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Abstract

Elucidating the diversity and complexity of protein local-
ization is essential to fully understand cellular architec-
ture. Here, we present cytoself, a deep learning-based ap-
proach for fully self-supervised protein localization pro-
filing and clustering. cytoself leverages a self-supervised
training scheme that does not require pre-existing knowl-
edge, categories, or annotations. Applying cytoself to im-
ages of 1311 endogenously labeled proteins from the re-
cently released OpenCell database creates a highly resolved
protein localization atlas. We show that the representations
derived from cytoself encapsulate highly specific features
that can be used to derive functional insights for proteins
on the sole basis of their localization. Finally, to better un-
derstand the inner workings of our model, we dissect the
emergent features from which our clustering is derived, in-
terpret these features in the context of the fluorescence im-
ages, and analyze the performance contributions of the dif-
ferent components of our approach.

Systematic and large-scale microscopy-based cell assays
are becoming an increasingly important tool for biological
discovery1, 2, playing a key role in drug screening3, 4, drug
profiling5, 6, and for mapping sub-cellular localization of the
proteome7, 8. In particular, large-scale datasets based on
immuno-fluorescence or endogenous fluorescent tagging com-
prehensively capture localization patterns across the human
proteome9, 10. Together with recent advances in computer vi-
sion and deep learning11, such datasets are poised to help sys-
tematically map the cell’s spatial architecture. This situation is
reminiscent of the early days of genomics, when the advent of
high-throughput and high-fidelity sequencing technologies was
accompanied by the development of novel algorithms to ana-
lyze, compare, and categorize these sequences, and the genes
therein. However, images pose unique obstacles to analysis.
While sequences can be compared against a frame of reference
(i.e. genomes), there are no such references for microscopy
images. Indeed, cells exhibit a wide variety of shapes and ap-
pearances that reflect a plurality of states. This rich diversity
is much harder to model and analyze than, for example, se-
quence variability. Moreover, much of this diversity is stochas-
tic, posing the additional challenge of separating information
of biological relevance from irrelevant variance. The funda-
mental computational challenge posed by image-based screens
is therefore to extract well-referenced vectorial representations
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that faithfully capture only the relevant biological information
and allow for quantitative comparison, categorization, and bio-
logical interpretation.

Previous approaches to classify and compare images have
relied on engineered features that quantify different aspects of
image content – such as cell size, shape and texture12–15. While
these features are, by design, relevant and interpretable, the un-
derlying assumption is that all the relevant features needed to
classify an image can be identified and appropriately quanti-
fied. This assumption has been challenged by deep learning’s
recent successes11. On a wide range of computer vision and
image classification tasks, hand-designed features cannot com-
pete against learned features that are automatically discovered
from the data itself16, 17. In all cases, once features are available,
the typical approach consists of boot-strapping the annotation
process by either (i) unsupervised clustering techniques18, 19,
or (ii) manual curation and supervised learning20, 21. In the
case of supervised approaches, human annotators examine im-
ages and assign localization, and once sufficient data is gar-
nered, a machine learning model is trained in a supervised man-
ner, and later applied to unannotated data16, 21, 22. Another ap-
proach consists of reusing models trained on natural images
to learn generic features upon which supervised training can
be bootstrapped5, 23. While successful, these approaches suffer
from potential biases, as manual annotation imposes our own
preconceptions. Overall, the ideal algorithm should not rely on
human knowledge or judgments, but instead automatically syn-
thesize features and classify images without a priori assump-
tions – that is, solely on the basis of the images themselves.

Recent advances in computer vision and machine learning
have shown that forgoing manual labeling is possible and nears
the performance of supervised approaches24, 25. Instead of an-
notating datasets, which is inherently non-scalable and labor-
intensive, self-supervised models can be trained from large un-
labeled datasets26–30. Self-supervised models are trained by for-
mulating an auxiliary pretext task, typically one that withholds
parts of the data and instructs the model to predict them31. This
works because the task-relevant information within a piece of
data is often distributed over multiple observed dimensions27.
For example, given the picture of a car, we can recognize the
presence of a vehicle even if many pixels are hidden, perhaps
even when half of the image is occluded. Now consider a large
dataset of pictures of real-world objects (e.g. ImageNet32).
Training a model to predict missing parts from these images
forces it to identify their characteristic features30. Once trained,
the representations that emerge from pretext tasks capture the
essential features of the data, and can be used to compare and
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categorize images.

What first principles can underpin the self-supervised analy-
sis, comparison, and classification of protein subcellular local-
ization patterns? We know that protein localization is highly
correlated with protein function and activity, yet localization
patterns can also vary from cell to cell, depending on cell
shape, density, cell state, etc. Therefore, when training a self-
supervised model to distill a protein’s localization signature,
regardless of these variations, an effective strategy is to ensure
that the model can identify a given labeled protein solely from
fluorescence images. This is the key insight that underpins our
work and from which our self-supervised model is derived.

Here, we describe the development, validation and util-
ity of cytoself, a deep learning-based approach for fully self-
supervised protein localization profiling and clustering. The
key innovation is a pretext task that ensures that the localization
features that emerge from different images of the same protein
are sufficient to identify the target protein. We further demon-
strate the ability of cytoself to reduce images to feature profiles
characteristic of protein localization.

Results

A robust and comprehensive image dataset. A prerequisite
to our deep-learning approach is a collection of high-quality im-
ages of fluorescently labeled proteins obtained under uniform
conditions. Our OpenCell10 dataset of live-cell confocal images
of 1311 endogenously labeled proteins (opencell.czbiohub.org)
meets this purpose. We reasoned that providing a fiducial chan-
nel could provide a useful reference frame for our model to cap-
ture protein localization. Hence, in addition to the labeled pro-
tein channel (mNeonGreen2), we also imaged a nuclear fiducial
channel (Hoechst 33342) and convert it into a distance map (see
Methods). On average, we imaged the localization of a given
protein in 18 fields of views, from each of which 45 cropped
images containing 1-3 cells were extracted (for a total of 800
cropped images per protein). This scale, as well as the uniform
conditions under which the images were collected, are impor-
tant because our model must learn to ignore image variance and
instead focus on protein localization. Finally, in our approach
all images that represent the same protein are labeled by the
same unique identifier (we used the protein’s gene name, but
the identifier can be arbitrary). This identifier does not carry
any explicit localization information, nor is it linked to any
metadata or annotations, but rather is used to link together all
the different images that represent the localization of the same
protein.

A Deep Learning model to identify protein localization fea-
tures. Our deep learning model is based on the Vector Quan-
tized Variational Autoencoder architecture (VQ-VAE34, 35). In a
classical VQ-VAE, images are encoded into a quantized latent

representation, a vector, and then decoded to reconstruct the in-
put image (see Fig. 1). The encoder and decoder are trained
so as to minimize any distortion between input and output im-
ages. The representation produced by the encoder is assembled
by arraying a finite number of symbols (indices) that stand for
vectors in a codebook (Fig. 1b, Supp. Fig.7). The codebook
vectors themselves evolve during training so as to be most ef-
fective for the encoding-decoding task34. The latest incarna-
tion of this architecture (VQ-VAE-233) introduces a hierarchy
of representations that operate at multiple spatial scales (termed
VQ1 and VQ2 in the original VQ-VAE-2 study). We chose this
architecture as a starting point because of the large body of evi-
dence that suggests that quantized architectures currently learn
the best image representations34, 35. As shown in Fig. 1b we de-
veloped a variant that utilizes a split vector quantization scheme
to improve quantization at large spatial scales (see methods sec-
tion, Supp. Fig. 7).

Better protein localization encoding via self-supervision.
Our model consists of two pretext tasks applied to each individ-
ual cropped image: First, it is tasked to encode and then decode
the image (VQ-VAE). Second, it is tasked to predict the identi-
fier associated with the image solely on the basis of the encoded
representation. In other words, that second task aims to predict,
for each single cropped image, which one of the 1,311 proteins
in our library the image corresponds to. The first task forces
our model to distill lower-dimensional representations of the
images, while the second task forces these representations to be
strong predictors of protein identity. This second task assumes
that protein localization is the primary image information that
is correlated to protein identity. Therefore, predicting the iden-
tifier associated with each image is key to encourage our model
to learn localization-specific representations. Interestingly, it is
acceptable, and in some cases perfectly reasonable, for these
tasks to fail. For example, when two proteins have identical lo-
calization, it is impossible to resolve the identity of the tagged
proteins from images alone. Moreover, the autoencoder might
be unable to perfectly reconstruct an image from the interme-
diate representation, when constrained to make that representa-
tion maximally predictive of protein identity. It follows that the
real output of our model is not the reconstructed image, nor the
predicted identity of the tagged protein, but instead the distilled
image representations, which we refer to as ‘localization en-
codings’ obtained as a necessary by-product of satisfying both
pretext tasks. More precisely, our model encodes for each im-
age two representations that correspond to two different spa-
tial scales: the local and global representations, that correspond
to VQ1 and VQ2 respectively. The global representation cap-
tures large-scale image structure with each representation being
a scaled-down 4×4 pixels image with 576 features (values) per
pixel. The local representation captures finer spatially resolved
details with each representation being a 25 × 25 pixels image
with 64 features per pixel. We use the global representations to
perform localization clustering, and the local representations to
provide a finer and spatially resolved decomposition of protein
localization. Overall, imposing the two pretext tasks defines a
set of localization features capable of quantitatively and pre-
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Figure 1: Self-supervised deep learning of protein subcellular localization with cytoself. (a) Workflow of the learning process.
Only images and the identifiers of proteins are required as input. We trained our model with a fiducial channel, but its presence
is optional as its performance contribution is negligible (see Fig. 6). The protein identification pretext task ensures that images
corresponding to the same or similar proteins have similar representations. (b) Architecture of our VQ-VAE-233 based Deep
Learning model featuring our two innovations: split-quantization and protein identification pretext task. Numbers in the encoders
and decoders indicate encoder1, encoder2, decoder1 or decoder2 in Supp. Fig. 9. (c) The level of utilization of the codebook
(i.e. perplexity) increases with each training iteration and is enhanced by applying split quantization.

cisely representing protein localization patterns within cells. It
follows that features identified by cytoself can create a high-
resolution protein localization atlas.

Mapping protein localization with cytoself. Obtaining im-
age representations that are highly correlated with protein lo-
calization and invariant to other sources of heterogeneity (i.e.
cell state, density, and shape) is only the first step for bio-
logical interpretation. Indeed, while these representations are
lower dimensional than the images themselves, they still have
too many dimensions for direct inspection and visualization.
Therefore, we performed dimensionality reduction using the
Uniform Manifold Approximation and Projection (UMAP) al-
gorithm on the set of global localization-encodings obtained
from all images (see methods). The result is visualized as
a scatterplot (Fig. 2) in which each point represents a single
(cropped) image in our dataset (test set only, 10% of entire
dataset) to generate a highly detailed map reflecting the full
diversity of protein localizations. The resulting UMAP corre-
sponds to a protein localization atlas that reveals a hierarchy
of clusters and sub-clusters reflective of eukaryotic subcellular
architecture. We can evaluate and explore this map by label-
ing each protein according to its sub-cellular localization ob-
tained from manual annotations of the proteins in our image
dataset (Supp. File 2). The most pronounced delineation corre-
sponds to nuclear versus non-nuclear localizations (Fig. 2, top
right and bottom left, respectively). Within the nuclear clus-
ter, sub-clusters are resolved that correspond to nucleoplasm,
chromatin, nuclear membrane, and the nucleolus. Strikingly,
within each region, tight clusters that correspond to specific

cellular functions can be resolved. For example, subunits in-
volved in splicing (SF3 splicesome), transcription (core RNA
pol) or nuclear import (Nuclear pore) cluster tightly together
(outlined in Fig. 3). Similarly, sub-domains emerge within the
non-nuclear cluster, the largest corresponding to cytoplasmic
and vesicular localizations. Within these domains are several
very tight clusters corresponding to mitochondria, ER exit sites
(COPII), ribosomes, clathrin coated vesicles. (Fig. 2). Outside
of these discrete localization domains, there are many proteins
which exhibit mixed localization patterns (see gray points in
Fig. 2). Prominent among these is a band of proteins inter-
spersed between the nuclear and non-nuclear regions. Fig. 3a
illustrates the transition between nuclear and cytoplasmic over
this mixed localization region. Along that path from lower left
to upper right are proteins having a mostly diffuse cytoplas-
mic localization (e.g. NFKB1, ARAF and KIF3A), followed
by proteins with mixed localizations (e.g. MAP2K3, RANBP9,
and ANAPC4) and finally proteins with mostly diffuse nuclear
localization (e.g. CDK2, POLR2B, and CHEK1). These re-
sults confirm that our model learns image representations that
are accurate and high-resolution signatures of protein localiza-
tion. Our feature embedding is qualitatively comparable to pre-
vious results obtained by supervised classification of protein
localization21. However, in contrast to the extensive manual an-
notation required in previous studies, our approach is entirely
self-supervised.

High resolution clustering identifies protein complexes.
The resolving power of our approach is further illustrated by
examining well-known stable protein complexes. For exam-
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Figure 2: High-resolution Protein Localization Atlas. Each point corresponds to a single image from our test dataset of 109,751
images. To reveal the underlying structure of our map, each point in the central UMAP is colored according to 9 distinct protein
localization categories (mitochondria, vesicules, nucleoplasm, cytoplasm, nuclear membrane, ER, nucleolus, Golgi, chromatin
domain). Tight clusters corresponding to functionally-defined protein complexes can be identified within each localization cat-
egory. Only proteins with a clear and exclusive localization pattern are colored, other (grey) points correspond to proteins with
other or mixed localizations. For each localization category, we further represent the resolution of cytoself representations by
labeling the images corresponding to individual proteins in different colors (circular inserts). Note that while the colors in the
central UMAP represent different cellular territories, colors in the inserts are only used to delineate individual proteins, and do
not correspond to the colors used in the main UMAP.
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present in each image more visible (only min max intensities are adjusted, no gamma adjustment used). Scale bars, 10 µm.

ple, all subunits of the SF3 spliceosome, mediator, 20S protea-
some, core RNA polymerase, nuclear pore, ribosome, the co-
translational oligosaccharyltransferase complex (OST), as well
as COPII, and clathrin-coats (full list of subunits per com-
plex in Supp. File. 3) form tight and well-resolved clusters,
which importantly, are placed within their respective cellular
domains (Fig. 3b). Fluorescent images of 11 representative sub-
units (SF3A1, MED11, PSMD1, PSMA1, POLR2H, NUP153,
RSP16, RSP18, OSTC, SEC31A, and CLTA) from these com-
plexes illustrate these discrete localization patterns. Notably,
despite the diversity of cell shapes and sizes, the localization
encodings for subunits of the same complex (e.g. the 20S pro-
teasome subunits PSMD6 and PSMA1) converge. Thus, cy-
toself accurately identifies and spatially clusters protein com-
plexes solely on the basis of the fluorescence images. An analy-
sis of the relationship between localization patterns and protein-
protein interactions is detailed in our companion study10. In
particular, more than half of the protein pairs that interact di-
rectly with one another share nearly identical localization en-
codings.

Extracting feature spectra for quantitative analysis of pro-
tein localization. We have shown that cytoself can generate a
highly resolved map of protein localization on the basis of dis-
tilled image representations, i.e. each protein’s ‘localization en-
coding’. Can we dissect and understand the features that make
up these representations and interpret their meaning? To answer
this question, we created a feature spectrum of the main compo-
nents contributing to each protein’s localization encoding. The

spectra were constructed by calculating the histogram of code-
book feature indices present in each image – as if each code-
book feature was an ingredient present in the images at different
concentrations (see Supp. Fig. 8, and Fig. 1a, and methods for
details). To group related and possibly redundant features to-
gether, we performed hierarchical biclustering36 (Fig. 4a), and
thus obtained a meaningful linear ordering of features by which
the spectra can be sorted. Plotting these results on a heatmap
reveals 11 feature clusters from the top levels of the feature hier-
archy (Fig. 4a, bottom). To understand and interpret the image
localization patterns represented by these clusters, we chose
four representative images (as described in the methods sec-
tion) from each (see bottom Fig. 4a and Supp. Fig. 10). These
images illustrate the variety of distinctive localization patterns
that are present at different levels across all proteins. For exam-
ple, the features in the first clusters (i, ii, iii, and iv) corresponds
to a wide range of diffuse cytoplasmic localizations. Cluster v
features are unique to nucleolus proteins. Features making up
cluster vi correspond to very small and bright punctate struc-
tures, which are often characteristic of centrosomes, vesicules,
or cytoplasmic condensates. Clusters vii, viii, and x correspond
to different types of nuclear localization patterns. Cluster ix are
dark features corresponding to non-fluorescent background re-
gions. Finally, cluster xi corresponds to a large variety of more
abundant, punctate structures occurring throughout the cells,
primarily vesicular, but also Golgi, mitochondria, cytoskeleton,
and subdomains of the ER. To make this analysis more quanti-
tative we computed the average feature spectrum for all proteins
belonging to each localization family such as Golgi, nucleolus,
etc.(see Fig. 4b), again using the manual annotations as refer-
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Figure 4: Feature spectral analysis.

Figure 4: (Continued) (a) Quantized features in the local rep-
resentation are reordered by hierarchical clustering to form
a feature spectra (cf. Supp. Fig. 8). The color bar indi-
cates the strength of correlation. Negative values indicate
anti-correlation. On the basis of the feature clustering, we
identified 11 primary top-level clusters, which are illustrated
with representative images (see also Supp. Fig. 10). (b) Fea-
ture spectrum for each unique localization family. Occur-
rence indicates how many times a feature vector is found in
the local representation of an image. (c) The feature spec-
trum of FAM241A, a poorly characterized orphan protein.
(d) Fluorescence images for FAM241A versus representative
images of other ER localized proteins. (e) Correlation be-
tween FAM241A and other unique localization categories.
All spectra, as well as the heatmap are vertically aligned.

ence (as in Fig. 3, Supp. File. 2). This analysis confirms that
certain spectral clusters are specific to certain localization fam-
ilies and thus correspond to characteristic textures and patterns
in the images. For example, the highly specific chromatin and
mitochondrial localizations both appear to elicit very narrow
responses in their feature spectra. Finally, we ask whether this
feature spectrum could be used to determine the localizations
of proteins not present in our training data. For demonstration
purposes, we computed the feature spectrum of FAM241A – a
protein of unknown function. Visually (Fig. 4bc) and quantita-
tively (Fig. 4e), the spectrum of FAM241A is most correlated
to the consensus spectrum of proteins belonging to the Endo-
plasmic Reticulum (see Fig. 4e). As shown in Fig. 4d, images
for FAM241A do exhibit a localization pattern very similar to
that of proteins belonging to the endoplasmic reticulum (ER).
In our companion study10, we show that FAM241A is in fact
a new subunit of the OST (oligosaccharyltransferase) complex,
responsible for co-translational glycosylation at the ER mem-
brane.

Interpreting the features as patterns in the images. An im-
portant and very active area of research in deep learning is the
visualization, interpretation, and reverse-engineering of the in-
ner working of deep neural networks37, 38. To better understand
the relationship between our input images and the emergent
features obtained by cytoself, we conducted an experiment in
which we passed images into the autoencoder but prevented us-
age of a given feature by zeroing it before decoding. By com-
puting the difference between the input and reconstructed im-
ages, we identify specific regions of the images that are im-
pacted, and thus causally linked, to that feature. Three ex-
amples are illustrated in Fig.5: (a) POLR2E, a core subunit
shared between RNA polymerases I, II and III, (b) SEC22B,
a vesicle-trafficking protein, and (c) RPS18, a ribosomal pro-
tein. Highlighted in red on the images for each protein are
the consequences of individually subtracting one of the three
strongest peaks in their respective spectra. These difference
maps reveal the image patterns that are lost and hence linked
to that peak. The strongest peak (leftmost) of POLR2E’s spec-
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Figure 5: Interpreting image spectral features. Feature spectra were computed for each example proteins (a) POLR2E, (b)
SEC22B, and (c) RPS18. Subsequently, information derived from the indicated major peaks of their feature spectra was removed
by zeroing them out before passing the images again through the decoder. Highlighted in red are the differences between the
original image and resulting output images for the corresponding features. The feature classes outlined in Fig. 4 are shown as
background color for reference.
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Figure 6: Clustering performance quantifies the effect of re-
moving the indicated components of our model on its per-
formance. For each model variation, we trained five model
instances, compute 10 different UMAPs, compute clustering
scores using organelle-level and protein-complex-level ground
truth, and then report mean and standard error of the mean. The
low discrepancy in linear regression indicates our evaluation re-
sults are little affected by the clustering resolution.

trum clearly corresponds to high intensity punctate structures
within nucleoli, a localization recently established by Abra-
ham et al.39, while the two other peaks correspond to lower
intensity and more diffuse patterns. In the case of SEC22B the
strongest peak (leftmost) corresponds to cytoplasmic regions
with high densities of vesicles. Other peaks in the spectrum
of SEC22B correspond to regions with sparse punctate expres-
sion. Finally, for RPS18, the strongest peak (rightmost) cor-
responds to large, diffuse, and uniform cytoplasmic regions in
the images, whereas the two other selected peaks correspond to
brighter and more speckled regions (middle) as well as regions
adjacent to the nuclear boundary (leftmost). This analysis high-
lights both the interpretability but also the high complexity of
the image encodings generated by our model.

Identifying the essential components of our model. To
evaluate the impact of different aspects of our model on its
clustering performance, we conducted an ablation study. For
this, we retrained our model and recomputed a protein local-
ization UMAP (similar to Fig. 2), after individually removing
each component or input of our model, including: (a) the nu-
clear fiducial channel, (b) the distance transform applied to nu-
clear fiducial channel, (c) the split vector quantization, and (d)
the identification pretext task. To quantitatively evaluate the ef-
fects of their ablation on our results we developed a clustering
score (see Methods section) and used two ground-truth annota-
tion datasets to capture known protein localization at two differ-
ent cellular scales: the first is a manually curated list of proteins
with unique organelle-level localizations, whereas the second is

a list of proteins participating in stable protein complexes de-
rived from the CORUM database40. While the first ground-truth
dataset helps us assess how well does our encodings cluster to-
gether proteins belonging to the same organelles, the second
helps us assess whether proteins interacting within the same
complex cluster, and thus functionally related, are next to each
other in the UMAP. As shown in Fig. 6 and Supp. Table 1
the two scores derived from the two sets of ground-truth labels
mostly agree (correlation: 0.977) on which model variants per-
form better. The scores from both sets of ground-truth labels
make it clear that the single most important component of cyto-
self, in terms of clustering performance, is the protein identifi-
cation pretext task – the heart of our self-supervised approach.
Removing that component leads to a complete collapse in per-
formance (Supp. Fig. 11 and 12). Training the model without
nuclear channel, split quantization, distance transform, recon-
struction pretext task (decoder), or vector quantization does af-
fect performance but not as dramatically as when trained with-
out the identification pretext task. These components are im-
portant but not crucial to the performance of our model. In-
terestingly, forgoing the fiducial nuclear channel entirely led to
the smallest decrease in clustering score, suggesting that our
approach works well even in the absence of any fiducial marker
– a notable advantage that widens the applicability of our ap-
proach and greatly simplifies the experimental design. Also in-
teresting is the fact that using a fiducial marker without apply-
ing a distance transform is worse than having no fiducial marker
– unprocessed fiducial markers seem to confuse our model. Per-
haps the fine texture and shape details present in the nuclear
channel are unnecessary for our purpose and in fact confound-
ing. In conclusion, while all features contribute to the overall
performance of our model, the identification pretext task is the
key and necessary ingredient.

Discussion

We have shown that a self-supervised training scheme can pro-
duce image representations that capture the hierarchical orga-
nization of protein subcellular localization, solely on the basis
of a large dataset of fluorescence images. Our model generates
a high-resolution subcellular localization atlas capable of clas-
sifying not only discrete organelles, but also discrete protein
complexes. Moreover, we can represent each image with a fea-
ture spectrum to tease apart which aspects of the localization
pattern are represented by each quantized vector. Assuming
that a protein’s localization is highly correlated with its cellu-
lar function, cytoself will be an invaluable tool for function-
ally classifying many unknown or poorly studied proteins, and
for studying the effect of cellular perturbations and cell state
changes on protein subcellular localization.

Our method makes few assumptions, but imposes two pre-
text tasks. Of these, requiring the model to identify proteins
based solely on their localization encodings was essential. We
also included Hoescht DNA-staining as a fiducial marker, as-
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suming that this would provide a spatial reference frame against
which to interpret localization. Surprisingly however, this
added little to the performance of our model in terms of clus-
tering score. By comparison, the self-supervised approach by
Lu et al.29 applied a pretext task that predicts the fluorescence
signal of a labeled protein in one cell from its fiducial mark-
ers and from the fluorescence signal in a second, different cell
from the same field of view. This assumes that fiducial chan-
nels are available, and that protein fluorescence is always well-
correlated to these fiducials. In contrast, our approach only
requires a single fluorescence channel and yields better clus-
tering performance (Supp. Fig.13, 14, 15, Supp. Table2). In
summary, cytoself ’s performance is state-of-the-art for multi-
channel images, and is the first of its kind for single channel
images.

While powerful, there remains a few avenues for further de-
velopment of cytoself. For example, we trained our model
using two-dimensional maximum-intensity z-projections and
have not yet leveraged the full 3D confocal images available
in the OpenCell10 dataset. The third dimension might con-
fer an advantage for specific protein localization patterns that
are characterized by specific variations along the basal-apical
cell axis. Other important topics to explore are the automatic
suppression of residual batch effects, improved cell segmenta-
tion via additional fiducial channels, as well as automatic re-
jection of anomalous or uncharacteristic cells from our training
dataset. More fundamentally, significant conceptual improve-
ments will require an improved self-supervised model that ex-
plicitly disentangles cellular heterogeneity from localization di-
versity. Beyond imaging, we are curious whether the insights
behind our self-supervised learning approach could potentially
be used for other biological datasets.

Novel methods are being developed to tackle the complex-
ity and heterogeneity of cellular fluorescence images. Recent
computational methods focus on specific cellular events, for ex-
ample in a computational tour-de-force Cai et al.8 develop an
integrated map of the three-dimensional concentration of pro-
teins during cell division. By performing a spatio-temporal reg-
istration, much of the variance in the images is eliminated, thus
aiding comparison and analysis. In our case, while including a
nuclear fiducial channel was not strictly necessary, applying a
distance transform and thus creating a rudimentary cellular co-
ordinate system improved clustering performance. More work
is needed to understand how to aid our models to robustly fil-
ter out irrelevant information, and interpret potential relevant
information from cell shape changes.

More generally, our ability to generate data is outpacing the
human ability to manually annotate it. Moreover, there is al-
ready ample evidence that abundance of image data has a qual-
ity all its own, i.e. increasing the size of an image dataset of-
ten has higher impact on performance than improving the al-
gorithm itself41. Hence our conviction that self-supervision is
key to fully harness the deluge of data produced by novel in-

struments, end-to-end automation, and high-throughput image-
based assays.

Methods

Fluorescence image dataset. All experimental and imag-
ing details can be found in our companion study10. Briefly,
HEK293T cells were genetically tagged with split-fluorescent
proteins (FP) using CRISPR-based techniques42. After nuclear
staining with Hoechst 33342, live cells were imaged with a
spinning-disk confocal microscope (Andor Dragonfly). Typi-
cally, 18 fields of view were acquired for each one of the 1311
tagged protein, for a total of 24,382 three-dimensional images
of dimension 1024× 1024× 22 voxels.

Image data pre-processing. Each 3D confocal image was
first reduced to two dimensions using a maximum-intensity
projection along the z-axis followed by downsampling in the
XY dimensions by a factor of two to obtain a single 2D image
per field of view (512 × 512 pixels). To help our model make
use of the nuclear fiducial label we applied a distance trans-
form to a nucleus segmentation mask (see below). The distance
transform is constructed so that pixels within the nucleus were
assigned a positive value that represents the shortest distance
from the pixel to the nuclear boundary, and pixel values outside
of the nucleus were assigned a negative value that represents the
shortest distance to the nuclear boundary (see Fig. 1a). For each
dual-channel and full field-of-view image, multiple regions of
dimension 100 × 100 pixels were computationally chosen so
that at least one cell is present and centered, resulting in a total
of 1,100,253 cropped images. Cells (and their nuclei) that are
too close to image edges are ignored. The raw pixel intensi-
ties in the fluorescence channel are normalized between 0 and
1, and the nuclear distance channel is normalized between -1
and 1. Finally, we augmented our training data by randomly
rotating and flipping the images.

Nucleus segmentation. Nuclei are segmented by first thresh-
olding the nucleus channel (Hoechst staining) and then apply-
ing a custom iterative refinement algorithm to eliminate under
segmentation of adjacent nuclei. In the thresholding step, a
low-pass Gaussian filter is first applied, followed by intensity
thresholding using a threshold value calculated by Li’s iterative
Minimum Cross Entropy method43, 44. The resulting segmenta-
tion is refined by applying the following steps: (i) we generate
a ‘refined’ background mask by thresholding the laplace trans-
form at zero, (ii) we morphologically close this mask and fill
holes to eliminate intra-nuclear holes or gaps (empirically, this
requires a closing disk of radius at least 4 pixels), (iii) we mul-
tiply this ‘refined’ mask by the existing background mask to re-
store any ‘true’ holes/gaps that were present in the background
mask, (iv) we generate a mask of local minima in the laplace
transform, using an empirically-selected percentile threshold,
and finally (v) we iterate over regions in this local-minima mask
and remove them from the refined mask if they partially overlap
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with the background of the refined mask.

Detailed model architecture. All details of our model archi-
tecture are given in Suppl. Fig. 9 and diagrammed in Fig. 1b.
First, the input image (100×100×2 pixels) is fed to encoder1 to
produce a set of latent vectors which have two destinations: en-
coder2 and VQ1 VectorQuantizer layer. In the encoder2, higher
level representations are distilled from these latent vectors and
passed to the output. The output of encoder2 is quantized in
the VQ2 VectorQuantizer layer to form what we call in this
work the global representation. The global representation is
then passed to the fc2 classifier for purposes of the classifica-
tion pretext task. It is also passed on to decoder2 to reconstruct
the input data of encoder2. In this way, encoder2 and decoder2
form an independent autoencoder. The function of layer mse-
lyr1 is to adapt the output of decoder2 to match the dimensions
of the output of encoder1, which is identical to the dimensions
of the input of encoder2. In the case of the VQ1 VectorQuan-
tizer layer, vectors are quantized to form what we call the local
representations. The local representation is then passed to the
fc1 classifier for purposes of the classification pretext task, as
well as concatenated to the global representation that is resized
to match the local representations’ dimensions. The concate-
nated result is then passed to the decoder1 to reconstruct the
input image. Here, encoder1 and decoder1 form another au-
toencoder.

Split quantization. In the case of our global representation,
we observed that the high level of spatial pooling required (4×4
pixels) led to codebook under-utilization because the quantized
vectors are too few and each one of them has too many di-
mensions (Fig. 1b). To solve this challenge we introduce the
concept of split quantization. Instead of quantizing all the di-
mensions of a vector at once, we first split the vectors into sub-
vectors of equal length, and then quantize each sub-vectors us-
ing a shared codebook. The main advantage of split quantiza-
tion when applied to the VQ-VAE architecture is that one may
vary the degree of spatial pooling without changing the total
number of quantized vectors per representation. In practice,
to maintain the number of quantized vectors while increasing
spatial pooling, we simply split along the channel dimension.
We observed that the global representations’ perplexity, which
indicates the level of utilization of the codebook, substantially
increases when split quantization is used compared to standard
quantization (Fig. 1c). As shown in Supp. Fig. 7, split quan-
tization is performed along the channel dimension by splitting
each channel-wise vector into nine parts, and quantizing each
of the resulting ‘sub-vectors’ against the same codebook. Split
quantization is only needed for the global representation.

Global and local representations. The dimensions of the
global and local representations are 4 × 4 × 576 and 25 ×
25 × 64 voxels, respectively. These two representations are
quantized with two separate codebooks consisting of 2048 64-
dimensional features (or codes).

Identification pretext task. The part of our model that is
tasked with identifying the protein determining is implemented
as a 2-layer perceptron built by alternatively stacking fully con-
nected layers with 1000 hidden units and non-linear ReLU lay-
ers. The output of the classifier is a one-hot encoded vector for
which each coordinate corresponds to one of the 1311 proteins.
We use categorical cross entropy as classification loss during
training.

Computational efficiency. Due to the large size of our image
data (1,100,253 cropped images of dimensions 100 × 100 × 2
pixels) we recognized the need to make our architecture more
efficient and thus allow for more design iterations. We opted to
implement the encoder using principles from the EfficientNet
architecture in order to increase computational efficiency with-
out loosing learning capacity45. Specifically, we split the model
of EfficientNetB0 into two parts to make the two encoders in our
model (Supp.Fig. 9). While we did not notice a loss of perfor-
mance for the encoder, we did observed that EfficientNet did
not perform as well for decoding. Therefore, we opted to keep
a standard architecture based on a stack of residual blocks for
the decoder46

Training protocol The whole dataset (1,100,253 cropped im-
ages) were split into training, validation and testing data by
8:1:1. All results shown in the figures are from testing data.
We used the Adam optimizer with the initial learning rate of
0.0004. The learning rate was multiplied by 0.1 every time the
validation loss did not improve for 4 epochs, and the training
was terminated when the validation loss did not improve for
more than 12 consecutive epochs.

Dimensionality reduction and clustering. Dimensionality
reduction is performed using Uniform Manifold Approxima-
tion and Projection (UMAP)47 algorithm. We used the refer-
ence open-source python package umap-learn (version 0.5.0)
with default values for all parameters (i.e. the Euclidean dis-
tance metric, 15 nearest neighbors, and a minimal distance of
0.1). We used AlignedUMAP for the clustering performance
evaluation to facilitate the comparison of different projections.
Specifically in the ablation study, we computed UMAPs of all
seven model variants together using AlignedUMAP function
(Supp. Fig11 and 12). In the comparison with a previous study,
we computed UMAPs of two variances of our model and three
variances of the previous study together using AlignedUMAP
function (Supp. Fig14 and 15).

Ground truth labels in UMAP representation. We use two
sets of ground truth labels to evaluate the performance of cyto-
self at two different cellular scales. First, we use a manually
curated list of proteins with exclusive organelle-level localiza-
tion patterns (Supp. File 2). Second, we collected 38 protein
complexes from the CORUM database 40 (Supp. File 1). The
38 protein complexes were collected by following conditions:
i) all subunits are present in the OpenCell data, ii) no overlap-
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ping subunit across the complexes, iii) each protein complex
consists of more than 1 subunit.

Clustering score. To calculate a clustering score, we assume
a collection of n points (vectors) in Rm: S = {xi ∈ Rm|0 ≤
i ≤ n}, and that we have a (ground truth) assignment of each
point xi to a class Cj , and these classes form a partition of S:

S =
⋃
j

Cj

Ideally, the vectors xi are such that all points in a class are
tightly grouped together, and that the centroids of each class
are as far apart from each other as possible. This intuition is
captured in the following definition of our clustering score:

Γ(Ci) =
σ∗({µ∗(Cj)}j)
µ∗({σ∗(Cj)}j)

Where {.}k denotes the set of values obtained by evaluating
the expression for each value of parameter k, and where µ∗ and
σ∗ stand for the robust mean (median) and robust standard de-
viation (computed using medians). Variance statistics were ob-
tained by training model variant 5 times followed by computing
UMAP 10 times per trained model.

Feature spectrum. Supp. Fig. 8a illustrates the workflow for
constructing the feature spectra. Specifically, we first obtain
the indices of quantized vectors in the latent representation for
each image crop, and then calculate the histogram of indices in
all images of each protein. As a result, we obtain a matrix of
histograms in which rows correspond to protein identification
(ID) and columns to the feature indices (Supp. Fig. 8b). At this
point, the order of the columns (that is, the feature indices) is
arbitrary. Yet, different features might be highly correlated and
thus either related or even redundant (depending on how “satu-
rated” the codebook is). To meaningfully order the feature in-
dices, we compute the Pearson correlation coefficient between
the feature index “profiles” (the columns of the matrix) for each
pair of feature indices to obtain a 2048 × 2048 pairwise corre-
lation matrix (see Supp. Fig. 8c). Next we perform hierarchical
biclustering in which the feature indices with the most simi-
lar profiles are iteratively merged48. The result is that features
that have similar profiles are grouped together (Supp. Fig. 8d).
This ordering yields a more meaningful and interpretable view
of the whole spectrum of feature indices. We identified a num-
ber of clusters from the top levels of the feature hierarchy and
manually segment them into 11 major feature clusters (ordered
i through xi). Finally, for a given protein, we can produce a in-
terpretable feature spectrum by ordering the horizontal axis of
the quantized vectors histogram in the same way.

Software and hardware All deep learning architectures
were implemented in TensorFlow 1.1549 on Python 3.7. Train-
ing was performed on NVIDIA V100-32GB GPUs.

Bibliography

1. Pepperkok, R. & Ellenberg, J. High-throughput fluores-
cence microscopy for systems biology. Nature reviews
Molecular cell biology 7, 690–696 (2006).

2. Chandrasekaran, S. N., Ceulemans, H., Boyd, J. D. & Car-
penter, A. E. Image-based profiling for drug discovery:
due for a machine-learning upgrade? Nature Reviews Drug
Discovery 1–15 (2020).

3. Boutros, M., Heigwer, F. & Laufer, C. Microscopy-based
high-content screening. Cell 163, 1314–1325 (2015).

4. Abraham, V. C., Taylor, D. L. & Haskins, J. R. High con-
tent screening applied to large-scale cell biology. Trends in
biotechnology 22, 15–22 (2004).

5. Scheeder, C., Heigwer, F. & Boutros, M. Machine learn-
ing and image-based profiling in drug discovery. Current
opinion in systems biology 10, 43–52 (2018).

6. Loo, L.-H., Wu, L. F. & Altschuler, S. J. Image-based
multivariate profiling of drug responses from single cells.
Nature methods 4, 445–453 (2007).

7. Huh, W.-K. et al. Global analysis of protein localization in
budding yeast. Nature 425, 686–691 (2003).

8. Cai, Y. et al. Experimental and computational framework
for a dynamic protein atlas of human cell division. Nature
561, 411–415 (2018).

9. Thul, P. J. et al. A subcellular map of the human proteome.
Science 356 (2017).

10. Cho, N. H. et al. Opencell: proteome-scale endogenous
tagging enables the cartography of human cellular organi-
zation. bioRxiv (2021).

11. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. nature
521, 436–444 (2015).

12. Perlman, Z. E. et al. Multidimensional drug profiling by
automated microscopy. Science 306, 1194–1198 (2004).

13. Carpenter, A. E. et al. Cellprofiler: image analysis software
for identifying and quantifying cell phenotypes. Genome
biology 7, 1–11 (2006).

14. Yin, Z. et al. A screen for morphological complexity iden-
tifies regulators of switch-like transitions between discrete
cell shapes. Nature cell biology 15, 860–871 (2013).

15. Bray, M.-A. et al. Cell painting, a high-content image-
based assay for morphological profiling using multiplexed
fluorescent dyes. Nature protocols 11, 1757 (2016).

16. Eulenberg, P. et al. Reconstructing cell cycle and disease
progression using deep learning. Nature Communications
8, 463 (2017).

17. Caicedo, J. C. et al. Data-analysis strategies for image-
based cell profiling. Nature methods 14, 849–863 (2017).

11

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2021. ; https://doi.org/10.1101/2021.03.29.437595doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.29.437595
http://creativecommons.org/licenses/by-nc-nd/4.0/


18. Sailem, H., Bousgouni, V., Cooper, S. & Bakal, C. Cross-
talk between rho and rac gtpases drives deterministic ex-
ploration of cellular shape space and morphological het-
erogeneity. Open biology 4, 130132 (2014).

19. Traag, V. A., Waltman, L. & Van Eck, N. J. From lou-
vain to leiden: guaranteeing well-connected communities.
Scientific reports 9, 1–12 (2019).

20. Jones, T. R. et al. Scoring diverse cellular morphologies in
image-based screens with iterative feedback and machine
learning. Proceedings of the National Academy of Sciences
106, 1826–1831 (2009).

21. Ouyang, W. et al. Analysis of the human protein atlas im-
age classification competition. Nature methods 16, 1254–
1261 (2019).

22. Blasi, T. et al. Label-free cell cycle analysis for high-
throughput imaging flow cytometry. Nature communica-
tions 7, 1–9 (2016).

23. Pawlowski, N., Caicedo, J. C., Singh, S., Carpenter, A. E.
& Storkey, A. Automating morphological profiling with
generic deep convolutional networks. BioRxiv 085118
(2016).

24. Goyal, P. et al. Self-supervised pretraining of visual fea-
tures in the wild. arXiv preprint arXiv:2103.01988 (2021).

25. Holmberg, O. G. et al. Self-supervised retinal thickness
prediction enables deep learning from unlabelled data to
boost classification of diabetic retinopathy. Nature Ma-
chine Intelligence 2, 719–726 (2020).

26. Hadsell, R. et al. Learning long-range vision for au-
tonomous off-road driving. Journal of Field Robotics 26,
120–144 (2009).

27. Batson, J. & Royer, L. Noise2self: Blind denoising by
self-supervision. In International Conference on Machine
Learning, 524–533 (PMLR, 2019).

28. Kobayashi, H. et al. Intelligent whole-blood imaging
flow cytometry for simple, rapid, and cost-effective drug-
susceptibility testing of leukemia. Lab on a Chip 19, 2688–
2698 (2019).

29. Lu, A. X., Kraus, O. Z., Cooper, S. & Moses, A. M. Learn-
ing unsupervised feature representations for single cell mi-
croscopy images with paired cell inpainting. PLoS compu-
tational biology 15, e1007348 (2019).

30. Chen, T., Kornblith, S., Norouzi, M. & Hinton, G. A sim-
ple framework for contrastive learning of visual represen-
tations. In International conference on machine learning,
1597–1607 (PMLR, 2020).

31. Kolesnikov, A., Zhai, X. & Beyer, L. Revisiting self-
supervised visual representation learning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, 1920–1929 (2019).

32. Deng, J. et al. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, 248–255 (Ieee, 2009).

33. Wu, H. & Flierl, M. Vector quantization-based regulariza-
tion for autoencoders. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, vol. 34, 6380–6387 (2020).

34. Van Den Oord, A., Vinyals, O. et al. Neural discrete rep-
resentation learning. In Advances in Neural Information
Processing Systems, 6306–6315 (2017).

35. Razavi, A., van den Oord, A. & Vinyals, O. Generating
diverse high-fidelity images with vq-vae-2. In Advances
in Neural Information Processing Systems, 14866–14876
(2019).

36. Cheng, Y. & Church, G. M. Biclustering of expression
data. In Ismb, vol. 8, 93–103 (2000).

37. Yosinski, J., Clune, J., Nguyen, A., Fuchs, T. & Lipson, H.
Understanding neural networks through deep visualization.
arXiv preprint arXiv:1506.06579 (2015).

38. Montavon, G., Samek, W. & Müller, K.-R. Methods for in-
terpreting and understanding deep neural networks. Digital
Signal Processing 73, 1–15 (2018).

39. Abraham, K. J. et al. Nucleolar rna polymerase ii drives
ribosome biogenesis. Nature 585, 298–302 (2020).

40. Giurgiu, M. et al. Corum: the comprehensive resource of
mammalian protein complexes—2019. Nucleic acids re-
search 47, D559–D563 (2019).

41. Halevy, A., Norvig, P. & Pereira, F. The unreasonable
effectiveness of data. IEEE Intelligent Systems 24, 8–12
(2009).

42. Leonetti, M. D., Sekine, S., Kamiyama, D., Weissman,
J. S. & Huang, B. A scalable strategy for high-throughput
gfp tagging of endogenous human proteins. Proc Natl Acad
Sci U S A 113, E3501–8 (2016).

43. Li, C. H. & Lee, C. Minimum cross entropy thresholding.
Pattern recognition 26, 617–625 (1993).

44. Li, C. & Tam, P. K.-S. An iterative algorithm for minimum
cross entropy thresholding. Pattern recognition letters 19,
771–776 (1998).

45. Tan, M. & Le, Q. Efficientnet: Rethinking model scaling
for convolutional neural networks. In International Con-
ference on Machine Learning, 6105–6114 (2019).

46. He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning
for image recognition. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, 770–778
(2016).

47. McInnes, L., Healy, J. & Melville, J. Umap: Uniform
manifold approximation and projection for dimension re-
duction. arXiv preprint arXiv:1802.03426 (2018).

12

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2021. ; https://doi.org/10.1101/2021.03.29.437595doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.29.437595
http://creativecommons.org/licenses/by-nc-nd/4.0/


48. Rokach, L. & Maimon, O. Clustering methods. In
Data mining and knowledge discovery handbook, 321–352
(Springer, 2005).

49. Abadi, M. et al. TensorFlow: Large-scale machine learn-
ing on heterogeneous systems (2015). URL https:
//www.tensorflow.org/. Software available from
tensorflow.org.

Acknowledgements We would like to thank our colleagues at the
CZ Biohub: Sandra Schmid, Mirella Bucci, Ahmet Can Solak, Bing
Yang, