that the loci may be mostly coding exons or conserved parts236

of the genome. The majority of loci have 6 5 variable sites (including the outgroup). We used the237

first 500 loci in our analyses to infer the species tree and to estimate parameters under the MSC238

model. We assigned inverse-gamma priors on parameters: θ ∼ IG(3, 0.002) with mean 0.001 and239

τ0 ∼ IG(3, 0.01) with mean 0.005 for the root age. In the A01 analysis (species tree estimation),240

we used a burnin of 16000 iterations, then taking 2×105 samples, sampling every two iterations.241
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Fig. 4. (A01 under MSC, shallow tree, S = 4) Posterior probability for the true species tree for phase-resolution strategies D
(diploid), P (PHASE) and R (random) plotted against the probability for strategy F (full data). The data are simulated under the
MSC models with species trees Shallow B and Shallow U (Figs. 2a′&b′), with S = 4 sequences sampled per species. Each plot
has 100 scatter points, for the 100 replicate datasets, with the x-axis to be the posterior probability for strategy F while the y-axis
is for strategies D, P, or R. ‘Low’ (θ = 0.001) and ’high’ (θ = 0.01) refer to the mutation rate, and L (= 10, 20, 50, 100) is the
number of loci. Results for other simulation settings are in Figures S1-S3.

The A00 analysis (parameter estimation on the MAP tree) used the same settings except that only242

105 samples were collected. The same analysis was run at least twice to confirm consistency243

between runs.244

3. RESULTS245

Species Tree Estimation under the MSC Model246

Bayesian analysis of each replicate dataset using each of the four strategies produced a sample247

from the posterior distribution of the species trees, which we summarized to identify the248

maximum a posteriori probability (MAP) tree, and construct the 95% credibility set of species249

trees. The proportion, among the 100 replicates, with which the clades represented by those short250

branches were recovered in the MAP tree are shown in tables 1, S1–S3. Other clades on the trees,251

represented by longer branches, were recovered with probability near 100%, even for the low252

mutation rate and 10 loci. We also plotted the posterior probabilities for the true tree for the253

different phasing strategies in Figures 4, S1–S3. Strategy F, the analysis of the fully resolved254

haploid data, is expected to have the best performance and is thus the gold standard, against255

which the other strategies are compared.256

In data simulated using the two deep trees (Deep B and Deep U) (Figs. 2a&b), the four257

phase-resolution strategies produced similar probabilities for recovering the true clades, with the258

differences among methods not being larger than the random sampling errors due to the limited259

number of replicates (tables S1 & S3). The different strategies most often produced the same260

MAP tree, although the posterior probability attached to the MAP tree varies somewhat among261

methods, but the differences are comparable to MCMC sampling errors. This can be seen in262

Figures S1 & S3, where the posterior for the true tree is plotted. Even random resolution (R)263

produced very similar results to the use of the fully resolved data (F). Note that in data simulated264

at the high rate, there are very likely to be two or more heterozygote sites in the diploid genotype265

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 29, 2021. ; https://doi.org/10.1101/2021.03.29.437575doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.29.437575
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 HUANG ET AL.

of each individual at any locus, and the switching error rate for random phase resolution, which is266

the average proportion of heterozygous sites mis-assigned relative to the previous heterozygous267

site (Stephens and Donnelly, 2003), is 50%. Even the PHASE program generates substantial268

errors of phase resolution at the high mutation rate (table 2). Species tree estimation is thus robust269

to considerable phasing errors when species divergences are much older than average coalescent270

times.271

For the two shallow trees (Figs. 2a′&b′), large differences were found among the four272

strategies (tables 1 & S2, Figures 4 & S2). While strategy D produced results very similar to use273

of the full data (F), both strategies P and R had poorer performance, especially at the high rate,274

when strategy R produced larger CI set, with lower coverage than strategies F and D.275

Thus phasing errors have different effects on species tree estimation depending on276

whether the species tree is deep or shallow. We suggest that this may be explained by the277

probability that the sequences from the same species coalesce before they reach the time of278

species divergence, when one traces the genealogical history at each locus backwards in time. For279

example, the probability that S = 2 sequences from species A coalesce before reaching the280

common ancestor of A and B is P{tmrca < τAB} = 1− e−4 ≈ 0.982 in the two deep trees and281

1− e−0.4 ≈ 0.330 in the two shallow trees, while the corresponding probabilities for S = 4282

sequences are 0.967 and 0.077 for the deep and shallow trees, respectively (Fig. S4). In the deep283

trees, there is a high chance for all sequences from the same species to coalesce before reaching284

species divergence, and then the problem will be similar to using the ancestral sequence for each285

species (which is mostly determined by the most common nucleotides at the individual sites;286

Yang et al., 1995) for species tree estimation, a process that is not expected to be sensitive to287

phasing errors. In the shallow species trees, there are high chances that sequences from the same288

species may not have coalesced before reaching the time of species divergence, and sequences289

with phasing errors will enter ancestral populations, interfering with species tree estimation.290

While our main objective in this study is to evaluate the impacts of different phasing291

strategies, it is worth noting the effects of other major factors on species tree estimation that are292

obvious from our results (Figs. 4, S1–S3 and tables 1, S1–S3). By design species tree B is harder293

to recover than tree U because tree B has four short branches (for clades C10, C12, C13, and C15)294

while tree U has only three (for clades C10, C11, and C15) (Fig. 2). Thus tree B is recovered with295

much lower probability than tree U by all methods in all parameter settings. We note that the296

individual clades in tree B are recovered with lower probabilities than those in tree U (tables 1,297

S1–S3). We speculate that this may be due to the fact that the four short branches in tree B are298

close together (so that 945 trees around them are nearly equally good) while the three short299

branches in tree U are far apart (so that only 3×15 = 45 trees around them are nearly equally300

good). Because of the symmetry in tree B, the probabilities of recovering clades C10 and C13301

should be equal, as are those for C12 and C15. Differences within each pair reflect the random302

sampling errors due to our use of only 100 replicates. (Note that clades C11 and C14 were always303

recovered in the simulation.)304

The mutation rate had a dramatic impact on the precision and accuracy of species tree305

estimation. At the higher rate (with θ = 0.01 vs. 0.001), the credibility set was smaller, its306

coverage was higher, and the MAP tree matched the true species tree with higher probability. In307

our species trees, species divergence times (τ) are proportional to θ . This allows us to compare308

the two values of θ , mimicking the use of conserved or variable regions of the genome for species309
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Table 1. (MSC A01, shallow, S = 4) Probabilities of recovering true clades and the size and coverage of the 95% credibility set of
species trees when the true species tree is Shallow B and Shallow U (Figs. 2a′&b′) and S = 4 sequences are sampled per species

