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 2 

Development of myelin, a fatty sheath that insulates nerve fibers, is critical for brain 24 

function. Myelination during infancy has been studied in postmortem histology, but such 25 

data cannot evaluate the developmental trajectory of the white matter bundles of the brain. 26 

To address this gap in knowledge, we (i) obtained longitudinal diffusion MRI measures and 27 

quantitative MRI measures of T1, which is sensitive to myelin, from newborns to 6-months-28 

old infants, and (ii) developed an automated fiber quantification method that identifies 29 

bundles from dMRI and quantifies their T1 development in infants. Here we show that both 30 

along the length of each bundle and across bundles, T1 decreases from newborns to 6 months-31 

old’s and the rate of T1 decrease is inversely correlated with T1 at birth. As lower T1 indicates 32 

more myelin, these data suggest that in early infancy white matter bundles myelinate at 33 

different rates such that less mature bundles at birth develop faster to catch-up with the other 34 

bundles. We hypothesize that this development reflects experience-dependent myelination, 35 

which may promote efficient and coordinated neural communication. These findings open 36 

new avenues to measure typical and atypical white matter development in early infancy, 37 

which has important implications for early identification of neurodevelopmental disorders.  38 

 39 
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Myelin, the fatty sheath that insulates axons that connect different brain regions is essential 47 

for brain function, as it enables rapid and synchronized neural communication across the brain. The 48 

formation of myelin, or myelination, is a key hallmark of brain development during infancy, and 49 

abnormalities in myelination are linked to a plethora of developmental and cognitive disorders1. Classic 50 

post-mortem histology reported heterogeneous myelination during infancy2–5. However, histological 51 

studies compare postmortem brain samples across individuals, often include pathologies, and use 52 

observer-dependent methods6. Thus, classic histology provides a cross-sectional and qualitative 53 

glimpse of myelination. While the heterogenous pattern of development has been replicated7,8 with 54 

modern quantitative MRI (qMRI) 8,16,17, how and at what rate myelin develops in white matter bundles 55 

during infancy is unknown.  56 

Prior data suggest two hypotheses of myelination in infancy. The starts-first/finishes-first 57 

hypothesis proposes that postnatal myelination follows prenatal patterns2,3,5, predicting that bundles 58 

that are more myelinated at birth will develop faster postnatally and finish myelinating earlier 59 

(Supplementary Data 1). This may allow for most important brain functions to mature faster. 60 

Alternatively, the catch-up hypothesis7,12 suggests that white matter tracts that are less myelinated at 61 

birth will develop faster postnatally (Supplementary Data 1). This development may be experience-62 

dependent13–16 and allow for more efficient and coordinated signal transmission across the entire brain.  63 

Distinguishing between these hypotheses requires in-vivo measurements of the typical, 64 

longitudinal developmental of myelin in individual infants and across bundles. While we cannot 65 

measure myelin directly in-vivo, qMRI enables the measurement of proton relaxation time (T1 [s]). 66 

Notably, 90% of the variance of T1 in the white matter is driven by myelin17, whereby higher myelin 67 

content results in lower T1. Thus, we predict that (i) bundles that are more myelinated at birth, will 68 

have lower T1 in newborns than less myelinated bundles, (ii) if myelin increases from 0 to 6 months, 69 

then T1 will decrease from 0 to 6 months, and (iii) if T1 development follows the starts-first/finishes-70 

first hypothesis T1 will decrease faster in bundles with lower T1 at birth, but  if T1 development follows 71 

the catch-up hypothesis T1 will decrease faster in bundles with higher T1 at birth.  72 
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 4 

To test these predictions, we acquired longitudinal measurements of anatomical MRI, 73 

diffusion MRI (dMRI), and qMRI in infants during natural sleep at 3 timepoints: newborn (N=9; age: 74 

8-37 days), 3 months (N=10; age: 79-106 days), and 6 months (N=10; age: 167-195 days) of age.  75 

 76 

Results 77 

New method for automated fiber quantification in infants 78 

Evaluating the relationship between myelination at birth and its development across bundles 79 

necessitates identifying each individual infant’s bundles in their native brain space in a systematic and 80 

automated way. A major challenge is that tools developed for adults may not be suitable for infants 81 

due to substantial differences in brain size18 and organization19. Thus, we developed a new pipeline for 82 

analyzing infant dMRI data and a novel method, baby automated fiber quantification (babyAFQ), for 83 

automatically identifying 24 bundles (11 in each hemisphere and 2 between-hemispheres) in each 84 

individual infant’s brain and timepoint (Supplementary Data 2-5). We optimized babyAFQ for 85 

infants by: (i) generating waypoints (anatomical ROIs for defining bundles) on a newborn brain 86 

template (University of North Carolina (UNC) neonatal template20),  (ii) decreasing the spatial extent 87 

of waypoints compared to adult standard21 to fit the more compact infant brain, and (iii) adding 88 

additional waypoints to better define curved bundles.  89 

BabyAFQ successfully identifies 24 bundles in each infant and timepoint (example infant: Fig. 90 

