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Abstract

While the gut microbiome and host gene regulation separately contribute to
gastrointestinal disorders, it is unclear how the two may interact to influence host
pathophysiology. Here, we developed a machine learning-based framework to jointly
analyze host transcriptomic and microbiome profiles from 416 colonic mucosal samples
of patients with colorectal cancer, inflammatory bowel disease, and irritable bowel
syndrome. We identified potential interactions between gut microbes and host genes
that are disease-specific, as well as interactions that are shared across the three
diseases, involving host genes and gut microbes previously implicated in
gastrointestinal inflammation, gut barrier protection, energy metabolism, and
tumorigenesis. In addition, we found that mucosal gut microbes that have been
associated with all three diseases, such as Streptococcus, interact with different host
pathways in each disease, suggesting that similar microbes can affect host
pathophysiology in a disease-specific manner through regulation of different host genes.
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Introduction

The human gut microbiome plays a critical role in modulating human health and
disease. Variations in the composition of the human gut microbiome have been
associated with a wide variety of chronic diseases, including colorectal cancer (CRC),
inflammatory bowel disease (IBD), and irritable bowel syndrome (IBS). For example,
previous studies have reported an increase in abundance of Fusobacterium nucleatum
and Parvimonas in CRC "2, reduced abundance of Faecalibacterium prausnitzii and
enrichment of enterotoxigenic Bacteroides fragilis in CRC and IBD 35, and
overrepresentation of Enterobacteriaceae and Streptococcus in IBD and IBS 2. In
addition to the gut microbiome, dysregulation of host gene expression and pathways
have also been implicated in these diseases. Researchers have reported disruption of
Notch and WNT signalling pathways in CRC %19, activation of toll-like receptors (e.g.
TLR4) that induce NF-kB and TNF-a signaling pathways in IBD '"-'2, and dysregulation
of immune response and intestinal antibacterial gene expression in IBS 813, While host
transcription and gut microbiome have separately been identified as contributing factors
to these gastrointestinal (Gl) diseases, it is unclear how the two may interact to
influence host pathophysiology 4.

Studies in model organisms have demonstrated that the modulation of host gene
expression by the gut microbiome is a potential mechanism by which microbes can
affect host physiology '>-2°. For example, in zebrafish, the gut microbiome negatively
regulates the transcription factor hepatocyte nuclear factor 4, leading to host gene
expression profiles associated with human IBD 8. In mice, the gut microbiota can alter
host epigenetic programming to modulate intestinal gene expression involved in
immune and metabolic processes 617, Additionally, recent in vitro cell culture
experiments have shown that specific gut microbes can modify the gene expression in
interacting human colonic epithelial cells 2'?2. Given the evidence for crosstalk between
the gut microbiome and host gene regulation, characterizing the interplay between the
two factors is critical for unravelling their role in the pathogenesis of human intestinal
diseases.

A few recent studies have investigated interactions between the host transcriptome
and gut microbiome in specific human gut disorders, including IBD, CRC, and IBS. For
example, studies examining microbiome-host gene relationships in IBD have identified
mucosal microbiome associations with host transcripts enriched for
immunoinflammatory pathways 23-25. While investigating longitudinal host-microbiome
dynamics in IBD, Lloyd-Price et al. identified interactions between expression of
chemokine genes, including CXCL6 and DUOX2, and abundance of gut microbes,
including Streptococcus and Ruminococcaceae 2°. Studies investigating the role of host
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84  gene-microbiome interactions in CRC have found correlations between the abundance
85  of pathogenic mucosal bacteria and expression of host genes implicated in
86 gastrointestinal inflammation and tumorigenesis 2627, In IBS, host genes implicated in
87  gut barrier function and peptidoglycan binding, such as KIFC3 and PGLYRP1, are
88 associated with microbial abundance of Peptostreptococcaceae and Intestinibacter 8.
89  While these studies have revealed important insights about host gene-microbiome
90 crosstalk in Gl diseases, they are limited in several aspects. For example, to boost
91  statistical power, most studies have examined interactions between a limited subset of
92 host genes and gut microbes; for instance, by focusing only on differentially expressed
93 genes %2527 genes associated with immune functions 325, or select microbes
94  representing bacterial clusters or co-abundance groups 2328, thus characterizing only a
95 subset of potential interactions. In addition, the identification of host gene-microbe
96 interactions is based on testing for pairwise correlation between every host gene and
97  microbe using Spearman or Pearson correlation, thus ignoring the inherent multivariate
98 properties of these datasets 242527, This approach may also decrease statistical power
99 to detect biologically meaningful associations due to the large number of statistical tests
100 performed. Additionally, most studies focus on examining interactions in a single
101  disease at a time; hence, common and unique patterns of host-microbiome interactions
102  across multiple disease states remain poorly characterized.
103
104 Here, we comprehensively characterized interactions between mucosal gene
105 expression and microbiome composition in patients with colorectal cancer, inflammatory
106  bowel disease, and irritable bowel syndrome, three Gl disorders in which both host
107  gene regulation and gut microbiome have been implicated as contributing factors
108 1681013 We developed and applied a machine learning framework that overcomes
109 typical challenges in multi-omic integrations, including high-dimensionality, sparsity, and
110  multicollinearity, to identify biologically meaningful associations between gut microbes
111 and host genes and pathways in each disease. We leveraged our framework to
112  characterize disease-specific and shared host gene-microbiome interactions across the
113  three diseases that may facilitate new insights into the molecular mechanisms
114 underlying pathophysiology of these gastrointestinal diseases.
115
116  Results
117
118 Integrating host gene expression and gut microbiome abundance in colorectal
119  cancer, inflammatory bowel disease and irritable bowel syndrome.
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121

122  Figure 1. Integrating host gene expression and gut microbiome abundance in colorectal cancer
123  (CRC), inflammatory bowel disease (IBD), and irritable bowel syndrome (IBS). A. Study design
124  representing disease cohorts, generation of host gene expression data and gut microbiome
125 abundance data from patient samples, overview of integration framework, and expected output
126  (left to right). For description of mathematical notations, please see Methods. B. Procrustes
127  analysis showing overall association between variation in host gene expression and gut

128  microbiome composition in CRC, IBD and IBS (left to right). We used Aitchison’s distance for
129  host gene expression data (circle), and Bray-Curtis distance for gut microbiome data (triangle).
130

131 To study host-microbiome relationship across diseases, we used host gene

132 expression (RNA-seq) data and gut microbiome abundance (16S rRNA sequencing)
133  data generated from colonic mucosal biopsies obtained from patients with colorectal
134  cancer (CRC), inflammatory bowel disease (IBD), and irritable bowel syndrome (IBS)
135  (Figure 1A). Our study included 208 microbiome samples and 208 paired gene

136  expression samples (416 in total). These 208 paired samples include 88 pairs of

137  samples in the CRC cohort (44 tumor and 44 patient-matched normal), 78 pairs of

138  samples in the IBD cohort (56 patients and 22 controls)?®?8, and 42 pairs of samples in
139  the IBS cohort (29 patients and 13 controls; see Supplementary Table S1)8. Detailed
140 information on disease cohorts, samples, sequencing, quality control, and data

141  processing is available in Methods.

142
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143 Previous studies have identified host gene-microbiome associations in human gut
144  disorders, including CRC, IBD, and IBS®2%26, Thus, one might expect intestinal gene
145  expression patterns and microbiome composition to be broadly correlated in these

146  diseases. To test for such an overall association between host gene expression and gut
147  microbiome composition, we performed Procrustes analysis using paired data for each
148  disease cohort. Our analysis showed significant correspondence between host gene
149  expression variation and gut microbiome composition across subjects in CRC (Monte
150  Carlo p-value = 0.0001). However, Procrustes agreement is not significant in IBD

151  (Monte Carlo p-value = 0.1) and IBS (Monte Carlo p-value = 0.42) (Figure 1B, see

152  Methods). This lack of significant overall correspondence between host transcriptome
153  and gut microbiome across diseases might suggest that, instead of an overall

154  association between the two, it is likely that only a subset of gut microbes interact with a
155  subset of host genes at the colonic epithelium 7. Hence, we need novel integration
156  approaches to characterize such host gene-microbiome interactions.