Key
Species tree B Species tree U

C10 C12 C13 C15 tree CI CI C10 C11 C15 tree CI CI
cover size cover size

Low mutation rate
F, 10L 0.34 0.25 0.27 0.22 0.00 0.66 233.8 0.49 0.47 0.63 0.12 0.96 84.4
D, 10L 0.35 0.25 0.25 0.22 0.00 0.66 233.4 0.47 0.44 0.61 0.09 0.96 82.7
P, 10L 0.34 0.25 0.25 0.20 0.00 0.68 235.5 0.47 0.47 0.61 0.12 0.96 82.9
R, 10L 0.36 0.24 0.26 0.24 0.01 0.66 225.7 0.47 0.46 0.61 0.13 0.94 81.8

F, 20L 0.46 0.29 0.34 0.26 0.00 0.73 178.3 0.52 0.53 0.74 0.22 0.97 33.5
D, 20L 0.45 0.29 0.34 0.22 0.01 0.73 175.4 0.54 0.52 0.72 0.23 0.97 33.8
P, 20L 0.46 0.27 0.38 0.26 0.01 0.73 178.2 0.55 0.53 0.76 0.26 0.97 33.1
R, 20L 0.47 0.26 0.31 0.26 0.02 0.70 168.8 0.53 0.50 0.74 0.22 0.97 32.6

F, 50L 0.56 0.44 0.56 0.46 0.07 0.90 86.3 0.60 0.65 0.95 0.40 0.97 11.4
D, 50L 0.56 0.45 0.53 0.47 0.06 0.90 83.3 0.59 0.61 0.95 0.40 0.95 11.5
P, 50L 0.61 0.45 0.52 0.48 0.08 0.87 89.0 0.59 0.61 0.93 0.40 0.98 11.7
R, 50L 0.52 0.37 0.57 0.46 0.06 0.86 80.8 0.65 0.63 0.91 0.41 0.96 11.6

F, 100L 0.72 0.75 0.81 0.74 0.33 0.99 25.5 0.75 0.77 0.99 0.60 0.99 7.0
D, 100L 0.75 0.74 0.81 0.76 0.34 0.98 25.7 0.75 0.76 1.00 0.59 0.99 6.8
P, 100L 0.74 0.71 0.80 0.75 0.34 0.97 26.4 0.74 0.78 1.00 0.59 0.98 7.1
R, 100L 0.73 0.66 0.75 0.72 0.26 0.96 27.4 0.75 0.74 0.98 0.57 0.99 7.9

High mutation rate
F, 10L 0.68 0.58 0.68 0.49 0.19 0.92 91.5 0.70 0.76 0.96 0.53 1.00 11.2
D, 10L 0.70 0.58 0.66 0.50 0.18 0.92 95.3 0.72 0.75 0.94 0.52 1.00 11.8
P, 10L 0.66 0.58 0.63 0.48 0.14 0.91 94.6 0.68 0.76 0.92 0.53 0.98 12.5
R, 10L 0.53 0.54 0.64 0.45 0.12 0.89 108.4 0.71 0.77 0.78 0.44 0.97 13.3

F, 20L 0.91 0.74 0.90 0.72 0.43 0.99 22.2 0.80 0.85 1.00 0.72 1.00 5.7
D, 20L 0.92 0.75 0.88 0.72 0.43 1.00 23.3 0.81 0.85 1.00 0.72 1.00 6.0
P, 20L 0.91 0.70 0.89 0.72 0.41 1.00 27.2 0.77 0.86 0.97 0.68 1.00 6.6
R, 20L 0.86 0.71 0.79 0.66 0.31 0.98 30.1 0.79 0.84 0.93 0.64 0.99 7.3

F, 50L 1.00 0.97 1.00 0.94 0.91 1.00 4.1 0.90 0.97 1.00 0.87 1.00 2.6
D, 50L 1.00 0.97 1.00 0.94 0.91 1.00 4.1 0.90 0.97 1.00 0.87 1.00 2.6
P, 50L 1.00 0.94 1.00 0.92 0.86 1.00 4.3 0.91 0.97 1.00 0.88 1.00 2.7
R, 50L 0.98 0.91 0.94 0.90 0.76 1.00 5.6 0.92 0.97 1.00 0.89 0.99 2.9

F, 100L 1.00 0.99 1.00 1.00 0.99 1.00 1.6 1.00 0.98 1.00 0.98 1.00 1.7
D, 100L 1.00 0.99 1.00 1.00 0.99 1.00 1.6 1.00 0.98 1.00 0.98 1.00 1.6
P, 100L 1.00 0.99 1.00 0.99 0.98 1.00 1.6 0.99 0.98 1.00 0.97 1.00 1.7
R, 100L 1.00 0.98 1.00 0.99 0.97 1.00 2.0 1.00 0.98 1.00 0.98 1.00 1.7

Note.— The two mutation rates are low (θ = 0.001) and high (θ = 0.01), while 10L, 20L, 50L, 100L are the number of loci. C10,

C12, etc. are probabilities of recovering the true clades on the species trees, while ‘tree’ is the probability of recovering the whole

tree. ‘CI size’ is the number of species trees in the 95% credibility set and and ‘CI cover’ is the probability that the set contains the

true species tree. Results for other simulation settings are in tables S1-S3.

tree estimation. Our study focuses on closely related species with highly similar sequences, and310

data simulated at the high rate contain more variable sites and more phylogenetic information.311

The number of loci similarly had a huge impact on species tree estimation. With more312

loci, inference became more precise (with smaller credibility set) and more accurate (with the313

MAP tree matching the true tree with greater probability). Increasing the number of loci by 10314

fold improves performance for all strategies more than increasing the mutation rate by the same315

factor.316

The number of sequences sampled per species had consistent but relatively small effects317

on species tree estimation. Changing S = 2 to 4 improved the probabilities of recovering the true318
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Table 2. Average switching error rate for datasets simulated under the MSC and MSci models in this study