1, all infants: Supplementary Data 5), including bundles that have not previously been identified in 91 

infants: the posterior arcuate fasciculus22, vertical occipital fasciculus22–24, and middle longitudinal 92 

fasciculus25. The 24 bundles have the expected shape and location in all infants even as their brains 93 

grow from 0 to 6 months. 3D interactive visualizations at 0 months 94 

(http://vpnl.stanford.edu/babyAFQ/bb11_mri0_interactive.html), 3 months 95 

(http://vpnl.stanford.edu/babyAFQ/bb11_mri3_interactive.html) and 6 months of age 96 
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(http://vpnl.stanford.edu/babyAFQ/bb11_mri6_interactive.html) show the 3D structure of bundles 97 

in an example infant.  98 

Figure 1. Baby automated fiber quantification (babyAFQ) identifies white matter bundles in 

individual infant brains across the first 6 months of life. 24 bundles (11 in each hemisphere and 2 

cross-hemispheric) were successfully identified in all individuals and ages (Supplementary Data 3-5). a. 

All bundles of an individual baby. Each row is a bundle, each column is a timepoint; left: newborn, middle: 

3 months, right: 6 months. b. Comparison of AFQ and babyAFQ performances in identifying each bundle 

in newborns relative to manually defined (gold-standard) bundles. The dice coefficient quantifies the 

overlap between the automatically and manually defined bundles, revealing significantly higher 

performance for babyAFQ than AFQ. Abbreviations: ATR: anterior thalamic radiation, CS: cortico-spinal 

tract, pAF: posterior arcuate fasciculus, VOF: vertical occipital fasciculus, FcMa: forceps major; FcMi: 

forceps minor, AF: arcuate fasciculus, UCI: uncinate fasciculus, SLF: superior longitudinal fasciculus, CC: 

cingulum cingulate, ILF: inferior longitudinal fasciculus, IFOF: inferior frontal occipital fasciculus, MLF: 

middle longitudinal fasciculus. 
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For quality assurance, we compared babyAFQ and AFQ26 (developed in adults and used in 99 

prior infant studies27–29) to manually identified bundles (‘gold-standard’). In newborns, bundles 100 

identified by babyAFQ substantially overlapped the gold-standard (mean dice coefficient±standard 101 

error (SE): 0.61±0.02) and this overlap was significantly higher compared to AFQ (Fig 1b; Fig. 102 

Supplementary Data 3,5; 2-way repeated measure analysis of variance (rmANOVA) with AFQ-type 103 

and bundle as factors: AFQ-type: F(1,08)=528.60, p<0.0001, bundle: F(19,152)=11.31, p<0.0001, 104 

AFQ-types x bundle: F(19,152)=7.13, p<0.0001; additional 3-way rmANOVA on the 11 bilateral 105 

bundles, with AFQ-type, bundle, and hemisphere as factors revealed no effects of, or interaction with, 106 

hemisphere). Improvements from babyAFQ were also evident at the other timepoints in qualitative 107 

evaluations in individual infants. E.g., the Forceps Major was successfully identified by babyAFQ in 108 

29/29 brains, but identified by AFQ only in 13/29 brains. 109 

 110 

T1 develops faster during early infancy in bundles that are less mature at birth  111 

Measurements of mean T1 of the 24 bundles identified by babyAFQ at 0, 3, and 6 months 112 

reveal a substantial decrease in T1 from 0 to 6 months-olds (Fig. 2a). Mean T1 across bundles±SE 113 

[range]: 0 months: 2.2±0.03s [1.86s-2.39s], 3 months: 1.94±0.03s [1.61s-2.18s], 6 months: 1.64s±0.02s 114 

[1.40-1.85s]. This is a profound change, as T1 decreases on average by 0.6s within just 6 months. We 115 

modeled T1 development in each bundle using linear mixed models (LMMs) with age as predictor and 116 

a random intercept (estimated T1 at birth) for each individual. For all bundles, LMMs revealed a 117 

negative slope, indicating that T1 decreases linearly from 0-6 months. Overall, LMMs explained ~90% 118 

of the T1 variance across development (adjusted Rs2>0.89, ps<0.0001, for details see Supplementary 119 