157

158 To this end, we developed a machine learning framework for integrating multi-omic
159  high-dimensional datasets, such as host gene expression and gut microbiome

160 abundance, to identify relevant host genes and pathways associated with gut microbes.
161  Our integration approach has two parts: (i) Sparse canonical correlation analysis

162  (sparse CCA) 2930 for identifying groups of host genes that associate with groups of gut
163  microbial taxa to characterize pathway-level interactions; and (ii) Lasso penalized

164  regression 3', for identifying specific interactions between individual host genes and gut
165 microbial taxa (see Figure 1, Methods, Supplementary Figure S1). We applied our

166 integration analysis to matched host gene expression data and gut microbiome data for
167  each disease cohort separately to avoid any potential batch effects. For each disease
168  cohort dataset, we conducted the integration analysis separately for the patient data
169 (i.e. CRC, IBD, and IBS) and corresponding control data (non-CRC, non-IBD, and non-
170  IBS, respectively), and considered only associations that were found in patients and not
171  in controls. As opposed to the Procrustes analysis, our approach identified significant
172  and potentially biologically meaningful associations between gut microbiota and host
173  genes and pathways across the three diseases.

174

175 Shared host pathways associate with disease-specific gut microbes across Gl
176  diseases


https://doi.org/10.1101/2021.03.29.437589
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.29.437589; this version posted March 30, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A B A shared host pathway (e} Disease-specific host pathways

(e}
%

[ N V.
! %

Host genes Gut microbes Host genes Gut microbes
‘ Stre‘:cus R
A.:i Bactefoides
fré Parv&nas
Butyfibri . c 1
‘ . ”‘m ‘Syn les ‘.A Dellapro acteria
&k @
‘ Burkl leria . a‘es
Leu‘stoc Lac‘cus o 2 ac otes
o

RAC1 pathway " Syndecan-1 pathway

Oxidative phosphorylation
RAC1 pathway

ERBB1 downstream pathway
AVB3 integrin pathway

Vibrio cholerae infection
Proteasome

Syndecan-2 pathway

HDAC class | pathway

T cell receptor pathway

CD8 TCR downstream pathway
Primary immunodeficiency
Leishmania infection

Cell Adhesion molecules (CAMs)
Alzheimers disease

Focal adhesion

MET pathway

MAPK TRK pathway
Syndecan-1 pathway
Aminoacy! tRNA biosynthesis
DNA replication

Cell cycle

RAC1 reg pathway

Integrin beta-1 pathway
Cardiac muscle contraction
Regulation of actin cytoskeleton
Inositol phosphate metabolism
A6B1/A6B4 integrin pathway
Ribosome

| CRC&
| IBD &
1BS
00000000 ;

| CRC&IBD

A. ‘
M'1 1 Gral tella .
Peptostrs ccaceae
Mlcr‘mae Ca’"‘*ceae F'hascola acterium
/‘4 Mi ! Acldam*caceae
or ales Inres acter

Clostric{m sensu c‘a DL‘E!
1

CRC & IBS
00000.-00.00.(\’9

| IBD&IBS |
eco0000000

CRC

st

RAC1 pathway o Integrin beta-1 pathway

Erysipelatéglostridium

IBD

cler

Hematopoietic cell lineage
Cytokine—cytokine receptor interaction
B cell receptor signaling pathway
PI3KCI pathway

. . Anae‘ccus Copmcus
e S Bifidob; riaceae
:.1 Bawes Ow‘cter "7‘ cub
ma; Sis Gran tella Propionit riaceae
. . _ Cutibagterium a S }'2 Anae ccus
. 5.1 Tis: llia a Peptonjphilaceae

" . Microgogcales
c 1 A Bifidol aceae . ‘ Tisslboli
og(a-value) .q . Peptowaceae i Lactc z:r:usls °

1BS
c000®

Ribosome

Disease -logso(q-value) RAC1 pathway

® CcRC e 15

® ®0 @ 2 (O Host gene /\ Gut microbe
® 5

® Bs ® 60 D

. ‘ A Intes‘acter
. Phascolar acterium
. Audaml caceae

Peptostr ccaceae
o

Turicibacter

) sa‘is Barneésiella
Bacm(;gs intesti inis
ii

fin,

/ Erysipela‘)stndlum
Euba‘num

Clos ceae

Inte cter

Ruml occus
tsia
Peptostre ccaceae

177
178  Figure 2. Shared immunoregulatory and metabolic host pathways associate with disease-

179  specific gut microbes across human diseases. A. Host pathways enriched for sparse CCA gene
180 sets associated with gut microbiome composition across diseases (FDR < 0.1). Size of the dots
181 represent the significance of enrichment for each pathway, and color of the dots denote the

182  disease cohort in which this pathway is significantly associated with microbiome composition. B.
183  Association between microbial taxa in CRC, IBD and IBS (top to bottom) and host genes in the
184 RAC1 pathway, a shared host pathway (i.e., a pathway for which host gene expression

185  correlates with gut microbes across disease cohorts). Size of circles and triangles represent the
186  absolute value of sparse CCA coefficients of genes and microbes, respectively. C. Association
187  between the set of host genes in disease-specific host pathways (i.e. host pathways for which
188  gene expression correlates with gut microbes in only one of the disease cohorts) and group of
189  gut bacteria in CRC, IBD and IBS (top to bottom). D. A common set of host genes (grey circles)
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190 interact with disease-specific sets of microbes. These host genes are enriched for

191  immunoregulatory and acute inflammatory response pathways.

192

193 We hypothesized that host genes and gut microbial taxa involved in common

194  biological functions would act in a coordinated fashion, and, hence, would have

195 correlated expression and abundance patterns. To investigate this, we used sparse

196  CCA to characterize group-level association between host transcriptome and gut

197  microbiome in each of the three diseases 2°3°. We fit the sparse CCA model for each
198 dataset to identify subsets of significantly correlated host genes and gut microbes,

199  known as components (see Methods, and Supplementary Tables S2-S4). We then

200 performed pathway enrichment analysis on the set of host genes in each significant

201 component to determine host pathways that interact with gut microbes in a disease. We
202 identified shared pathways, namely host pathways for which gene expression correlates
203  with gut microbes across disease cohorts, and disease-specific pathways, namely host
204 pathways for which gene expression correlates with gut microbes in only one of the

205 three disease cohorts (Figure 2A; Fisher’s exact test, Benjamini-Hochberg FDR < 0.1,
206  Supplementary Table S5). For simplicity, we focused on the top five most significant
207 shared and disease-specific pathways (Figure 2A). We found three pathways shared
208 across CRC, IBD, and IBS that are known to regulate gastrointestinal tract inflammation
209 and gut barrier protection and repair. For example, oxidative phosphorylation, which is
210 the process of energy metabolism in the mitochondria, is known to be upregulated in
211 IBD and CRC, and contributes to tumorigenesis and drug resistance in CRC 3235,

212 Interestingly, the gut microbiome can signal mitochondria of gut mucosal immune cells
213  to alter mitochondrial metabolism, including oxidative phosphorylation processes; this
214  can lead to impaired epithelial barrier function and chronic intestinal inflammation in IBD
215 and CRC . We also found overlapping host pathways between disease pairs (see

216 CRC & IBD, CRC & IBS, and IBD & IBS in Figure 2A), including immunoregulatory

217  pathways and cell-surface receptors like integrin pathway, cell and focal adhesion, and
218  proteasome.