PHASE (P) Random (R)
low high low high

Model S = 2 S = 4 S = 2 S = 4 S = 2 S = 4 S = 2 S = 4

MSC, Deep B 0.485 0.327 0.499 0.371 0.505 0.504 0.499 0.501
MSC, Deep U 0.489 0.332 0.501 0.370 0.488 0.488 0.498 0.499
MSC, Shallow B 0.448 0.370 0.459 0.349 0.488 0.495 0.498 0.498
MSC, Shallow U 0.390 0.304 0.430 0.331 0.489 0.505 0.501 0.502

MSci, Deep (ϕ = 0.1) 0.480 0.317 0.492 0.363 0.500 0.492 0.500 0.502
MSci, Deep (ϕ = 0.3) 0.482 0.311 0.494 0.360 0.520 0.490 0.501 0.499
MSci, Shallow (ϕ = 0.1) 0.402 0.342 0.461 0.346 0.496 0.489 0.492 0.498
MSci, Shallow (ϕ = 0.3) 0.402 0.331 0.454 0.337 0.498 0.502 0.502 0.501

Note.— Data of L = 100 loci are used in the calculation although the error rate does not depend on the number of loci. The same

data generated under the MSC model are used in the A01 (species tree estimation) and A00 (parameter estimation) analyses. Note

that the error rate for random phase resolution (R) is expected to be 0.5.

clades in the true species tree, reduced the CI set size, and improved the coverage of the CI set,319

but the improvements are in general small.320

It is noteworthy that the coverage of the 95% CI set was below the nominal 95% in small321

or uninformative datasets while above 95% in large and informative datasets. In the case of 10322

loci at the low rate for tree Deep B, coverage was even below 50% (table S1). Even though the set323

included nearly 500 trees, more than a half of the CI sets failed to include the true tree. In324

contrast, at the high mutation rate and with 50 or 100 loci, CI coverage was often 100%. The325

method is over-confident in small and uninformative datasets and conservative in large and326

informative ones. The same pattern was noted in a previous simulation examining the information327

content in phylogenomic datasets (Huang et al., 2020, table 3). Note that in our simulation, the328

replicate datasets are generated under a fixed model (species tree) and fixed parameter values, so329

that we are evaluating the Frequentist properties of Bayesian model selection, and a match is not330

expected (Huelsenbeck and Rannala, 2004; Yang and Rannala, 2005). Yet the large discrepancies331

are striking.332

Estimation of Divergence Times and Population Sizes under the MSC Model333

The impact of the phasing strategies. The same datasets simulated for species tree estimation334

were analyzed to estimate the parameters in the MSC model (θs and τs) with the species tree335

fixed (Figs. 2a, a′, b & b′). The posterior means and 95% HPD CI for the 100 replicates are336

plotted in Figures 5, S5–S11, while the relative root mean square errors (rRMSE) are presented in337

tables S4–S11. Whereas the rRMSE reflects both biases and variances in parameter estimation,338

the datasets generated by the four phase-resolution strategies have about the same size in terms of339

the number of loci, the number of sequences per locus, and the number of sites per sequence, so340

that the sampling errors or variances are similar among methods and the differences in rRMSE341

mainly reflect differences in bias. Furthermore, we may use the symmetry of species tree B to342

gauge the magnitude of random sampling errors due to our use of 100 replicates: for instance,343

rRMSE should be equal for θA,θB,θE and θF , and for τ10 and τ13, on the balanced trees.344

The four phase-resolution strategies (F, D, P, and R) performed similarly for the Deep345

trees at the lower rate and when only S = 2 sequences (or one individual) are sampled per species.346
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Fig. 5. (MSC, high rate, shallow, S = 4) The 95% HPD CIs for parameters for four phase-resolution strategies: F (the full data),
D (diploid), P (PHASE), and R (random) in 100 replicate datasets simulated under MSC model trees Shallow B and Shallow U
(Figs. 2a′&b′), at the high mutation rate (θ = 0.01) and S = 4 sequences per species. The horizontal black lines indicate the true
values. Results for other simulation settings are in Figures S5-S11.

We note that with S = 2 and at the low mutation rate (with heterozygosity at θ = 0.001), there347

will be on average 0.5 heterozygous sites at the same locus, and the probability of having two or348

more heterozygous sites is 1−0.999500− 500 ·0.999499 ·0.001 = 0.0901. Then phase resolution349
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will not be a serious issue, and all four strategies examined in the study will be nearly equivalent.350

At the high mutation rate (θ = 0.01) for the Shallow trees, differences were noted among351

the strategies even for S = 2 sequences (Fig. S6 and tables S5 & S7). The PHASE program352

produced underestimates for the youngest species divergence times (τ11 and τ14 on Shallow B353

and τ15 on Shallow U) (Fig. 2a′&b′). The biases became more pronounced when S = 4 sequences354

per species are in the sample (Fig. 5 and tables S9– S11). At the high rate, there are on average 5355

heterozygotes per locus in the individual and the probability of having two or more heterozygotes356

at the locus is 96%. Two factors may be responsible for the bias. First the PHASE program may357

have inferred heterozygote phase incorrect (indeed the error rate is comparable to that of random358

phasing with S = 2). Second PHASE is an MCMC program generating a distribution of different359

phase resolutions but we used only the optimal resolution, which may lead to underestimation of360

sequence divergences.361

At the high rate and for shallow trees, random phasing (R) also created serious biases, but362

the biases are in the opposite direction. Random phasing overestimated the youngest species363

divergence times (τ11 and τ14 on Shallow B and τ15 on Shallow U), and overestimated θ for all364

modern species. The underestimation of modern θ is most striking, and occurred for both deep365

and shallow species trees at the high rate and is more dramatic with more sequences (S = 4 rather366

than 2) or more loci.367

We examined the number of distinct site patterns in the alignment at each locus for the368

high-rate data (Fig. S12). Site patterns are compressed for the JC model, so that one site pattern is369

constant while the others are variable (Yang, 2006, p.144), and the number is thus an indication370

of the level of sequence divergence. At almost every locus, the PHASE program (P) produced371

alignments with fewer distinct site patterns than the true phase resolution (for example, with the372

mean to be 36.07 compared with the true value 38.51 on tree B), apparently because we used the373

optimal phase resolution inferred by the program and ignored the less likely ones. Random374

resolution produced about the same number of site patterns as the true number (average 38.36 vs.375

38.51 for tree Deep B). The number of site patterns is thus not the reason for the poor376

performance of random phasing.377

Note that calculation of the heterozygosity for each diploid individual, which is simply378

the proportion of heterozygous sites in the two sequences at the locus, does not rely on phase379

resolution. If we calculate the heterozygosity for each diploid individual and then average over380

individuals of the same species, we will get a reasonably good estimate of θ for that species.381

However, in the gene-tree based analysis conducted in BPP, each randomly phased haploid382

sequence is compared not only with the other sequence from the same individual, but also with383

sequences from other individuals through the use of a gene tree relating all phased haploid384

sequences at the locus. While the true haploid sequences may all be closely related, random phase385

resolution may generate chimeric sequences that are very different from naturally occurring fully386

resolved sequences, inflating apparent coalescent times and genetic diversity in the population.387

This effect is expected to be more serious when more individuals are included in the sample.388

Estimation of θ for a single species. To explore this interpretation, we conducted a small389

simulation sampling independent loci from a single species to estimate the only parameter θ390

(Fig. 6, table 3). With S = 2 sequences per locus (one diploid individual), the four391

phase-resolution strategies are equivalent. However, with the increase of S, the strategy of392

random phase resolution becomes increasingly biased. Previously Felsenstein (1992) examined393
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Fig. 6. The 95% HPD CIs for parameter θ in the single-population coalescent model in 100 replicate datasets using four
phase-resolution strategies: F (the full data), D (diploid), P (PHASE), and R (random). There are 100 independent loci in each
dataset, and at each locus there are S sequences of 500 sites (or S/2 diploid individuals), with S = 2,4,8,16, and 32. The true
parameter value is 0.01.

the efficiency of two summary methods based on the number of segregating (variable) sites (θ̂S;394

Watterson, 1975) and the average pairwise distance (θ̂π ; Tajima, 1983), relative to the maximum395

likelihood (ML) method based on gene genealogies. He found that the summary methods (θ̂S and396

θ̂π ) were much less efficient than the ML estimate, with orders-of-magnitude differences in the397

variance in large samples (Felsenstein, 1992, tables 1 and 2), indicating that there is much398

information about θ in the genealogical histories. The ML method should be very similar to BPP399

here as both are full likelihood methods. Here we note that the number of segregating sites does400

not depend on phase resolutions, and similarly the average proportion of different sites, averaged401

over all the S(S−1)/2 pairwise comparisons, depends on the site configurations at each variable402

site (such as 10 Ts and 4 Cs) but not on the genotypic phase between different heterozygous sites.403

Both Waterson’s estimator and the average pairwise distance are thus unaffected by phasing404

errors. It is also noteworthy that those two simple methods are not affected by recombination405

within the locus, while coalescent-based methods are (Felsenstein, 2019). While it is not406

unexpected that a full likelihood method may be more sensitive to certain errors in the model or407

in the data than heuristic methods, in this case it is striking that the systematic bias is so large408

(with estimates to be several times larger than the true value) when the coalescent-based method409

is applied to randomly phased sequences.410

Felsenstein’s (1992) analysis, as mentioned above, assumed knowledge of the true gene411

trees and coalescent times (or equivalently infinitely long sequences at each locus). Here BPP is412

applied to sequence alignments and accommodates uncertainties in the genealogical trees. The413

different methods then have much more similar performance (table 3, θ̂S, θ̂π and BPP strategy F),414

suggesting that the uncertainties in the genealogical trees due to mutational variations in the415

sequences have eroded much of the information in the gene trees. The summary methods (in416

particular, θ̂π ) have larger variances than the BPP estimates, especially in large samples of S = 32417

sequences, but the differences are relatively small. We also note that analytical phase integration418

(D) produced variances that are nearly identical to those for the use of the full data (F).419

Impacts of other factors on parameter estimation under the MSC model. We note420

that different parameters are estimated with very different precision and accuracy, reflecting the421

different amount of information in the data. Population size parameters (θs) for modern species422

are well estimated, as well as θ9 for the root population, but θs for other ancestral species,423
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Table 3. Mean and standard deviation (×10−3) of estimates of θ for a single population (true value is 0.01) from a sample of S
sequences using BPP with different strategies of phase resolution and two summary methods

Method S = 2 S = 4 S = 8 S = 16 S = 32

BPP (F) 10.06 ± 1.02 10.06 ± 0.61 10.03 ± 0.52 9.96 ± 0.36 10.03 ± 0.34
BPP (D) 10.06 ± 1.02 10.05 ± 0.62 10.17 ± 0.53 10.50 ± 0.43 11.19 ± 0.47
BPP (P) 10.06 ± 1.02 9.80 ± 0.61 9.84 ± 0.51 9.94 ± 0.37 10.05 ± 0.34
BPP (R) 10.06 ± 1.02 12.86 ± 0.91 18.13± 1.32 26.43 ± 1.65 41.27 ± 3.22

Watterson (θ̂S) 9.94 ± 1.01 9.92 ± 0.61 9.85 ± 0.55 9.76 ± 0.40 9.82 ± 0.36
Pairwise distance (θ̂π ) 9.94 ± 1.01 9.94 ± 0.63 9.87 ± 0.63 9.78 ± 0.50 9.93 ± 0.55
Pairwise distance(θ̂ ′π ) 10.01 ± 1.03 10.01 ± 0.64 9.94 ± 0.64 9.84 ± 0.50 9.99 ± 0.56

Note.— Watterson’s estimate (θ̂S) and the average pairwise distance (θ̂π ) do not depend on phase resolutions. JC correction is

applied in calculation of θ̂ ′π .

especially those represented by very short branches (e.g., θ10,θ13,θ12,θ15 in tree B) have large424

errors (Figs. 5, S5–S11). Species divergence times are all well estimated, with rRMSE to be even425

much smaller than those for population size parameters for modern species (tables S4–S11).426

Both the mutation rate and the number of loci had a major impact on the estimation of the427

parameters. For all phasing strategies increasing the number of loci by 10 fold improves428

performance more than increasing the mutation rate by the same factor (Figs. 5, S5–S11, tables429

S4–S11).430

Estimation of Introgression Probability under the MSci Model431

We used the MSci models of Figure 2c&c′ to simulate sequence data and used BPP to analyze432

them to estimate parameters in the MSci model. We are in particular interested in whether the433

different strategies of heterozygote phase resolution may lead to biases in the estimation of the434

timing (τH) and strength of the introgression (ϕ). The results are summarized in Figures 7 &435