Table 1).  120 

We next examined if there is a relationship between the rate of T1 development and T1 in 121 

newborns across bundles. The starts-first/finishes-first hypothesis predicts a positive relationship, 122 

whereas the catch-up hypothesis predicts a negative relationship. Results in Fig 2b reveal: (i) both 123 

mean T1 in newborns and rate of T1 development during infancy vary between bundles: e.g., the 124 
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cortico-spinal tract has lowest newborn T1 and the Forceps Major has the steepest slope of T1 125 

development, and (ii) there is a significant negative correlation (adjusted R2=0.35, p=0.001) between 126 

the rate of T1 development (T1 slope) and mean T1 measured in newborns. That is, bundles that have 127 

higher newborn T1 (associated with less myelin) have a faster rate of development, which is consistent 128 

with the predictions of the catch-up hypothesis.  129 

The catch-up hypothesis also predicts that the variability of myelination across bundles will 130 

decrease with age, as less mature bundles develop faster. To test this, we compared the standard 131 

deviation (SD) of T1 across bundles for newborns and 6-month-olds. Results indicate that SD of mean 132 

T1 across bundles significantly decreases (two-sample t-test: t(17)=7.49, p<0.0001) from newborns 133 

(0.14s0.0009s, SDSE) to 6-months-olds (0.11s0.0007s), consistent with this prediction. 134 

 135 

T1 varies across the length of a given bundle in early infancy 136 

Our data show that bundles that are less mature in newborns develop faster than those that 137 

are more mature in newborns. As white matter bundles are large structures that connect cortical 138 

regions across brain lobes, an important question is whether T1 development varies across the length 139 

of bundles.  140 

Figure 2. T1 of white matter bundles linearly decreases from birth to 6 months of age. a. Mean T1 of 
each bundle as a function of age in days. Each point is a participant; markers indicate hemisphere; lines 
indicate LMM prediction; lines for both hemispheres fall on top of each other; gray shaded regions indicate 
95% confidence interval. b. Bundles’ development rate (T1 slope) is significantly and negatively correlated 
with bundles’ T1 in newborns, consistent with the catch-up hypothesis. Error bars: SE. Abbreviations: LH: left 
hemisphere, RH: right hemisphere 
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Analysis of T1 along bundles (Fig 3) using babyAFQ reveals three main findings: (i) Some 141 

bundles illustrate substantial variations in T1 (e.g., cortico-spinal tract), while others exhibit only 142 

modest variations (e.g., vertical occipital fasciculus). (ii) Consistent with the prior analyses, across the 143 

lengths of bundles, T1 systematically decreases from newborns (Fig 3-dotted line) to 3-month-olds 144 

(Fig 3-dashed line) to 6-months-olds (Fig 3-solid line). (iii) The fluctuation in T1 among nearby 145 

points along bundles decreases from newborns to 6-month-olds. That is, the variability in T1 between 146 

nonoverlapping, nearby positions along the length of each bundle (sum of squared difference (SSD) 147 

of T1 values between positions that are 10 nodes apart) significantly decreased (two-sample t-test: 148 

t(17)=3.29 p=0.004) from 0.08s0.001s (mean SSD across bundlesSE) in newborns to 149 

0.07s0.0007s in 6-months-olds. 150 

 151 

 152 

 153 

 154 

Figure 3. Development of T1 along each bundle. Mean T1 across infants is displayed in both 
hemispheres (lines for the two hemispheres fall on top of each other) along the length of each bundle in 
newborns (0m, dotted line), 3-months-olds (3m, dashed line), and 6-months-olds (6m, solid line). Shaded 
regions: 95% confidence intervals. Left panels show the bundles in a representative newborn. 
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Segments of infants’ bundles with less mature T1 at birth develop at a faster rate 155 

We next determined the rate of T1 development across the length of each bundle, by using 156 

LMMs to relate T1 to age at 100 equidistant locations (nodes) (one LMM per node and bundle; random 157 

intercepts for individuals). Examination of the rate of T1 development (Fig 4-dashed lines) relative 158 

to the measured T1 in newborns (Fig 4-solid lines, left y-axis), reveals that (i) even as the slopes are 159 

negative throughout, the rate of T1 decrease varies across the length of the bundles and (ii) segments 160 

of bundles that are less mature in newborns (higher T1) have a steeper rate of T1 decrease (more 161 

negative slopes) than segments than are more mature in newborns. E.g., the superior aspect of the 162 

cortico-spinal tract has higher T1 in newborns than its inferior aspect, and correspondingly, a more 163 

negative slope.  164 

Figure 4. Negative relationship between T1 development rate and T1 in newborns along the length 
of each bundle. a. Each panel jointly shows measured T1 in newborns (left y axis, solid line) and the slope 
of T1 development (right y axis, dashed line) at each node along the bundle. Faster development (more 
negative slope) corresponds to lower values of dashed lines. Higher T1 in newborns correspond to higher 
values in solid lines. Lines from both hemispheres are presented separately but fall on top of each other. b. 
LMM relating slope of T1 development and T1 in newborns at independent locations along the length of 
each bundle reveals a significant negative relationship (gray line) as predicted by the catch-up hypothesis.  
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 10 