219

220 In addition, we identified 102 disease-specific host pathways that are associated

221 with gut microbes, including 52 CRC-specific, 25 IBD-specific, and 25 IBS-specific

222  pathways (Supplementary Table S5, Figure 2A). While IBD-specific host pathways

223 include A6B1/A6B4 integrin pathway and Integrin beta-1 pathway that regulate

224  leukocyte recruitment in Gl inflammation 373, IBS-specific pathways include immune
225 response pathways, including B cell receptor signaling pathway, and ribosome pathway.
226

227 To better understand the host gene-microbe interactions that underlie common

228 associations, we focused on the RAC1 pathway, where host gene expression is

229  associated with microbiome composition in CRC, IBD, and IBS. The RAC1 pathway is
230 known to regulate immune response and intestinal mucosal repair, and has previously
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231 been implicated in IBD and CRC %! (Figure 2B). As expected, we observed

232  overlapping host genes for this shared pathway across the three diseases. However,
233 the microbial taxa they are correlated with are disease-specific. In CRC, the RAC1

234  pathway is associated with oral bacterial taxa such as Streptococcus, Synergistales,
235 and GNO2, where Streptococcus species are known to be associated with colorectal
236  carcinogenesis 4243, In IBD, the RAC1 host pathway is associated with microbial taxa
237  previously implicated in IBD, including Granulicatella 446, and Clostridium sensu stricto
238 1, a microbe associated with chronic enteropathy similar to IBD #. In IBS, this pathway
239 is associated with bacteria such as Bacteroides massiliensis, that has been shown to be
240 prevalent in colitis 8, and Bifidobacterium and Odoribacter, that are known to be

241  depleted in IBS 49-52,

242

243 To investigate disease-specific associations, we considered unique host pathways
244  for which host gene expression correlates with gut microbes only in one of the three
245 diseases (Figure 2C). For example, the Syndecan-1 pathway, which we found to be
246  associated with gut microbial taxa only in CRC, has been previously shown to regulate
247  the tumorigenic activity of cancer cells by altering extracellular matrix adhesion and cell
248  morphology °3-%. Host gene expression in this pathway is associated with microbial
249 taxa such as Parvimonas and Bacteroides fragilis that are known to promote intestinal
250 carcinogenesis and are considered biomarkers of CRC '°6-%_The integrin-1 pathway, a
251 disease-specific host pathway in IBD, is found to be associated with

252  Peptostreptococcaceae, Intestinibacter, and Phascolarctobacterium, microbial taxa that
253  are have been implicated in IBD by previous studies 5%-62. To assess similarities in host
254  gene components across diseases, we identified a set of host genes that are common
255 between components across the three diseases, and we found that these genes are
256  enriched for immune response pathways in gut epithelium, including vascular

257  endothelial growth factor (VEGF), complementation and coagulation cascades, and

258 cytokine-cytokine receptor interaction (Figure 2D; Fisher’s exact test, Benjamini-

259 Hochberg FDR < 0.1). While this set of host genes is associated with disease-specific
260 groups of microbes, we also found overlapping microbes between IBD and IBS, such as
261  Peptostreptococcaceae and Intestinibacter, taxa that are found in high abundance in
262  gastrointestinal inflammation 59.61.62,

263

264  Specific gut microbes interact with individual host genes and pathways in each
265 disease
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267

268  Figure 3. Specific gut microbes interact with individual host genes and pathways in each

269 disease. A. Heatmap showing the overall pattern of interactions between significant and

270  stability-selected host genes and gut microbial taxa identified by the Lasso model in CRC, IBD,
271  and IBS (FDR < 0.1). B. Host pathways enriched among genes that are correlated with specific
272 gut microbes in CRC (purple), IBD (green), and IBS (yellow). C-D. Networks showing specific
273  gut microbes correlated with specific host genes enriched for disease-specific host pathways in
274  CRC (C), IBD (D), and IBS (E). Triangular nodes represent gut microbes, circular nodes

275 represent host genes and pathways. Edge color represents positive (blue) or negative (red)
276  association, and edge width represents strength of association (spearman rho). Grey edges
277  represent host gene - pathway associations.

278

279 Previous studies have shown that specific microbial taxa can regulate expression of
280 individual host genes 922, Therefore, we explored interactions between individual host
281  genes and gut microbes in each disease. To do so, we used Lasso penalized

282  regression models to identify specific gut microbial taxa whose abundance is associated
283  with the expression of a host gene 3'. We fit these models in a gene-wise manner, using
284  expression for each host gene as response and abundance of gut microbial taxa as
285 predictors. We then applied stability selection to identify robust associations (see

286 Methods). Using this approach, we found 755, 1295, and 441 significant and stability-
287  selected host gene-taxa associations in CRC, IBD, and IBS, respectively (Figure 3;
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Tables S6-S8; FDR < 0.1). These represent interactions between 745 host genes and
120 gut microbes in CRC (Supplementary Table S6), between 1246 host genes and 56
gut microbes in IBD (Supplementary Table S7), and between 436 host genes and 102
gut microbes in IBS (Supplementary Table S8) (Figure 3A). Examples of specific host
gene-microbe interactions can be found in Supplementary Figure S2. Overall, we
observed disease-specific patterns in host gene-taxa interactions.

To characterize the biological functions represented by the host genes that interact
with specific gut microbes, we applied enrichment analysis on the set of gut microbiota-
associated host genes in each disease (see Methods). This is complementary to our
group-level approach (Figure 2) in that these host pathways are enriched among
individual host gene-microbe pairs. We identified 87 host pathways that are unique to
each disease, including 22 CRC-specific, 60 IBD-specific, and 5 IBS-specific pathways
that interact with unique gut bacteria, of which we visualized top 10 most significant host
pathways per disease (Figure 3B, Fisher’s exact test, Benjamini-Hochberg FDR < 0.2,
Supplementary Table S9, see Methods). The host pathways enriched for CRC-specific
interactions are known to modulate tumor growth, progression and metastasis in CRC,
such as Interleukin-10 signaling, signaling by NOTCH1 in cancer, and regulation of
MECP2 expression and activity 4%, The host pathways we identified as enriched for
IBD-specific interactions are known to be responsible for maintenance of gastric
mucosa integrity, inflammatory response, and host defence against invading pathogens,
such as thrombin signalling through proteinase activated receptors (PARs), and
glucagon type ligand receptors 768, For IBS-specific interactions, the enriched host
pathways identified here have been shown to regulate homeostasis of intestinal tissue
and proinflammatory mechanisms in IBS, such as sumoylation of DNA damage
response and repair proteins, and arachidonic acid metabolism %71,

To characterize the potential mechanism of host gene-microbe interactions, we
further investigated the gut microbial taxa associated with host genes in these pathways
(Figure 3C-E). In CRC, we found that Anaerolineae and TM7, oral microbes that also
inhabit the human gastrointestinal tract, and are known to promote oral and colorectal
tumorigenesis 7278, are negatively correlated with host genes enriched for tumor-
promoting Interleukin-10 signaling pathway, such CXCL8 and IL1RN (Figure 3C and
Supplementary Figure S2). CXCL8 is known to be overexpressed in CRC, and IL1RN is
centrally involved in immune and inflammatory response, and its polymorphisms are
implicated in colorectal carcinogenesis 7-7°. Other host genes in Interleukin-10
signaling, such as CCR2 and FPR1, are positively correlated with Bacteroidales (Figure
3C and Supplementary Figure S2). CCR2 and FPR1 are overexpressed in colorectal

tumors, while Bacteroidales are enriched in CRC and associated with tumorigenesis 8-
82
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328

329 We observed that Peptostreptococcaceae, which is prevalent in patients with IBD
330 628384 s associated with multiple host genes and pathways in IBD (Figure 3D). For

331  example, its abundance is positively correlated with the expression of host genes

332 MAPKS3 and VIPR1, involved in thrombin signalling through proteinase activated

333 receptors (PARs) and glucagon type ligand receptors pathways, respectively. MAPK3 is
334 known to play a role in progression and development of IBD, and VIPR1 is over-

335 expressed in inflamed mucosa 858, The abundance of Micrococcaceae, which is known
336 to be increased in IBD, is negatively associated with the expression of GLP2R, a

337 glucagon receptor involved in maintenance of gut barrier integrity %27, In IBS-specific
338 interactions, we found that the levels of Prevotella, which is known to be

339 overrepresented in individuals with loose stool, to be negatively associated with

340 expression of SMCS5, which is involved in the sumoylation pathway 8898890 (Figure 3E).
341  Previous studies have shown that gut pathogens can target the host sumoylation

342  machinery that regulates inflammatory cascade in epithelial cells in inflammatory bowel
343 disease ®°. We also found the expression of PLA2G4A, a host gene that plays an

344  important role in arachidonic acid metabolism and is an integral member of

345 prostaglandin biosynthesis pathway that modulates gut epithelial homeostasis °'-°?, is
346  positively correlated with the abundance of Bacteroides massiliensis in IBS, a gut

347  microbe known to be prevalent in patients with gut malignancies, including ulcerative
348  colitis and colorectal carcinoma 4323 (Figure 3E). Taken together, these findings

349 demonstrate that interactions between specific gut microbial taxa and specific host

350 genes and pathways vary by disease state.

