Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Self-Supervised Deep Learning Encodes High-Resolution Features of Protein Subcellular Localization

View ORCID ProfileHirofumi Kobayashi, View ORCID ProfileKeith C. Cheveralls, View ORCID ProfileManuel D. Leonetti, View ORCID ProfileLoic A. Royer
doi: https://doi.org/10.1101/2021.03.29.437595
Hirofumi Kobayashi
1CZ Biohub, San Francisco, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Hirofumi Kobayashi
  • For correspondence: hirofumi.kobayashi@czbiohub.org manuel.leonetti@czbiohub.org loic.royer@czbiohub.org
Keith C. Cheveralls
1CZ Biohub, San Francisco, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Keith C. Cheveralls
Manuel D. Leonetti
1CZ Biohub, San Francisco, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Manuel D. Leonetti
  • For correspondence: hirofumi.kobayashi@czbiohub.org manuel.leonetti@czbiohub.org loic.royer@czbiohub.org
Loic A. Royer
1CZ Biohub, San Francisco, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Loic A. Royer
  • For correspondence: hirofumi.kobayashi@czbiohub.org manuel.leonetti@czbiohub.org loic.royer@czbiohub.org
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

Article Information

doi 
https://doi.org/10.1101/2021.03.29.437595
History 
  • July 3, 2021.

Article Versions

  • Version 1 (March 29, 2021 - 17:07).
  • You are currently viewing Version 2 of this article (July 3, 2021 - 01:08).
  • View Version 3, the most recent version of this article.
Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.

Author Information

  1. Hirofumi Kobayashi1,*,
  2. Keith C. Cheveralls1,
  3. Manuel D. Leonetti1,* and
  4. Loic A. Royer1,*
  1. 1CZ Biohub, San Francisco, USA
  1. ↵*Correspondence: hirofumi.kobayashi{at}czbiohub.org, manuel.leonetti{at}czbiohub.org, loic.royer{at}czbiohub.org
Back to top
PreviousNext
Posted July 03, 2021.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Self-Supervised Deep Learning Encodes High-Resolution Features of Protein Subcellular Localization
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Self-Supervised Deep Learning Encodes High-Resolution Features of Protein Subcellular Localization
Hirofumi Kobayashi, Keith C. Cheveralls, Manuel D. Leonetti, Loic A. Royer
bioRxiv 2021.03.29.437595; doi: https://doi.org/10.1101/2021.03.29.437595
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Self-Supervised Deep Learning Encodes High-Resolution Features of Protein Subcellular Localization
Hirofumi Kobayashi, Keith C. Cheveralls, Manuel D. Leonetti, Loic A. Royer
bioRxiv 2021.03.29.437595; doi: https://doi.org/10.1101/2021.03.29.437595

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Cell Biology
Subject Areas
All Articles
  • Animal Behavior and Cognition (4378)
  • Biochemistry (9571)
  • Bioengineering (7082)
  • Bioinformatics (24821)
  • Biophysics (12595)
  • Cancer Biology (9944)
  • Cell Biology (14333)
  • Clinical Trials (138)
  • Developmental Biology (7942)
  • Ecology (12092)
  • Epidemiology (2067)
  • Evolutionary Biology (15979)
  • Genetics (10914)
  • Genomics (14726)
  • Immunology (9859)
  • Microbiology (23633)
  • Molecular Biology (9472)
  • Neuroscience (50815)
  • Paleontology (369)
  • Pathology (1538)
  • Pharmacology and Toxicology (2677)
  • Physiology (4005)
  • Plant Biology (8651)
  • Scientific Communication and Education (1508)
  • Synthetic Biology (2389)
  • Systems Biology (6420)
  • Zoology (1345)