We quantified the relationship between the slope of T1 development and the measured T1 in 165 

newborns at nonoverlapping positions (every 10th node) along all bundles (LMM relating T1 slope to 166 

measured T1 in newborns; random intercepts for each bundle). This analysis reveals a significant 167 

negative relationship (Fig 4b, adjusted R2=0.64, p<0.0001) between T1 development rate and 168 

measured T1 in newborns along the length of these bundles. Results suggest that segments of bundles 169 

that are more mature at birth develop slower than segments that are less mature at birth as predicted 170 

by the catch-up hypothesis.  171 

 172 

Discussion 173 

By combining a novel approach for white matter bundle delineation in individual infant brains 174 

(babyAFQ) with new longitudinal measures of quantitative T1, we find a substantial decrease in T1 175 

across all investigated bundles during early infancy. Notably, both within and across bundles, the rate 176 

of T1 development shows a negative relationship with the initial T1 in newborns. As T1 is inversely 177 

correlated with myelination, this suggests that bundles and their segments that are less myelinated in 178 

newborns develop faster, consistent with the predictions of the catch-up hypothesis of infant myelin 179 

development.  180 

The finding that less mature white matter at birth myelinates faster during infancy is important 181 

for several reasons. First, our data not only provides empirical evidence against the classic view that 182 

white matter develops in a strictly hierarchically manner from early sensory to higher-level cognitive 183 

regions2,3, but it also offers a new parsimonious explanation for the heterogenous nature of white 184 

matter development in infancy. As myelination is experience-dependent13–16, our data suggests that the 185 

new postnatal environment and experiences may produce a flurry of myelination during the first 6 186 

months of life, overtaking the earlier prenatal gradients. For example, projection bundles associated 187 

with movement receive input already in utero and develop slowly after birth, while bundles that connect 188 

sensory or higher order regions may only begin to receive input after birth and develop quickly 189 

thereafter. Due to this, myelination may also be fine-tuned based on each individual infant’s 190 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 30, 2021. ; https://doi.org/10.1101/2021.03.29.437583doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.29.437583
http://creativecommons.org/licenses/by-nc/4.0/


 11 

experience. Second, we further hypothesize that the resulting negative relationship between 191 

myelination at birth and the rate of myelin development is functionally relevant. Due to this, some 192 

level of myelin will arise in all bundles during early infancy, which may enable more coordinated and 193 

effective communication across the brain. Third, our data help interpret developmental trajectories of 194 

diffusion metrics in infants11,12,30,31. Specifically, diffusion metrics that develop similarly to T1 may be 195 

more closely related to myelination than metrics with a different developmental trajectory. Thus, 196 

future studies combining multiple quantitative and diffusion MRI metrics32–34 may disentangle multiple 197 

aspects of white matter microstructural development including not only myelination but also fiber 198 

organization, packing, and diameter.  199 

Crucially, due to the quantitative nature of T1
7–9, we can compare our measurements to other 200 

populations. E.g., in our newborn bundles, T1 varies between 1.86s-2.39s, which is lower than T1 of 201 

2.75s-3.5s observed in the white matter of preterm infants35. This observation suggests some 202 

myelination in all evaluated bundles in full-term newborns, which contrasts with classic histological 203 

studies2–5 that reported perinatal myelination in only a few white matter bundles. As classic studies 204 

used qualitative visual inspection of myelin stains, our data underscore the utility of quantitative T1 205 

measurements. Our measurements also reveal that T1 in bundles of 6-months-olds ranges between 206 

1.40s-1.85s, which is higher than the 0.8s-1.2s rage reported in adults36,37, suggesting that none of the 207 

investigated bundles are fully myelinated by 6 months of age. Future longitudinal investigations over 208 

a longer period are necessary to determine when these bundles reach adult-like myelination. Finally, 209 

we find that mean T1 across bundles decreases on average by 0.6s within just 6 months, which is 10 210 

times larger than the decrease of ~0.05s observed between 8 and 18 years of age36, which highlights 211 

the profound changes occurring in early infancy.   212 

Our study has important societal implications. First, T1 values are quantitative and have units 213 

that can be numerically compared across scanners, populations, and individuals9. Thus, our 214 

measurements in typically-developing infants provide a key foundation for large-scale studies of infant 215 

brain development in typical38,39 and clinical populations such as preterm infants40, infants with 216 
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cerebral palsy41, or fetal alcohol spectrum disorders42. Second, our methodology is translatable to 217 

clinical settings as it is performed during natural sleep. Third, we developed an automated pipeline 218 

that simultaneously provides high throughput and high precision in individual infants. This level of 219 

precision may enable early identification of developmental impairments in at-risk infants, which in 220 

turn may improve the efficacy of interventions43. 221 

In conclusion, we find that during early infancy less mature white matter at birth develops 222 

faster than more mature white matter, equalizing myelination across white matter bundles. This 223 

finding offers a new parsimonious explanation of white matter development in early infancy. We 224 

hypothesize that this pattern of myelination in infancy is driven by experience and ensures that a 225 

minimal amount of myelin becomes quickly available throughout the brain, which may serve to 226 

promote efficient and coordinated communication across the brain.  227 

 228 

Methods 229 

Participants 230 

16 full-term and healthy infants (7 female) were recruited to participate in this study. Three 231 

infants provided no usable data because they could not stay asleep once the MRI sequences started 232 

and hence, we report data from 13 infants (6 female) across three timepoints: newborn (N=9; age: 8-233 