351

352 Disease-specific gut microbe-host gene crosstalk

11
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355  Figure 4. Associations for shared gut microbes and shared host genes reveal disease-specific
356  host-microbiome crosstalk. A. (center) Venn diagram showing overlap between gut microbes
357  associated with host genes in CRC, IBD and IBS, (counter-clockwise) networks showing host
358  gene-microbe interactions for gut microbes shared across CRC, IBD and IBS (Network 1),

359 between CRC and IBS (Network 2), between IBD and IBS (Network 3), and between CRC and
360 IBD (Network 4). B. (center) Venn diagram showing overlap between host genes associated
361  with gut microbes in CRC, IBD, and IBS, (counter-clockwise) networks showing host gene-

362  microbe interactions for host genes shared across CRC, IBD and IBS (Network 1), between
363 CRC and IBS (Network 2), between IBD and IBS (Network 3), and between CRC and IBD
364  (Network 4). Circular nodes represent host genes, triangular nodes represent gut microbes.
365 Colored nodes represent specific disease (purple: CRC, green: IBD, yellow: IBS), grey nodes
366  represent gut microbes (A) and host genes (B) shared across diseases. Edge color represents
367  positive (blue) or negative (red) association, and edge width represents strength of association
368  (spearman rho). All interactions were determined at FDR < 0.1.

369

370 To understand how shared gut microbes may interact with specific host genes

371  across diseases, we explored the overlaps between host gene-microbe associations in
372 CRC, IBD, and IBS (Figure 4A, Lasso regression, Benjamini-Hochberg FDR < 0.1,

373  Supplementary Table S10). We found that the abundance of 3 gut microbes,

374  Peptostreptococcaceae, Streptococcus, and Staphylococcus, is correlated with host
375 gene expression in all three diseases (Figure 4A; Network 1). Previous studies have
376 revealed that Peptostreptococcaceae and Streptococcus spp. are found at elevated
377 levels in CRC, IBD, and IBS 8436294-97 \While traditionally considered nasal- or skin-
378 associated bacteria, Staphylococcus spp. also colonize the human gastrointestinal tract
379 and include opportunistic pathogens that can cause acute intestinal infections in

380 patients with CRC and IBD %-1°3 and are associated with increased risk of IBS and

381 CRC 97103104 We found that the abundance of Peptostreptococcaceae is positively

382 correlated with the expression of host genes PYGB and NCKZ2 in IBD, whereas it is

383 negatively correlated with the expression of host gene HAS2 in IBS. PYGB and NCK2
384 are both upregulated in IBD, where PYGB is known to regulate Wnt/B-catenin pathway,
385 and NCK2 is involved in integrin and epidermal growth factor receptor signaling 105199,
386 In contrast, HASZ2 is known to have a protective effect on the colonic epithelium through
387 regulation of intestinal homeostasis and inflammation ''%-'2_ In CRC, we found that the
388 abundance of Peptostreptococcaceae is negatively associated with the expression of
389 GABT1, a host gene for which overexpression stimulates tumor growth in colon cancer
390 cells '3, Streptococcus also shows a disease-specific pattern of association with host
391 gene expression. In CRC, its abundance is correlated with the expression of RIPK4,
392  which regulates WNT signaling and NF-kB pathway, and is upregulated in several

393  cancer types, including colon cancer "'4-116_Similarly, in IBS, Streptococcus abundance
394 s correlated with the expression of DPEP2, which is known to modulate macrophage
395 inflammatory response "7, and is involved in arachidonic acid metabolism that is known
396 to be dysregulated in IBS 77" (Figure 4A; Network 1).
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397

398 To elucidate potential host gene-microbe interactions for gut microbes shared

399 between diseases, we visualized networks of most significant associations (Figure 4A;
400 Networks 24, Lasso regression, Benjamini-Hochberg FDR < 0.1, Supplementary

401  Table S10). We found 20 microbes for which abundance is associated with the

402  expression of host gene in at least two diseases. Notably, the abundance of Blautia, a
403 butyrate-producing beneficial microbe, is found to be negatively correlated with the

404  expression of RIPK3 in both CRC and IBD (Figure 4A; Network 4 and Supplementary
405 Figure S3). RIPK3 promotes intestinal inflammation in IBD, and colon tumorigenesis 18-
406  '?2. Interestingly, in CRC, Blautia is also associated with ZBP1 (Figure 4A; Network 4),
407  a host gene that recruits RIPK3 to induce NF-kB activation, and regulates innate

408 immune response to mediate host defense against tumors and pathogens 23125,

409

410 Conversely, to explore how shared host genes may interact with gut microbes

411  across all diseases, we identified host genes for which expression is correlated with the
412  abundance of specific gut microbes in CRC, IBD, and IBS (Figure 4B, Lasso

413 regression, FDR < 0.1, Supplementary Table S11). We identified 5 such host genes that
414  interact with 4 gut microbes in CRC, 5 gut microbes in IBS, and 4 gut microbes in IBD
415 (Figure 4B; Network 1, Supplementary Table S11). Of note, the expression of PINK1,
416  a host gene that regulates mitochondrial homeostasis and activates Pl13-kinase/AKT
417  signaling, contributing to intestinal inflammation in IBD, and tumorigenesis 2¢-128, is

418 associated with the abundance of Collinsella in CRC, Peptostreptococcaceae in IBD,
419  and Blautia in IBS. Previous studies have found that Collinsella is increased in

420 abundance in CRC, and has been shown to induce inflammation via altering gut

421  permeability '2°-131. However, Blautia has been found to be both positively and

422  negatively correlated with IBS symptoms 85132,

423

424 In addition, we identified 135 host genes for which expression is associated with

425 abundance of microbial taxa in at least two of the three diseases, and visualized the
426  network of most significant associations (Figure 4B; Networks 2—4, Lasso regression,
427 FDR < 0.1, Supplementary Table S11). We found that the host genes whose expression
428 is correlated with gut microbes in both CRC and IBD are enriched for pathways involved
429 in immune response, including natural killer cell mediated toxicity, Leishmania infection,
430 and leukocyte transendothelial migration (Figure 4B; Network 4, Fisher’s exact test,
431  Benjamini-Hochberg FDR < 0.1). Some notable associations for these shared host

432  genes include host genes and taxa previously implicated in CRC and IBD. For example,
433  expression of Annexin A1 or ANXA1, a host gene known to regulate intestinal mucosal
434  injury and repair and found dysregulated in CRC and IBD '33-% is positively correlated
435  with Bacteroidales in CRC, while negatively correlated with Peptostreptococcaceae in
436 IBD (Figure 4B; Network 4). Bacteroidales species are known to modulate maturation
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437  of the host immune system and gut barrier integrity 136137, TLR4, a host gene known to
438 modulate inflammatory response in intestinal epithelium through recognition of bacterial
439 lipopolysaccharide 38139 and previously implicated in IBD and CRC 40141 s found
440  associated with an oral microbe GN0O2 in CRC "2, whereas in IBD, it interacts with

441  Acidaminococcaceae, a gut microbe found increased in abundance in patients with

442  Crohn’s disease '*® (Figure 4B; Network 4). Overall, our analysis shows that shared
443  gut microbial taxa and shared host genes depict disease-specific host-microbe

444  crosstalk, thus suggesting that the mechanism of host gene-microbiome interaction

445  might be specific to the disease.