S13–S19 and tables 4 & S12–S18.436

As before, the diploid strategy (D) produced results almost indistinguishable from the use437

of the full data (F) in all parameter settings. The performance of the PHASE program (P) and438

random phasing (R) depends on the mutation rate and, to an lesser extent, on the number of439

sequences per species S. At the low rate, and in particular with only S = 2 sequences per species,440

all four strategies have similar performance, but large differences were found at the high mutation441

rate. Strategy R overestimates the modern θ and the species divergence times (τ) at the high rate,442

with the bias being more serious for S = 4 sequences than for S = 2. This is the same behavior as443

discussed earlier in the simulation under the MSC model. Strategy R also tends to overestimate444

ϕ , but the bias is small. Strategy P had the opposite bias and produced underestimates of modern445

θ and species divergence times when the mutation rate is high, with smaller biases than for446

strategy R. Strategy P also underestimates the introgression probability (ϕ).447

An interesting question is whether each method detects introgression. We calculated the448

proportion of replicates in which the lower limit of the 95% HPD CI for ϕ exceeds a small value,449

set somewhat arbitrarily at 0.001. If the CI excludes the small value, we may take it as evidence450

that ϕ = 0 is ruled out so that there is significant evidence for introgression. By this measure of451

power of the Bayesian ‘test’, strategies D and P had nearly identical power as the use of the full452

data (F), while random resolution (R) had reduced power at the high mutation rate (tables 5 &453
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Fig. 7. (MSci model, high rate, Shallow, S = 4) The 95% HPD CIs for parameters under the MSci model of Figure 2c′ when
S = 4 sequences are sampled per species. Results for S = 2 are in Figure S14. See legend to Figure 5.

S19). Overall, power was very high even with only 10-20 loci and at the low mutation rate.454

Having more sequences is noted to boost the power of the test for all phase-resolution strategies.455

Running Time for Different Analyses456

The running time for the A01 analysis under the MSC model (species tree estimation) for the four457

phasing strategies (F, D, P, and R), averaged over the 100 replicates, is plotted against the number458

of loci in Figure S20. Running time increases nearly linearly with the number of loci, with the459

slope being steeper when S = 4 sequences are sampled per species than for S = 2. The diploid460

integration algorithm (D) has the longest running time. Note that the number of parameters in the461

MSC model, the number of loci, the number of sequences etc. are identical for the four strategies,462
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Table 4. (MSci A00 S = 4, high rate, shallow) Relative root mean square error (rRMSE) for parameter estimates under the Deep
MSci model (fig. 2c′) with ϕ = 0.1 or 0.3 at the high mutation rate and S = 4

θA θB θC θR θS θT θH τR τS τT ϕ

Truth 1 1 1 1 1 1 1 3 1 2 0.1 0.3
ϕ = 0.1
F, 10L 0.28 0.24 0.34 0.24 0.45 0.36 0.25 0.15 0.45 0.17 0.42 -
D, 10L 0.31 0.25 0.36 0.24 0.48 0.36 0.22 0.16 0.46 0.18 0.41 -
P, 10L 0.27 0.22 0.28 0.27 0.50 0.51 0.27 0.15 0.45 0.22 0.43 -
R, 10L 0.99 0.86 1.49 0.31 0.37 0.25 0.23 0.36 1.12 0.46 0.47 -

F, 20L 0.24 0.21 0.28 0.18 0.40 0.35 0.28 0.10 0.41 0.13 0.46 -
D, 20L 0.26 0.22 0.31 0.18 0.43 0.33 0.26 0.11 0.43 0.14 0.45 -
P, 20L 0.24 0.20 0.26 0.26 0.39 0.49 0.38 0.11 0.46 0.17 0.54 -
R, 20L 1.09 0.73 1.75 0.27 0.32 0.25 0.22 0.30 1.04 0.41 0.53 -

F, 50L 0.17 0.12 0.18 0.13 0.24 0.27 0.39 0.07 0.33 0.08 0.53 -
D, 50L 0.18 0.13 0.20 0.13 0.27 0.27 0.32 0.07 0.38 0.09 0.51 -
P, 50L 0.31 0.13 0.34 0.22 0.21 0.41 0.29 0.09 0.60 0.14 0.68 -
R, 50L 1.18 0.63 1.50 0.22 0.23 0.26 0.24 0.26 0.90 0.38 0.64 -

F, 100L 0.12 0.08 0.13 0.09 0.18 0.23 0.32 0.04 0.27 0.06 0.59 -
D, 100L 0.14 0.08 0.16 0.09 0.19 0.24 0.30 0.04 0.33 0.06 0.57 -
P, 100L 0.39 0.11 0.42 0.21 0.15 0.42 0.23 0.09 0.72 0.14 0.74 -
R, 100L 1.27 0.59 1.60 0.19 0.20 0.21 0.23 0.23 0.73 0.35 0.73 -

ϕ = 0.1
F, 10L 0.30 0.27 0.31 0.21 0.35 0.35 0.30 0.15 0.34 0.16 - 0.48
D, 10L 0.31 0.29 0.41 0.22 0.40 0.35 0.28 0.16 0.35 0.17 - 0.49
P, 10L 0.27 0.24 0.27 0.22 0.48 0.55 0.35 0.15 0.48 0.21 - 0.44
R, 10L 1.03 0.93 1.83 0.32 0.37 0.28 0.24 0.36 1.11 0.49 - 0.57

F, 20L 0.24 0.18 0.26 0.18 0.35 0.28 0.37 0.09 0.30 0.12 - 0.39
D, 20L 0.28 0.20 0.33 0.19 0.33 0.27 0.33 0.10 0.33 0.13 - 0.40
P, 20L 0.26 0.17 0.29 0.21 0.45 0.47 0.42 0.10 0.52 0.18 - 0.37
R, 20L 1.04 0.69 1.69 0.30 0.30 0.26 0.24 0.31 1.08 0.44 - 0.51

F, 50L 0.18 0.12 0.16 0.11 0.22 0.28 0.48 0.05 0.21 0.10 - 0.27
D, 50L 0.20 0.12 0.19 0.11 0.21 0.29 0.49 0.06 0.25 0.10 - 0.30
P, 50L 0.28 0.13 0.34 0.20 0.26 0.53 0.56 0.09 0.60 0.17 - 0.33
R, 50L 0.97 0.61 1.56 0.24 0.21 0.24 0.25 0.29 1.07 0.41 - 0.38

F, 100L 0.11 0.09 0.11 0.08 0.15 0.20 0.42 0.04 0.15 0.08 - 0.20
D, 100L 0.12 0.10 0.14 0.08 0.14 0.20 0.49 0.04 0.19 0.08 - 0.21
P, 100L 0.34 0.12 0.41 0.20 0.19 0.47 0.37 0.09 0.66 0.15 - 0.34
R, 100L 0.87 0.59 1.50 0.22 0.18 0.17 0.30 0.27 1.06 0.39 - 0.32

Note.— Truth represents the true parameter values used in the simulation; values for θ and τ are ×10−2. Results for other

simulation settings are in tables S12-S18.

so that their computational load is proportional to the number of site patterns. As strategy D463

enumerates all possible phase resolutions (including the true resolution), which may result in464

many distinct site patterns, it is more expensive than the other methods. The running time for465

each BPP analysis on a single core ranged from ∼20 minutes for 10 loci to ∼5 hours for strategy466

D with data of 100 loci. Strategy P involves running the Bayesian MCMC program PHASE for467

each of the L loci. At the low mutation rate with very few heterozygous sites per locus, this468

requires minimal computation (Fig. S21), but at the high rate and with S = 4 sequences per469

species, the running time can be comparable with running the subsequent BPP analyses.470

The running time for the A00 analysis (parameter estimation) under the MSC and MSci471

models is shown in Figures S22–S25. The A00 analysis under the MSC involves less computation472

than the A01 analysis as there is no MCMC moves to change the species tree. Overall, the same473

patterns are observed as discussed above for the A01 analysis. Note that the computer cluster used474
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Table 5. (MSci test, shallow) Power of the Bayesian test for introgression (measured by the proportion of replicates in which the
lower limit of the 95% HPD CI for ϕ is > 0.001) when the true model is the Shallow MSci tree

low high
10L 20L 50L 100L 10L 20L 50L 100L

ϕ = 0.1
S = 2 seqs per species
F 0.42 0.41 0.42 0.49 0.48 0.52 0.64 0.89
D 0.48 0.40 0.45 0.46 0.38 0.35 0.61 0.80
P 0.49 0.45 0.49 0.49 0.55 0.60 0.83 0.99
R 0.51 0.44 0.47 0.48 0.27 0.25 0.40 0.57

S = 4 seqs per species
F 0.58 0.47 0.55 0.58 0.59 0.71 0.98 0.99
D 0.56 0.44 0.54 0.60 0.56 0.66 0.94 0.99
P 0.57 0.43 0.44 0.49 0.60 0.65 0.94 1.00
R 0.56 0.45 0.50 0.57 0.44 0.46 0.71 0.81

ϕ = 0.3
S = 2 seqs per species
F 0.68 0.74 0.87 0.94 0.86 0.97 1.00 1.00
D 0.64 0.81 0.89 0.93 0.84 0.91 1.00 1.00
P 0.68 0.78 0.85 0.89 0.86 0.94 0.99 1.00
R 0.66 0.72 0.87 0.92 0.74 0.82 0.96 0.99

S = 4 seqs per species
F 0.79 0.88 0.97 1.00 0.95 1.00 1.00 1.00
D 0.83 0.86 0.95 1.00 0.92 0.99 1.00 1.00
P 0.84 0.84 0.95 1.00 0.94 0.97 1.00 1.00
R 0.84 0.82 0.94 0.99 0.75 0.89 1.00 1.00

Note.— Results for the Deep MSci model are in table S19.

in this work consist of computers with different processors, so there may be random fluctuations475

in running time due to the different jobs being assigned to different processors. For example the476

differences in Figures S21 & S23 reflect this random fluctuation as the data were the same.477

Analysis of two real datasets478

We analyzed two real datasets using four different phase-resolution strategies: D (diploid), P479

(PHASE), R (random), and A (ambiguity). With real data, the option of true phase resolution (F)480

is unavailable, and the analytical phase resolution (D) is expected to have the best performance,481

against which we compare the other strategies.482

East Asia brown frogs. We re-analyzed a dataset of five nuclear loci from the East Asia483

brown frogs in the Rana chensinensis species complex (Zhou et al., 2012) (Fig. 3a). This dataset484

was previously analyzed by Yang (2015) using strategy A. The number of site patterns at each485

locus is 18–26 for strategy A, and 22–102 for strategy D. Running time using one thread on our486

server was 3 mins for A, 7-8 mins for P and R, and 12 mins for D.487

In the A01 analysis (species tree estimation), the four strategies (D, P, R, and A) produced488

the same MAP tree (Fig. 3a): (((H, L), C), K), with the posterior to be 0.29 for D, 0.36 for P, 0.35489

for R, and 0.21 for A. The analysis of Yang (2015) produced a different MAP tree, ((H, L), (C,490

K)). The difference is due to the use of different priors: Yang (2015) used BPP3.1, with gamma491

priors on the parameters (θs for all populations and τ for the root), whereas here inverse gamma492

priors are used in BPP4.3. Note that the species trees have low support in both analyses.493

In the A00 analysis (parameter estimation under MSC with the MAP species tree fixed),494

the posterior means and 95% HPD intervals are shown in table 6a. Strategy P (PHASE) produced495
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Table 6. Posterior means and 95% HPD CIs for parameters under the MSC model for the east Asian brown frogs and for the
chipmunks

Diploid (D) PHASE (P) Random (R) Ambiguity coding (A)

(a) East Asian brown frogs (Fig. 3a)
θK 4.94 (2.62, 7.65) 6.35 (3.32, 9.80) 6.81 (3.64, 10.48) 2.78 (1.06, 4.99)
θC 20.57 (11.78, 30.66) 22.84 (12.98, 34.29) 32.00 (18.11, 48.37) 5.65 (2.41, 9.71)
θL 10.82 (6.32, 15.94) 10.12 (5.98, 14.76) 12.33 (7.45, 17.79) 6.73 (2.37, 12.29)
θH 3.73 (1.42, 6.73) 3.35 (1.29, 5.96) 5.39 (1.83, 10.16) 1.18 (0.29, 2.51)

θ5 5.13 (2.20, 8.43) 5.49 (2.54, 8.82) 4.41 (1.50, 7.49) 4.56 (1.74, 7.84)
θ6 2.21 (0.21, 6.53) 2.00 (0.20, 5.76) 2.65 (0.22, 7.87) 1.85 (0.21, 5.32)
θ7 1.72 (0.20, 4.61) 1.43 (0.21, 3.62) 1.54 (0.23, 3.94) 1.28 (0.19, 3.15)

τ5 2.14 (1.57, 2.73) 2.00 (1.50, 2.53) 2.49 (1.89, 3.17) 1.37 (0.86, 1.93)
τ6 2.03 (1.53, 2.54) 1.91 (1.45, 2.38) 2.30 (1.79, 2.83) 1.23 (0.78, 1.70)
τ7 1.85 (1.28, 2.44) 1.77 (1.27, 2.27) 2.15 (1.60, 2.72) 1.11 (0.65, 1.61)

(b) Rocky Mountains chipmunks (Fig. 3b)
θQ 0.81 (0.70, 0.93) 0.83 (0.72, 0.94) 0.93 (0.81, 1.05) 0.39 (0.31, 0.47)
θI 0.78 (0.67, 0.89) 0.81 (0.69, 0.91) 0.94 (0.81, 1.07) 0.26 (0.21, 0.32)
θR 0.36 (0.30, 0.41) 0.36 (0.30, 0.41) 0.37 (0.31, 0.42) 0.32 (0.25, 0.39)
θC 0.47 (0.38, 0.55) 0.47 (0.39, 0.55) 0.50 (0.42, 0.58) 0.48 (0.39, 0.56)
θD 1.79 (1.61, 1.98) 1.79 (1.60, 1.97) 2.05 (1.84, 2.26) 0.67 (0.57, 0.77)
θU 1.04 (0.93, 1.15) 1.04 (0.93, 1.15) 1.06 (0.95, 1.17) 0.83 (0.73, 0.94)
θS 0.79 (0.67, 0.90) 0.79 (0.67, 0.90) 0.84 (0.71, 0.96) 0.34 (0.25, 0.43)

θ8 9.94 (8.31,11.54) 10.03 (8.61,11.45) 9.95 (8.32,11.55) 10.05 (8.62,11.43)
θ9 1.24 (1.02, 1.47) 1.24 (1.02, 1.45) 1.24 (1.01, 1.46) 1.24 (1.01, 1.46)
θ10 1.01 (0.65, 1.39) 1.06 (0.68, 1.44) 0.99 (0.64, 1.34) 1.06 (0.63, 1.50)
θ11 4.33 (0.33, 9.43) 5.13 (0.77,10.38) 2.87 (0.35, 5.87) 2.08 (0.20, 5.90)
θ12 2.43 (0.50, 4.62) 1.84 (0.34, 3.68) 2.16 (0.57, 3.74) 2.45 (0.69, 4.38)
θ13 0.51 (0.21, 0.86) 0.54 (0.19, 0.91) 0.49 (0.21, 0.80) 0.90 (0.34, 1.54)

τ8 3.83 (3.30, 4.50) 3.80 (3.30, 4.24) 3.85 (3.30, 4.48) 3.70 (3.19, 4.23)
τ9 1.04 (0.95, 1.14) 1.04 (0.95, 1.13) 1.04 (0.95, 1.13) 0.92 (0.82, 1.01)
τ10 0.74 (0.67, 0.81) 0.72 (0.65, 0.79) 0.75 (0.68, 0.81) 0.59 (0.52, 0.67)
τ11 0.58 (0.45, 0.71) 0.52 (0.42, 0.63) 0.60 (0.49, 0.71) 0.55 (0.44, 0.64)
τ12 0.41 (0.35, 0.46) 0.41 (0.35, 0.46) 0.43 (0.38, 0.49) 0.34 (0.26, 0.43)
τ13 0.33 (0.29, 0.38) 0.34 (0.29, 0.37) 0.37 (0.33, 0.41) 0.21 (0.16, 0.26)

Note.— All values are multiplied by 1000.

similar results to strategy D. Strategy R (random) produced overestimates of θs for modern496

species, while strategy A (ambiguity) produced serious underestimates of θs for modern species497

and divergence times. The results are consistent with our findings from the simulation.498

Rocky Mountains chipmunks. In the A01 analysis (species tree inference) of the 500499

nuclear loci for Rocky Mountains chipmunks, strategies D, P, and R produced the same MAP500

tree, shown in Figure 3b, with the posterior for every node ∼ 1.0. This is also the species tree501

inferred by Sarver et al. (2021) using summary methods, although the authors obtained lower502

support values even with all 1060 loci used. The difference may be due to the higher power of the503

BPP analysis, which uses the full data rather than data summaries (e.g., Shi and Yang 2018; Kim504

and Degnan, 2020; Zhu and Yang, 2021). Strategy A (ambiguity) produced a different MAP505

species tree from the other strategies (Fig. 3b), with the relationship (C, (D, (IQR))) instead of506

(D, (C, (IQR))), with the posterior at 0.94. The running time for the A01 analysis, using eight507

cores on a server with Intel Xeon Gold 6154 3.0GHz processors, was 9 hours for strategy A, and508

16-17 hours for strategies D, P, and R, with strategy D having slightly longer running time. The509

number of site patterns at the 1060 loci for strategy D is shown in Fig. S26. Strategy P also510

needed the additional time for running the PHASE program, which was 33 mins to phase all 1060511
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loci using one thread on the server.512

In the A00 analysis (parameter estimation), strategy P (PHASE) produced nearly identical513

results to strategy D (diploid) (table 6). Compared with strategy D, strategy R (random) produced514

overestimates of θs for modern species, while divergence times for recent nodes were also515

over-estimated very slightly. Strategy A (ambiguity) produced serious underestimates of θs for516

modern species, with divergence times, especially of recent nodes, to be underestimated as well.517

Those results mimic our findings about the relative performance of the different strategies in the518

simulated data. Running time for the A00 analysis was 2.5 hours for strategy A, and 5-6 hours for519

strategies D, P, and R. Note that in the A00 analysis the chain is only half as long as in the A01520

analysis.521

4. DISCUSSION522

The Impact of Phasing Errors Depends on the Inference Problem523

We have used simulation to examine the performance of four different strategies for handling524

heterozygote phase in genomic sequence data: F (full phased data), D (diploid analytical phase525

integration), P (PHASE), and R (random). Inference problems examined have included species526

tree estimation under the MSC model and parameter estimation under the MSC and MSci527

models. We found that the different strategies, including random phase resolution (or equivalently528

the use of haploid consensus sequences), did not affect species tree estimation when the species529

divergences are much older than the coalescent times. The different phasing strategies may be530

expected to have even less impact on inference of deep phylogenies, where within-species531

polymorphism is much lower than between-species divergence. However, species tree estimation532

is affected by phasing errors if the species tree is shallow and between-species divergence is533

similar to within-species polymorphism, if the mutation rate is high so that there are many534

heterozygote sites in the sequence, and if many sequences are sampled from each species.535

Phasing errors are clearly important when genomic data are used to infer the divergence history536

of populations of the same species.537

We found that estimation of parameters in the MSC and MSci models is more sensitive to538

phasing errors than is species tree estimation. In particular, population sizes for modern species539

are seriously overestimated under the MSC and MSci models when random phasing or haploid540

consensus sequences are used. Our analysis of the simple case of estimating θ under the541

single-population coalescent suggests that the bias is caused mainly by the unusual sequences542

generated by random phase resolution (Fig. 6 and table 3). Estimates of the introgression543

probability and introgression time under the MSci model may also be biased by errors in random544

phasing. The biases are more serious when the mutation rate is high so that there are multiple545

heterozygote sites at each locus and when multiple sequences are sampled per species. Those546

results are consistent with Gronau et al. (2011), who also found that random phase resolution547

affected parameter estimation in their analysis of genomic sequence data from different human548

populations.549
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Limitations of our Simulation and Implications to Practical Data Analysis550

Here we note a few limitations of our study. First we have examined only one inference method,551

the Bayesian method implemented in the BPP program. Our results may be expected to apply to552

other full likelihood implementations such as STARBEAST (Ogilvie et al., 2017; Zhang et al.,553

2018) or PHYLONET-SEQ (Wen and Nakhleh, 2018), but may not apply to summary methods.554

Similarly we considered only a few inference problems under the MSC and MSci models using555

genomic sequence data. We have not examined the impact of phasing errors on inference of556

population demographic changes or on inference of migration/introgression histories (our557

simulation under the MSci model assumed a fixed introgression event).558

Given those caveats, we discuss the implications of our simulation results to practical data559

analysis. First, our simulation as well as those of Gronau et al. (2011) and Andermann et al.560

(2019) suggest that random phase resolution or the use of haploid consensus sequences should be561

avoided. Strategy R never performed better than computational phasing (strategy P) in our562

simulations. Similarly strategy A (ambiguity) should not be recommended. Virtually all563

phylogenetic likelihood programs accommodate ambiguities in a sequence alignment564

representing undetermined nucleotides using a data augmentation algorithm in the likelihood565

calculation (Felsenstein, 2004, pp.255–6; Yang, 2014, pp.110-112). As heterozygotes (with, e.g.,566

Y meaning both T and C) are not ambiguities (with Y meaning either T or C), this approach567

misinterprets the data, and has the obvious effect of underestimating the heterozygosity or θ for568

the modern species. Bias may also be introduced into estimates of other parameters, such as569

underestimation of divergence times (Andermann et al., 2019). The approach also underestimates570

the information content in the data, as it in effect treats two sequences (although unphased) as571

only one. This mistake in the treatment of the data was made by Rannala and Yang (2003) in the572

analysis of three human noncoding loci of Zhao et al. (2000), Yu et al. (2001), and Makova et al.573

(2001), and by Yang (2015) in the analysis of the five nuclear loci from East Asian brown frogs574

(Zhou et al., 2012). The mistake is easy to see from the occurrence of the same ambiguity575

character (such as Y) in multiple sequences at the same site in the alignment.576

Strategy D (diploid analytical integration) produced results that are extremely similar to577

the use of the full data (F) in all simulation settings of this study (see also Gronau et al., 2011).578

As the algorithm averages over all possible phase resolutions and constitutes a full likelihood579

approach to handling missing data, it is the optimal statistical approach when the data consist of580

unphased diploid sequences, and may thus be recommended in general, even for inference581

problems that are not examined in our simulation study. As a statistical inference method,582

strategy D is equivalent to the approach of sampling phase resolutions in a Markov chain Monte583

Carlo (MCMC) algorithm (Kuhner and Felsenstein, 2000). In small or intermediate datasets,584

analytical phase integration appears more efficient computationally than MCMC, whereas for585

large datasets, both may be unfeasible.586

Note that analyses under the four strategies F, D, P, and R involve the same number of587

species, the same number of parameters, the same number of loci, the same number of sequences,588

etc., with the only difference being in the number of site patterns. The relative computational load589

for the strategies is thus proportional to the number of site patterns. Strategy D performs590

phylogenetic likelihood calculation (Felsenstein, 1981) for all distinct site patterns that may result591

from enumerating all possible phase resolutions, which include the true phase resolution. Thus592

strategy D involves at least as many site patterns as in the full data (strategy F). For the593
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simulations of this study, the number of site patterns for strategy D is less than twice the number594

for strategy F (Fig. S12). However, if there are many long sequences of high heterozygosity at a595

locus, enumeration of all phase resolutions may lead to a huge number of site patterns. For596

example, the three noncoding regions of human DNA analyzed by Rannala and Yang (2003) have597

about 60 sequences per locus, with ∼ 104 sites. The number of site patterns in the unphased598

alignments (strategy A) is 50–73, but reaches 1.2–4.4 million for strategy D, rendering the599

analysis unfeasible. Note that those loci are long genomic segments, which may be affected by600

recombination, whereas datasets suitable for analysis under the MSC typically involve much601

shorter genomic segments (e.g., Burgess and Yang, 2008).602

We suggest that computational phasing (strategy P) should be an acceptable alternative603

when strategy D is computationally unfeasible. In our analyses of the simulated and real datasets,604

strategy P produced similar results to the use of full data (F) or the analytical phase integration605

approach (D), with very small biases. Note that the Bayesian program PHASE assumes a606

population genetics model and is designed for sequence or allelic data from the same species.607

However, our use of it to analyze sequence data from multiple species produced relatively small608

biases in parameter estimation in both simulated data and in the two real datasets, much better609

than random phase resolution or haploid consensus sequences. We also note that phasing based610

on reads combined with bioinformatic analysis shows great promise (Andermann et al., 2019). In611

particular, exciting developments in sequencing technology to provide longer reads, combined612

with computational algorithms (Porubsky et al., 2020; Zhou et al., 2020; Cheng et al., 2021),613

may soon make it practical to produce routinely fully phased diploid genomes.614
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