37 days), 3 months (N=10; age: 79-106 days), and 6 months (N=10; age: 167-195 days). Two 234 

participants were re-invited to complete scans for their 6-months session that could not be completed 235 

during the first try. Both rescans were performed within 7 days and participants were still within age 236 

range for the 6-months timepoint. The participant population was racially and ethnically diverse 237 

reflecting the population of the Bay Area, including two Hispanic, nine Caucasian, two Asian, and 238 

three multiracial participants. Six out of the 13 infants participated in MRI in all three timepoints (0, 239 

3, 6 months). Due to the Covid-19 pandemic and restricted research guidelines, data acquisition was 240 

halted. Consequently, the remaining infants participated in either 1 or 2 sessions.  241 
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Expectant mothers and their infants in our study were recruited from the San Francisco Bay 242 

Area using social media platforms. We performed a two-step screening process for expectant mothers. 243 

First, mothers were screened over the phone for eligibility based on exclusionary criteria designed to 244 

recruit a sample of typically developing infants and second, eligible expectant mothers were screened 245 

once again after giving birth. Exclusionary criteria for expectant mothers were as follows: recreational 246 

drug use during pregnancy, significant alcohol use during pregnancy (more than 3 instances of alcohol 247 

consumption per trimester; more than 1 drink per occasion), lifetime diagnosis of autism spectrum 248 

disorder or a disorder involving psychosis or mania, taking prescription medications for any of these 249 

disorders during pregnancy, written and spoken English ability insufficient to participate in the study, 250 

and learning differences that would preclude participation in the study. Exclusionary criteria for infants 251 

were: preterm birth (<37 gestational weeks), low birthweight (<5 lbs 8 oz), small height (<18 inches), 252 

any congenital, genetic, and neurological disorders, visual problems, complications during birth that 253 

involved the infant (e.g., NICU stay), history of head trauma, and contraindications for MRI (e.g., 254 

metal implants).  255 

 256 

Data Acquisition Procedure 257 

Data collection procedure was developed in a recent study44. All included participants 258 

completed the multiple scanning protocols needed to obtain anatomical MRI, qMRI, and dMRI data. 259 

Data were acquired at two identical 3T GE Discovery MR750 Scanners (GE Healthcare) and Nova 260 

32-channel head coils (Nova Medical) located at Stanford University: (i) Center for Cognitive and 261 

Neurobiological Imaging (CNI) and (ii) Lucas Imaging Center. As infants have low weight, all imaging 262 

was done with first level SAR to ensure their safety. Study protocols for these scans were approved 263 

by the Stanford University Internal Review Board on Human Subjects Research.  264 

Scanning sessions were scheduled in the evenings close in time to the infants’ typical bedtime. 265 

Each session lasted between 2.5 – 5 hours including time to prepare the infant and waiting time for 266 

them to fall asleep. Upon arrival, caregivers provided written, informed consent for themselves and 267 
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their infant to participate in the study. Before entering the MRI suite, both caregiver and infant were 268 

checked to ensure that they were metal-free and caregivers changed the infants into MR safe cotton 269 

onesies and footed pants provided by the researchers. The infant was swaddled with a blanket with 270 

their hands to their sides to avoid their hands creating a loop. During sessions involving newborn 271 

infants, an MR safe plastic immobilizer (MedVac, www.supertechx-ray.com) was used to stabilize the 272 

infant and their head position. Once the infant was ready for scanning, the caregiver and infant entered 273 

the MR suite. The caregiver was instructed to follow their child’s typical sleep routine. As the infant 274 

was falling asleep, researchers inserted soft wax earplugs into the infant’s ears. Once the infant was 275 

asleep, the caregiver was instructed to gently place the infant on a makeshift cradle on the scanner 276 

bed, created by weighted bags placed at the edges of the bed to prevent any side-to-side movement. 277 

Finally, to lower sound transmission, MRI compatible neonatal Noise Attenuators 278 

(https://newborncare.natus.com/products-services/newborn-care-products/nursery-279 

essentials/minimuffs-neonatal-noise-attenuators) were placed on the infant’s ears and additional pads 280 

were also placed around the infant’s head to stabilize head motion.  281 

An experimenter stayed inside the MR suite with the infant during the entire scan. For 282 

additional monitoring of the infant’s safety and lack of motion, an infrared camera was affixed to the 283 

head coil and positioned for viewing the infant’s face in the scanner. The researcher operating the 284 

scanner monitored the infant via the camera feed, which allowed for the scan to be stopped 285 

immediately if the infant showed signs of waking or distress. This setup also allowed tracking the 286 

infant’s motion; scans were stopped and repeated if there was excessive head motion. To ensure scan 287 

data quality, in addition to real-time monitoring of the infant’s motion via an infrared camera, MR 288 

brain image quality was also assessed immediately after acquisition of each sequence and repeated if 289 

necessary.  290 

 291 

 292 

 293 
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Data Acquisition Parameters and Preprocessing 294 

Anatomical MRI: T2-weighted images were acquired and used for tissue segmentations. T2-295 

weighed image acquisition parameters: TE=124 ms; TR = 3650ms; echo train length = 120; voxel size 296 

= 0.8mm3; FOV=20.5cm; Scan time: 4 min and 5 sec.  297 

We generated gray/white matter tissue segmentations of all infants and time-points and used 298 

them to optimize tractography (anatomically constrained tractography, ACT45). The T2-weighted 299 

anatomy, and a synthetic T1-weighted whole brain image generated from the SPGRs and IR-EPI 300 

scans using mrQ software (https://github.com/mezera/mrQ) were aligned and used for 301 

segmentations. Multiple steps were applied to generate accurate segmentations of each infant’s brain 302 

at each timepoint44. (1) An initial segmentation of gray and white matter was generated from the T1-303 

weighted brain volume using infant FreeSurfer’s automatic segmentation code that expects T1-304 

weighted input (infant-recon-all; https://surfer.nmr.mgh.harvard.edu/fswiki/infantFS46). (2) The T2-305 

weighted anatomical images, which have a better contrast between gray and white matter in infants, 306 

were used in an independent brain extraction toolbox (Brain Extraction and Analysis Toolbox, 307 

iBEAT, v:2.0 cloud processing, https://ibeat.wildapricot.org/47–49) to generate another, more accurate, 308 

white and gray matter segmentation. (3) The iBEAT segmentation was manually corrected to fix 309 

segmentation errors (such as holes and handles) using ITK-SNAP (http://www.itksnap.org/). (4) The 310 

iBEAT segmentation was then reinstalled to FreeSurfer and the resulting segmentation in typical 311 

FreeSurfer format was used to optimize tractography. 312 

 313 

Quantitative MRI: Spoiled‐gradient echo images (SPGRs) were used together with the 314 

Inversion-recovery EPI (IR-EPI) sequence to estimate T1 relaxation time at each voxel and to generate 315 

whole-brain synthetic T1-weighted images. We acquired 4 SPGRs whole brain images with different 316 

flip angles: α = 4, 10, 15, 20; TE=3ms; TR =14ms; voxel size=1mm3; number of slices=120; 317 

FOV=22.4cm; Scan time: 4 times ~5 minutes. We also acquired multiple inversion times (TI) in the 318 
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IR-EPI using a slice-shuffling technique50: 20 TIs with the first TI=50ms and TI interval=150ms as 319 

well as a second IR-EPI with reverse phase encoding direction. Other acquisition parameters were: 320 

voxel size=2mm3; number of slices=60; FOV=20cm; in-plane/through-plane acceleration=1/3; Scan 321 

time=two times 1:45 min. 322 

IR-EPI data were used to estimate T1 relaxation time at each voxel. First, as part of the 323 

preprocessing, we performed susceptibility-induced distortion correction on the IR-EPI images using 324 

FSL’s top-up and the IR-EPI acquisition with reverse phase encoding direction. We then used the 325 

distortion corrected images to fit the T1 relaxation signal model using a multi-dimensional Levenberg-326 

Marquardt algorithm51. The signal equation of T1 relaxation of an inversion-recovery sequence is an 327 

exponential decay:  328 

𝑺(𝒕) = 𝒂(𝟏 − 𝒃𝒆
−𝒕

𝑻𝟏⁄ ),  329 

where t is the inversion time, a is proportional to the initial magnetization of the voxel, b is 330 

the effective inversion coefficient of the voxel (for perfect inversion b=2). To work with magnitude 331 

images, we took the absolute value of the above signal equation and used it as the fitting model. The 332 

output of the algorithm is the estimated T1 in each voxel.  333 

 334 

Diffusion MRI: We obtained dMRI data with the following parameters: multi-shell, #diffusion 335 

directions/b-value = 9/0, 30/700, 64/2000; TE = 75.7 ms; TR=2800ms; voxel size = 2mm3; number 336 

of slices=60; FOV=20cm; in-plane/through-plane acceleration = 1/3; Scan time: 5:08 min. We also 337 

acquired a short dMRI scan with reverse phase encoding direction and only 6 b=0 images (scan time 338 

0:20 min).  339 

dMRI preprocessing was performed in accordance with recent work from the developing 340 

human connectome project52,53, using a combination of tools from MRtrix354,55 341 

(github.com/MRtrix3/mrtrix3) and mrDiffusion (http://github.com/vistalab/vistasoft). We (i) 342 

denoised the data using a principal component analysis56, (ii) used FSL’s top-up tool 343 
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(https://fsl.fmrib.ox.ac.uk/) and one image collected in the opposite phase-encoding direction to 344 

correct for susceptibility-induced distortions, (iii) used FSL’s eddy to perform eddy current and motion 345 

correction, whereby motion correction included outlier slice detection and replacement57 and (iv) 346 

performed bias correction using ANTs58. The preprocessed dMRI images were registered to the 347 

whole-brain T2-weighted anatomy using whole-brain rigid-body registration and alignment quality was 348 

checked for all images. dMRI quality assurance was also performed. Across all acquisitions, less than 349 

5% ± 0.72% of dMRI images were identified as outliers by FSL’s eddy tool. We found no significant 350 

effect of age across the outliers (no main effect of age: F(2,26)=1.97, p=0.16, newborn: 1.07+0.88%; 351 

3 months: 0.4+0.40%; 6 months: 0.67+0.85%), suggesting that the developmental data was well 352 

controlled across all time-points.  353 

Next, voxel-wise fiber orientation distributions (FODs) were calculated using constrained 354 

spherical deconvolution (CSD) in MRtrix354 (Supplementary Data 2). We used the Dhollander 355 

algorithm59 to estimate the three-tissue response function, and we lowered the FA threshold to 0.1 to 356 

account for the generally larger FA in infant brains. We computed FODs with multi-shell multi-tissue 357 

CSD60 separately for the white matter and the CSF. As in previous work52, the gray matter was not 358 

modeled separately, as white and gray matter do not have sufficiently distinct b-value dependencies to 359 

allow for a clean separation of the signals. Finally, we performed multi-tissue informed log-domain 360 

intensity normalization. 361 

We used MRtrix354 to generate a whole brain white matter connectome for each subject. 362 

Tractography was optimized using the tissue segmentation from anatomical MRI (anatomically-363 

constrained tractography, ACT45). We argue that this approach is particularly useful for infant data, as 364 

gray and white matter cannot be separated in the FODs. For each connectome, we used probabilistic 365 

fiber tracking with the following parameters: algorithm: IFOD1, step size: 0.2 mm, minimum length: 366 

4 mm, maximum length: 200 mm, FOD amplitude stopping criterion: 0.05, maximum angle: 15°. 367 

Seeds for tractography were randomly placed within the gray/white matter interface (from anatomical 368 
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tissue segmentation), which enabled us to ensure that tracts reach the gray matter. Each connectome 369 

consisted of 2 million streamlines. 370 

 371 

Bundle delineation with baby automated fiber quantification (babyAFQ) 372 

Here we developed a new toolbox (babyAFQ) for the identification of white matter bundles 373 

in individual infants, that is openly available as a novel component of AFQ26 374 

(https://github.com/yeatmanlab/AFQ/tree/master/babyAFQ). BabyAFQ identifies the following 375 

bundles (Fig. 1): anterior thalamic radiation (ATR), cortico-spinal tract (CS), posterior arcuate 376 

fasciculus (pAF), vertical occipital fasciculus (VOF), forceps major (FcMa), forceps minor (FcMi), 377 

arcuate fasciculus (AF), uncinate fasciculus (UCI), superior longitudinal fasciculus (SLF), cingulum 378 

cingulate (CC), inferior longitudinal fasciculus (ILF), inferior frontal occipital fasciculus (IFOF) and 379 

the middle longitudinal fasciculus (MLF). 380 

BabyAFQ uses anatomical ROIs as waypoints for each bundle, that is, a given tract is 381 

considered a candidate for belonging to a bundle if it passes through all waypoints. The waypoint 382 

ROIs were adjusted from those commonly used in adults21 to better match the head size and white 383 

matter organization of infants (Supplementary Data 3). Specifically, we: (i) spatially restricted some 384 

of the waypoint ROIs, (ii) introduced a third waypoint for curvy bundles, (iii) changed the waypoint 385 

ROIs for the VOF from surface ROIs to volumetric ROIs (Supplementary Data 4), as cortical 386 

surface reconstructions in infants are challenging to date and (iv) added way-point ROIs for the 387 

identification of the MLF, which was not included in prior AFQ versions. Critically, these waypoints 388 

were defined in a neonate infant template brain (UNC Neonatal template20) and are transformed from 389 

this template space to individual infant brain space before bundle delineation in each infant’s brain. 390 

The use of an infant template brain is critical as commonly used adult templates, such as the MNI 391 

brain, are substantially larger and difficult to align to infant data. In cases where a given tract is a 392 

candidate for multiple bundles, a probabilistic atlas, which is also transformed from infant template 393 

space to individual infant brain space, is used to determine which bundle is the better match for the 394 
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tract. Bundles are then cleaned by removing tracts that exceed a gaussian distance of 4 from the core 395 

of the bundle. 396 

Critically, babyAFQ was designed to seamlessly integrate with AFQ, so that additional tools 397 

for plotting, tract profile evaluation and statistical analysis can be applied after bundle delineation. 398 

 399 

BabyAFQ quality assurance 400 

In order to evaluate the quality of the bundle delineation in babyAFQ, we compared the 401 

identified bundles to manually delineated “gold-standard” bundles. Manual bundle delineation was 402 

performed for the newborns in DSI Studio (http://dsi-studio.labsolver.org/) by 2 anatomical experts 403 

who were blinded to the results of babyAFQ. As a benchmark, we also delineated bundles with AFQ 404 

developed using adult data and compared these bundles to the manual bundles. For both babyAFQ 405 

and AFQ we quantified the spatial overlap between the automatically identified bundles and the 406 

manual bundles using the dice coefficient61 (DC): 𝐷𝐶 =
2|𝐴∩𝐵|

|𝐴|+|𝐵|
, where |A| are voxels of 407 

automatically-identified bundles, |B| are voxels  of the manual bundles, and |A∩B| is the 408 

intersection between these two sets of voxels (Fig. 1b). We compared dice coefficients between 409 

babyAFQ and AFQ in two rmANOVAs. First, a 2-way rmANOVA with AFQ-type and bundle as 410 

factors allowed us to evaluate the effect of AFQ type across all bundles. Second, a 3-way rmANOVA 411 

with AFQ-type, bundle and hemisphere as factors, that only included bilateral bundles, enabled us to 412 

test for hemispheric differences. Finally, we also used the dice coefficients to test if tracts identified 413 

to be part of the VOF are similar across methods – i.e., using volumetric way-point ROIs vs. surface 414 

ROIs (Supplementary Data 4). 415 

In addition to the quantitative evaluation, we examined all bundles delineated using babyAFQ 416 

and AFQ qualitatively at all time-points (Supplementary Data 5), by evaluating how well they match 417 

the typical spatial extent and trajectory. We also provide an interactive 3D visualization of an example 418 

infant’s bundles (created with pyAFQ62). 419 
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Modeling T1 developement 420 

After identifying all bundles with babyAFQ, we modeled their T1 development using mixed 421 

linear models (LMMs). First, we modeled mean T1 development within each bundle using LMMs with 422 

age as predictor and a random intercept (estimated T1 at birth) for each individual (Fig 2a). We used 423 

model comparison (likelihood ratio tests) to determine that LMMs allowing different slopes for each 424 

individual do not better explain the data compared to LMMs using a single slope across individuals. 425 

To distinguish between the starts-first/finishes-first hypothesis and the catch-up hypothesis, we then 426 

related the developmental slopes from the LMMs and the T1 in newborns across bundles (Fig 2b). 427 

Finally, we compared the standard deviation in T1 across bundles between newborns and 6 months-428 

olds with 2-sample t-tests. 429 

Next, we evaluated the development of T1 across the length of each bundle. For this, we 430 

divided each bundle into 100 equidistant locations (nodes) and visually inspected T1 at each time-point 431 

across these nodes (Fig 3). We observed that the fluctuation in T1 among nearby nodes decreased 432 

with age, and quantified this observation by comparing the sum of squared difference (SSD) between 433 

positions that are 10 nodes apart in the newborns and the 6-months-olds with 2-sample t-tests. 434 

We then determined the rate of T1 development across the length of each bundle by fitting 435 

LMMs that relate T1 to age at each node (one LMM per bundle; random intercepts for each individual 436 

as above, Fig 4a). Finally, we evaluated the relationship between the slope of T1 development and the 437 

measured T1 in newborns at nonoverlapping positions (every 10th node) along all bundles (LMM 438 

relating T1 slope to measured T1 in newborns, random intercepts for each bundle, Fig 4b). We used 439 

model comparison (likelihood ratio test) to determine that a LMM allowing different slopes for each 440 

bundle does not better explain the data compared to this LMM. 441 

 442 

 443 

 444 
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Data and code availability 445 

The data were analyzed using open source software, including mrDiffusion and MRtrix354. We 446 

developed a new toolbox for automatic fiber quantification in individual infants (babyAFQ) and make 447 

it openly available (https://github.com/yeatmanlab/AFQ/tree/babyAFQ/babyAFQ). Code for 448 

reproducing all figures is made available in GitHub as well (https://github.com/VPNL/CatchUp). 449 

The data generated in this study will be made available by the corresponding author upon reasonable 450 

request. 451 
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