446

447  Discussion

448

449 While gut microbial communities and host gene expression have separately been

450 implicated with human health and disease, the role of the interaction between gut

451  microbes and host gene regulation in the pathogenesis of human gastrointestinal

452  diseases remains largely unknown. Here, we comprehensively characterized

453 interactions between gut microbiome composition and host gene expression from 416
454  colonic mucosal samples taken from patients with colorectal cancer, inflammatory bowel
455 disease, and irritable bowel syndrome, in addition to non-disease controls. To overcome
456  the challenges associated with integrating high-dimensional multi-omic datasets, we
457  developed and applied a machine learning framework to characterize interactions

458  between the gut microbiome and host transcriptome in each disease. We identified a
459  common set of host genes and pathways, including pathways that regulate

460 gastrointestinal inflammation, gut barrier protection, and energy metabolism, that are
461  associated with gut microbiome composition in all three diseases. We also found that
462  gut microbes that have been previously associated with all three diseases, including

463  Streptococcus, interact with different host pathways in each disease. This suggests that
464  both common and disease-specific interplay between gut microbes and host gene

465 regulation may contribute to the underlying pathophysiology of Gl disorders.

466

467 Previous studies have found common microbial signatures across CRC, IBD, and
468 IBS. For example, all three diseases exhibit an overrepresentation of

469 Peptostreptococcaceae and Streptococcus spp 843629 |n addition, both CRC and IBD
470 microbiomes are denoted by a loss of butyrate producing gut bacteria, including Blautia,
471 and an enrichment of enterotoxigenic Bacteroides fragilis >°8:9144 |n contrast to these
472  microbiome similarities, host gene regulation shows distinct alterations across the three
473 Gl disorders; for example, unique antibacterial gene expression profile and disruption of
474  purine salvage pathway are specific to IBS, deregulation of proinflammatory IL-23—IL-17
475 signaling is unique to IBD, and prominent activation of oncogenic pathways like Notch
476  and WNT signaling is a hallmark of CRC 813145146 Here, we found that common
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477  disease-related gut microbes can interact with host genes and pathways in a disease-
478  specific manner. Thus, it is compelling to hypothesize that although diseases can be
479 characterized by similar microbial perturbations, these microbes can impact different
480 pathophysiological processes through interaction with different host genes in each

481 disease. For example, we found that, in CRC, Streptococcus is correlated with the

482  expression of host genes that regulate WNT signaling and NF-kB pathway, whereas in
483 IBS, Streptococcus is correlated with host genes that modulate macrophage

484 inflammatory response, thus suggesting that this gut microbe may perturb distinct host
485 pathways in CRC and IBS. Of course, since our results are based on correlational

486 analysis, it is challenging to assess directionality. While it is possible that these disease-
487  specific interactions have a role in disease pathogenesis, it is also possible that the

488 disease-transformed colonic mucosa renders it more conducive to the same microbial
489  taxa.

490

491 We also identified a common set of host genes and pathways that are associated
492  with gut microbiome composition in all three diseases. These included pathways that
493 regulate gastrointestinal inflammation, immune response, and energy metabolism, and
494  have been previously implicated in these diseases 33147-14%_ Qur analysis shows that
495 these common host genes and pathways correlate with disease-specific gut microbes in
496 CRC, IBD, and IBS. For example, the expression of host gene PINK1 that regulates the
497  PI3-kinase/AKT signaling pathway '%° is associated with the abundance of Collinsella in
498 CRC, Peptostreptococcaceae in IBD, and Blautia in IBS. This suggests that in some
499  cases, distinct gut microbes may modulate host genes and pathways that are commonly
500 dysregulated across different gut pathologies. At the same time, we also found disease-
501  specific host gene-microbe interactions. For example, in CRC, Syndecan-1 pathway, a
502 host pathway that modulates tumor growth and progression, is correlated with microbial
503 taxa such as Parvimonas and Bacteroides fragilis that are known to promote intestinal
504  carcinogenesis 5356.57.63 These associations are not found in IBD or IBS, and are

505 unique to CRC. Taken together, our results indicate that Gl disorders are characterized
506 by a complex network of interactions between microbes and host genes. Although these
507 interactions can be disease-specific, we find cases where the same microbial taxon is
508 associated with different host genes in each disease, and vice-versa: cases where the
509 same host pathway is associated with different microbes in each disease. Although

510 much effort in microbiome research has been directed towards identifying specific

511  microbial taxa that are responsible for the pathogenesis of disease, our findings indicate
512  that without incorporating data on host gene-microbe interactions, studies may be

513  missing the full picture. Host omic data provides invaluable information on the potential
514  mechanisms through which microbes can affect health.

515
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516 An important contribution of our work is a machine learning-based integrative

517 framework for characterization of complex host gene-microbe interactions across

518 human diseases. Although few recent studies have investigated associations between
519  host transcriptome and gut microbiome in human gut disorders, our analysis uses an
520 innovative analytical technique that has several advantages 2*-?". First, as opposed to
521 analyses that rely on calculating pairwise correlations between features (e.g. Dayama et
522 al.), our approach does not require restricting the data to a predetermined subset of
523 taxa or genes of interest to increase statistical power. In addition, compared to

524  Procrustes analysis, which is commonly used for finding overall correspondence

525 between paired datasets, our approach does not only detect overall association, but can
526  also find specific associations between gut microbial taxa and host genes (using Lasso)
527 and pathways (using sparse CCA), allowing identification of specific interactions and
528 shedding light on potential biological mechanisms of interaction. Furthermore, our

529  approach can be applied to other types of multi-omic dataset, including microbial

530 metabolomic and metagenomic data 8. Lastly, our project incorporates data from across
531 several diseases, identifying commonalities across conditions as well as disease-

532  specific patterns.

533

534 Despite these advantages, our study has several limitations. While we report the
535 potential role of host gene-microbiome interactions in the pathophysiology of Gl

536  disorders, our study identifies correlations, and we cannot infer causality here. Given
537 the challenges associated with studying causal mechanisms in humans, future studies
538 using cell culture or animal models would be useful in elucidating the causal role and
539 directionality of interactions between the gut microbiome and host gene regulation in
540 these diseases 0. Another caveat of our study is that it includes three different disease
541  cohorts with disparate sample collection and sequencing protocols, which can lead to
542  potential batch effects. To mitigate this issue, we performed our integration analysis in
543  each disease cohort separately, including cases and internal controls within each

544  cohort. Additionally, our analysis focused only on the taxonomic composition of the

545  microbiome, and hence we could not characterize interactions involving microbial genes
546  and pathways. Lastly, there are several environmental variables that could potentially
547 influence the microbiome, including diet and medication history, which are not available
548 across our disease cohorts.

549

550 Overall, our work demonstrates the power of integrating gut microbiome and host
551  gene expression data to provide insights into their combined role in Gl diseases,

552 including CRC, IBD, and IBS. We find disease-specific and shared gut microbe-host
553 gene interactions across these gut disorders, involving gut microbes and host genes
554  implicated in gastrointestinal inflammation, gut barrier protection, and metabolic

555  functions. We also found that the same gut microbes interact with different host genes
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556 in different diseases, suggesting potential mechanisms by which similar gut microbes
557 can affect different disease pathologies. These results represent an important step

558 towards characterizing the crosstalk between gut microbiome and host gene regulation
559  and understanding the contribution to disease etiology.

560
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570 Methods

571
572  Overall study design, samples and data
573 We obtained mucosal microbiome (16S rRNA) and host gene expression (RNA-seq)

574  data from colonic mucosal biopsy samples collected from the patients from three

575 disease cohorts: colorectal cancer (CRC), inflammatory bowel disease (IBD), and

576 irritable bowel syndrome (IBS). Except the host gene expression (RNA-seq) data for
577 CRC, all the other datasets were generated and described in detail in previous studies
578 3825 Below, we describe the sample collection, sequencing, and quality control for host
579 RNA-seq data for CRC cohort, and summarize data acquisition process for other

580 datasets:

581
582 CRC samples and data
583 We used 88 pairs of colonic mucosal samples from 44 patients, with primary tumor

584 and normal tissue samples from each individual. These samples were characterized
585 and described in a previous study 3. Detailed cohort characteristics are included in

586  Supplementary Table S1.

587

588 Host RNA-seq sequencing, alignment and quality control. Total RNA was extracted

589 using a previously established protocol 3151, Approximately 100mg of flash-frozen tissue
590 per sample were lysed by placing the tissue in 1mL of Qiazol lysis reagent (Qiagen Inc.,
591  Valencia, CA, USA) and sonicating in a 65° C water bath for 1-2 hours. Nucleic acids
592  were purified from the lysates using the Qiagen AllPrep DNA/RNA mini kit (Qiagen Inc.,
593 Valencia, CA, USA), quantified using a Nanodrop 2000 spectrophotometer (Thermo
594  Fisher Scientific, Waltham, MA USA), and submitted for RNA sequencing to the

595  University of Minnesota Genomics Center. Total eukaryotic RNA isolates were

596 quantified using a fluorimetric RiboGreen assay, and once the samples passed the

597 initial QC step (= 1 microgram and RIN = 8), they were converted to lllumina sequencing
598 libraries using lllumina’s TruSeq Stranded Total RNA Library Prep (for details, see

599  www.illumina.com). Truseq libraries were hybridized to a paired-end flow cell and

600 individual fragments were clonally amplified by bridge amplification on the lllumina cBot.
601  Once clustering was complete, the flow cell was loaded on the HiSeq 2500 and

602 sequenced using lllumina’s SBS chemistry. Base call (.bcl) files for each cycle of

603 sequencing were generated by lllumina Real Time Analysis (RTA) software. Primary
604 analysis and index de-multiplexing are performed using lllumina’s bcl2fastq v2.20.0.422,
605  which output the demultiplexed FASTQ files.

606

607 A quality check of raw sequence FASTQ files was performed using FastQC software
608  (version 0.11.5) 52, Quality trimming was performed to remove sequence adaptors and
609 low quality bases using Trimmomatic with 3bp sliding window trimming from 3’ end
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610  requiring minimum Q16 (phred33) "% . FastQC was run on the resulting trimmed files to
611  ensure good quality of sequences. The paired-end reads were mapped to NCBI v38 H.
612  sapiens reference genome using HISAT2 "%, resulting in an average alignment rate of
613  87.11% overall for 88 samples. We obtained a range of read counts between

614 14,365,657 and 31,530,487 aligned reads per sample, with an average of 22,475,688.2
615 and 22,697,605.5 aligned reads per sample. SAMtools was used for sorting and

616  indexing the aligned bam files. After alignment, the Subread package (version 1.4.6)
617  within the featureCounts program was used to generate transcript abundance file 1%°
618 (Supplementary Figure S4).

619

620 16S rRNA data acquisition. The microbiome dataset used in this study was generated
621 and characterized previously 3. We used the unnormalized and unfiltered OTU table in
622 tab-delimited format, representing mucosal microbiome data from 44 tumor and 44

623 patient-matched colon tissue samples.

624
625 IBD samples and data
626 We used previously generated and described host gene expression (RNA-seq) and

627 mucosal gut microbiome (16S rRNA) data for the IBD cohort generated as part of the
628 HMP2 project 2528 (for detailed protocols, see http://ibdmdb.org/protocols). These

629 include data from colonic biopsy samples collected from 78 individuals, including 56
630 individuals with IBD, and 22 individuals without IBD (“non-IBD” in HMP2). Out of 56 IBD
631 patients, 34 patients had Crohn’s disease (CD) and 22 patients had ulcerative colitis
632 (UC). Detailed cohort characteristics are included in Supplementary Table S1. We

633 downloaded metadata, host RNA-seq data, and microbiome data for these samples
634  from http://ibdmdb.org in July 2018. We downloaded the unnormalized and unfiltered
635 OTU table and host transcript read counts files in tab-delimited format. We describe the
636 filtering and preprocessing steps for host gene expression and microbiome data below.
637

638 IBS samples and data

639 We used previously generated and characterized host gene expression (RNA-seq)
640 and mucosal gut microbiome (16S rRNA) data for the IBS cohort . These include data
641  from colonic biopsy samples collected from 42 individuals, including 29 individuals with
642 IBS, and 13 healthy individuals (non-IBS). Detailed cohort characteristics are included in
643 Supplementary Table S1. We obtained the unnormalized and unfiltered OTU table and
644  host transcript read count files in tab-delimited format via personal communication with
645 authors of the paper 8. For some individuals, samples were collected at two time points.
646 For these cases, we averaged the gene expression levels and microbiome abundance
647 measurements across the two time points. This is supported by a recent study showing
648 that “omics” methods are more accurate when using averages over multiple sampling
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649 time points %6, We describe the filtering and preprocessing steps for host gene
650 expression and microbiome data below.

651
652 Preprocessing host gene expression data
653 For host gene expression data for each disease cohort, we used biomaRt R

654 package (version 2.37.4) to only keep data for protein-coding genes '%". We filtered out
655 low expressed genes to retain genes that are expressed in at least half of the samples
656 in each disease cohort. We performed variance stabilizing transformation using the R
657 package DESeq2 (version 1.14.1) on the filtered gene expression read count data %8
658  We filtered out genes with low variance, using 25% quantile of variance across samples
659 in each disease cohort as cutoff. Performing these steps for RNA-seq data for each

660 disease cohort separately resulted in a unique host gene expression matrix per disease
661  for downstream analysis, including 12513 genes in the CRC dataset, 11985 genes in
662 IBD dataset, and 12429 genes in IBS dataset.

663
664 Preprocessing microbiome data
665 We performed the following steps for microbiome data from each disease cohort

666  separately. First, sequences that were classified as either having originated from

667  archaea, chloroplasts, known contaminants originating from laboratory reagents or Kits,
668 and soil or water-associated environmental contaminants were removed from the OTU
669 table as described previously'®. Next, we summarized the OTU table at the species (if
670 present), genus, family, order, class, and phylum taxonomic levels, and performed

671 prevalence and abundance-based filtering to retain taxa found at 0.001 relative

672 abundance in at least 10% of the samples. We then concatenated these summarized
673 taxa matrices (count data) into one combined taxa matrix for each disease dataset. We
674  applied centered log ratio (CLR) transform on the filtered taxa count matrix to account
675 for compositionality effects. These steps resulted in a taxonomic abundance matrix for
676 each disease cohort, which included 235 taxa in the CRC dataset, 121 taxa in the IBD
677 dataset, and 238 taxa in the IBS dataset.

678
679 Procrustes analysis
680 To assess overall correspondence between host gene regulation and gut

681  microbiome composition in CRC, IBD, and IBS, we performed Procrustes analysis in R
682  using the vegan package (version 2.4-5) '8 For each disease cohort, we used

683  Aitchison’s distance on host gene expression data and Bray Curtis distance on gut

684 microbiome data as input to the Procrustes analysis '6'. The significance of rotation
685 agreement was obtained using the protest() function with 9,999 permutations.

686

687 Sparse Canonical Correlation Analysis
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688 We used sparse canonical correlation analysis (sparse CCA) to identify group-level
689 correlations between paired host gene expression and gut microbiome data in each
690 disease cohort. Canonical correlation analysis (CCA) identifies linear projection of two
691 sets of observations into shared latent space that maximizes correlation between the
692 two datasets '%2. Sparse CCA is adapted from CCA for high dimensional settings to
693 incorporate feature selection by utilizing L7 or lasso penalty in CCA 2°. The objective
694  function of sparse CCA can be expressed as follows:

695

696 maximize, ,u’ X"Yv subject tou" X" Xu < 1,vTYTYv < 1, ||u|l; < Ay, |Vl £ A,
697

698 where, Xand Ydenote two data matrices with same number of samples, but different
699 number of features (representing gut microbiome taxonomic composition data and host
700 gene expression data, respectively); u and v are canonical loading vectors of X and Y
701  respectively; 1,and A,control lasso penalties of u and v, respectively.

702

703 For each disease cohort separately, we applied sparse CCA using R (version 3.3.3)
704  package PMA (version 1.1) with gut microbiome taxonomic composition and host gene
705 expression as two sets of variables to be correlated '%3. Below, we describe details on
706  hyperparameter tuning, fitting sparse CCA models, computing significance of correlation
707  for sparse CCA components, enrichment analysis, and visualization of sparse CCA

708  output.

709

710 Hyperparameter tuning and fitting for Sparse CCA model

711 We performed hyperparameter tuning to identify the sparsity penalty parameters for

712 gut microbiome abundance (A1) and host gene expression (A2) data. Since the

713  permutation search provided in the PMA package only performs a one-dimensional
714  search in the tuning parameter space, we implemented a grid-search approach using
715 leave-one-out cross-validation in R (version 3.3.3) for hyperparameter tuning. We

716  selected penalty parameters which had the highest correlation under cross-validation.
717  Using this approach, we identified A1as 0.15 and Az as 0.2 for CRC data, A1as 0.177
718 and A2 as 0.333 for IBD data, A1as 0.4 and A2 as 0.1 for IBS data.

719

720 After identifying sparsity parameters, we fit the sparse CCA model to obtain subsets
721 of correlated host genes and gut microbes, known as components. Each sparse CCA
722  component includes non-zero weights (or canonical loadings) on gut microbes, and
723  non-zero weights on a subset of host genes correlated with those gut microbes to

724  capture joint variation in the two sets of observations. We computed the first 10 sparse
725  CCA components for each disease cohort, performing a separate computation for case
726  and control samples. Sparse CCA components are computed iteratively, informed by
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previously computed components, thus, resulting in uncorrelated components '64. Next,
we assessed the significance of sparse CCA components as described below.

Significance of correlation for sparse CCA components

We computed the significance of each pair of canonical variables (or a component)
using leave-one-out cross-validation approach in R (version 3.3.3). For a given
component, we first used the penalty parameters determined above to compute the
sparse CCA output with one sample held out. We then computed the scores for the
held-out sample, i.e., we computed scoreX; = X;u_; and scoreY; = Y, v_; ,whereiis

the held-out sample, X;and Y; denote the values for i** sample of the input data
matrices Xand Y, and u_; and v_; are the canonical loadings estimated from the

sparse CCA computation without the it*sample. We repeated this n times, where n is
the total number of samples in the data, to obtain the vector of held-out scores. To
assess the true strength of association and its significance, we used cor.test() on the
scores computed for the held-out samples. We corrected the p-values for multiple
hypothesis testing using Benjamini-Hochberg (FDR) method within each disease cohort,
and determined significant components at FDR < 0.1.

Using this approach, we identified 7 significant components in CRC, with an average
of 828 host genes and 8 gut microbes; 4 significant components in IBD, with an average
of 2095 host genes and 6 gut microbes; and 6 significant components in IBS , with an
average of 577 host genes and 61 gut microbes (FDR < 0.1, Supplementary Tables S2-
S4).

Enrichment analysis for sparse CCA

To characterize host pathways enriched for the set of host genes associated with
microbes in each component, we implemented an enrichment analysis in R (version
3.3.3). We implemented Fisher’s exact test to assess pathway enrichment, where we
used the set of host genes input to the sparse CCA analysis as background genes, and
set of host genes in a component as the genes of interest. We used KEGG and PID
gene sets from MsigDB canonical pathways collection '6%.1%_ To avoid pathways that
are too large to provide any specific biological insights or too small to provide adequate
statistical power, we excluded any pathway with either (1) fewer than 25 genes, (2)
more than 300 genes, or (3) fewer than 5 genes that overlapped between the genes of
interest and the pathway. We combined the set of enriched host pathways for all
significant components for a given disease dataset, corrected for multiple hypothesis
testing within each disease cohort using Benjamini-Hochberg (FDR) approach, and
determined significant host pathways at FDR < 0.1. This analysis was performed
separately for case and control data for each disease.
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767 To identify case-specific host pathways, we used a two-part approach: (1) first, we
768 identified pathways that are only significantly enriched in cases (FDR < 0.1) and not in
769 controls. (2) In addition, we identified pathways that are significant in both the cases and
770  controls at FDR < 0.1.For these pathways, we performed differential enrichment in

771  cases versus controls by implementing a comparative log odds-ratio approach in R
772 187188 To do so, we first computed the z-score for the odds ratio for i-th pathway in
773  cases:

774

775 Zicase = 109(6;)/SE(6;)

776

777  where, §;is the odds-ratio for i-th pathway in cases, and SE (§;)is the standard error for
778  i-th pathway in cases, which is computed using the four elements, n,to n,, of the 2x2
779  contingency table used in the enrichment analysis for the i-th pathway as follows:

780

781 SE(8) = {1/ny +1/n, + 1/ng+ 1/,
782
783 Similarly, we computed z; ., for the same pathway in the controls. For a given

784  pathway, we compare enrichment for the component that gives highest significance for
785 the cases with that which gives highest significance for the controls. Next, we compute
786 a comparative log odds-ratio for i-th pathway overlapping between cases and controls
787  as follows:

788
log(5i case) - log(5i ctrl)
7 case—ctrl = ' :
% Picase=ctrl SE(6i,case,ctrl)
790
791

792  The greater the value of z; .,5.—¢ri, the greater the odds a pathway is differentially

793  enriched in case versus control than by chance. P-values were inferred assuming

794  normal approximations, and corrected for multiple hypothesis testing using Benjamini-
795 Hochberg (FDR) approach. As the last step of part (2), we retained pathways that were
796 differentially enriched in cases versus controls at FDR < 0.2. Finally, we combined the
797  pathways from part (1) and (2) to obtain case-specific pathways.

798

799 Visualizing disease-specific and shared host pathways and components from
800 sparse CCA

801 To determine shared host pathways, i.e. host pathways for which gene expression
802 correlates with gut microbes across all three disease cohorts, and disease-specific host
803 pathways, i.e. host pathways for which gene expression correlates with gut microbes in
804  only one of the three disease cohorts, we computed overlaps between significant case-
805 specific host pathways determined above across the three disease cohorts. Given the
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806 overlap across the curated gene sets from MsigDB, we controlled for redundancy

807 across pathways for visualization purposes. To do this, we identified similar pathways
808 based on their relative overlap in terms of the set of genes using an overlap coefficient.
809 The overlap coefficient between two pathways is defined as the number of common

810 genes between the pathways divided by the number of genes in the pathway with fewer
811  genes. Specifically, the overlap coefficient is represented as follows:

812

813 lap(X,Y) X nrl
overia , = o
Y min(IX1, 1]
814
815 For the top 15 most significant host pathways (FDR < 0.1) discovered for each

816 shared and disease-specific set (Supplementary Table S12), we computed pairwise
817  similarity between pathways as overlap coefficients and used a maximum allowed

818  similarity score of 0.5 as a cutoff. Using the pairs of pathways that satisfied the cutoff,
819  we computed the connected components to identify clusters of overlapping pathways.
820 For visualization purposes, we selected a representative pathway from each connected
821 component, prioritising the pathway with the highest number of genes (Figure 2A,

822  Supplementary Table S4). We visualized host pathway enrichment using the R package
823  ggplot (version 3.2.1).

824

825 For visualizing components corresponding to selected host pathways or common
826  host genes across diseases (Figures 2B — D), we ordered host genes and taxa by their
827  absolute coefficients in the component, and selected the top 10 host genes and taxa for
828 representation. If multiple taxa originating from the same lineage occurred in a

829 component, we selected the one with the highest coefficient to reduce redundancy, thus
830 representing the taxa with most contribution from a given lineage. The size of host

831 genes and gut microbial taxa are scaled by the absolute value of their corresponding
832  coefficients in a given component. All sparse CCA components were visualized using
833  Cytoscape (version 3.5.1) 169,

834
835 Lasso regression analysis
836 We used Lasso penalized regression to identify specific interactions between

837 individual host genes and gut microbial taxa within each disease cohort 3'. We

838 implemented a gene-wise model using expression for each host gene as response and
839 abundances of microbiome taxa as predictors, to identify microbial taxa that are

840 correlated with a host gene. An ordinary least squares (OLS) regression is not suitable
841  for this task, since OLS results in unstable solutions under high-dimensional settings or
842 whenp >> n,i.e. number of predictors p is much larger than number of samples n.
843  Additionally, we expect the abundance of only a few microbial taxa to correlate with the
844  expression of each host gene. To address this, we used lasso regression, which is
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similar to multivariate OLS, except that it uses shrinkage or regularization to perform
variable selection, thus picking only a few taxa that associate with a host gene’s
expression.

To account for other factors that can impact host gene expression or microbiome
composition, each model also included covariates in the predictor matrix (i.e.
microbiome abundance table) for gender (male or female), disease-subtype for IBD
(Crohn’s Disease or ulcerative colitis), disease-subtype for IBS (constipation (IBS-C) or
diarrhea (I1BS-D)).

The lasso model estimates the lasso regression coefficient fby minimizing the

following:
P

n p
> i-B-) B ) 1Bl
i=1 j=1 j=1

where, n= number of samples; p= number of predictors (taxa and other covariates);
1<i <n1<j<p;y =response (hostgene expression); x = predictor (taxa
abundance and other covariates); A= tuning parameter, 1 > 0.

In addition to minimizing the residual sum of squares (first term in the equation),
lasso minimizes the [;norm of the coefficients (second term in the equation), which has
an effect of forcing some of the coefficients to zero as the value of tuning parameter,A,
increases. Thus, lasso performs feature or variable selection that leads to sparse
models.

We implemented a lasso regression framework using R (version 3.3.3) package
glmnet (version 2.0-13), which uses cyclical coordinate descent to compute
regularization path 79, Our framework executes a lasso regression for each host gene’s
expression as response and abundances of microbial taxa and values of other
covariates as predictors. We used leave-one-out cross-validation to estimate the tuning
parameter, A, which was used to fit the final model on a given disease dataset.

We then performed inference for the lasso model using a regularized projection
approach known as desparsified lasso. The desparsified lasso uses the asymptotic
normality of a bias-corrected version of the lasso estimator to obtain 95% confidence
intervals and p-values for the coefficient of each predictor (microbe) associated with a
given host gene '"'. We used the R package hdi (version 0.1-7) that implements the
desparsified lasso approach for estimation of confidence intervals and hypothesis
testing in high dimensional and sparse settings '"*172. We then corrected for multiple
hypothesis testing using Benjamini-Hochberg (FDR) method.
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883
884  Stability selection for Lasso model
885 Since the lasso model is sensitive to small variations of the predictor variable, we

886  used stability selection to pick out robust microbes associated with a host gene 173
887  Stability selection is a resampling-based method that can be combined with different
888 variable selection procedures in high dimensional settings, including lasso. Briefly,
889  stability selection with lasso proceeds as follows:

890

891 Step 1. Select a random subset of the data.

892 Step 2. Fit the lasso model with a randomly perturbed penalty term in the

893 neighborhood of the “best” penalty 2.Record the set of selected variables (microbes).
894 Step 3. Repeat steps 1) and 2) Ktimes.

895 Step 4. Compute the frequency of selection,f; per variable (microbe) across all trials.
896 Step 5. Select the variables (microbes) that are selected with a frequency of at least

897  finr ., a pre-specified threshold value. Thus, we select a set of stable variables

898 (microbes) such that f; > fi},.

899

900 The overall idea is that, if the same variables (microbes) are repeatedly selected when
901 the parameters are perturbed, then they are robust variables. Stability selection also
902 controls for family-wise error rate, thus controlling for false positives in addition to the
903 FDR approach mentioned above '"3. In our analysis, we used the R package stabs

904  (version 0.6-3) to perform stability selection 4. Specifically, we used the following

905 parameters in the process described above: in Step 1, a random subset of size n/2 of
906 data is selected, where nis total number of samples, in Step 3, K = 100, and in Step 5,
907 fin-= 0.6, i.e. a predictor (microbe) selected in at least 60% of the fitted models is

908 considered stable. The choice of these parameters are in accordance with the proposal
909 of stability selection by Meinshausen and Bihimann'"3.

910

911 Finally, we performed an intersection between associations identified by stability
912 selection here and associations identified at FDR < 0.1 by the lasso model described
913 above. We removed any host gene-gender and host gene-disease-subtype associations
914  to obtain the significant and stability selected host gene-microbe associations at FDR <
915 0.1.

916
917 Parallel execution of lasso analysis on supercomputing nodes
918 We implemented a parallel framework for executing the gene-wise lasso analysis,

919 where we parallelized execution of lasso models on host genes across multiple nodes
920 and cores on a compute cluster from Minnesota Supercomputing Institute. We used job
921  arrays to parallelize our analysis on multiple nodes on the cluster. Additionally, we used
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922 R packages doParallel (version 1.0.15) and foreach (version 1.4.7) to run parallel
923 processes on multiple cores of each compute node.

924
925 Enrichment analysis for lasso output
926 To characterize biological functions for the host genes that were found associated

927  with specific gut microbes in a disease cohort by the lasso framework, we implemented
928 an enrichment analysis in R (version 3.3.3) using Fisher's exact test. We used the set of
929 expressed genes input to the lasso analysis as the background genes, and the set of
930 host genes associated with gut microbes in a patient samples as genes of interest. We
931 used the KEGG, PID, and REACTOME gene sets from MsigDB canonical pathways
932  collection %186, To avoid too large or too small pathways, we excluded from our

933 analysis any pathway with fewer than 25 genes, greater than 85 genes, or fewer than 5
934 genes that overlap between the genes of interest and the pathway. The p-values

935 obtained from Fisher’s exact test were adjusted for multiple testing using Benjamini-
936 Hochberg (FDR) approach. We identified 87 host pathways that are unique to each
937 disease, including 22 CRC-specific, 60 IBD-specific, and 5 IBS-specific pathways that
938 interact with unique gut bacteria (FDR < 0.2, Supplementary Table S8). Here, we used
939 a more relaxed FDR threshold of 0.2 to present a larger number of biologically relevant
940 host pathways.

941
942 Visualization of shared genes and taxa interactions for lasso output
943 In Figure 4, we visualized host gene-microbe interactions for gut microbes and host

944  genes shared across diseases. For visualizing interactions for shared gut microbes

945  (Figure 4A), we identified shared microbes between all possible overlaps between

946 diseases (Figure 4A; Networks 1-4), host genes that interact with these common

947  microbes in each disease, and all interactions involving these microbes and genes in
948 each disease (FDR < 0.1). Next, we grouped gene-taxa interactions identified per

949 disease by shared taxa, sorted them by FDR value, and picked top gene-taxa

950 association per shared taxa until we obtained at most 10 interactions per disease (FDR
951 < 0.1, Supplementary Table S9).

952

953 Similarly, for visualizing interactions for shared host genes (Figure 4B), we identified
954  shared host genes between all possible overlaps between diseases (Figure 4B;

955 Networks 1-4), and host gene-taxa interactions per disease for these host genes

956 shared across diseases. We sorted the interactions by FDR adjusted g-values (ordered
957 first by g-value in CRC associations, followed by g-value in IBD associations, and finally
958 by g-value in IBS associations, depending on the overlapping set under consideration).
959  We picked top 10 genes from this merged output, and identified at most top 10

960 associations involving these genes in each disease for the overlapping set under

961 consideration (FDR < 0.1, Supplementary Table S10). Since lasso gives biased
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962 estimates of the coefficients, we used Spearman correlation coefficient (rho) to depict

963 strength of association for visualizing host gene-taxa associations. All the associations
964 in Figure 4 were visualized using Cytoscape v3.5.1, where shared features are in grey
965 and disease-specific features in disease-specific colors 169,

966

967 Data and Software Availability

968

969 Raw data for host RNA-seq for CRC cohort is available on the NCBI Sequence

970 Read Archive (SRA) under submission ID: SUB9143781. For raw data from 16S rRNA
971  sequencing for CRC cohort, RNA-seq and 16S rRNA sequencing for IBD cohort, and
972 RNA-seq and 16S rRNA sequencing for IBS cohort, please refer to data accession

973  details published previously 2528, Processed data tables for host transcriptomics and
974  microbiome data for each disease cohort have been included as supplemental tables
975 (Supplementary Tables S13-S18). Code used for integration analyses performed in the
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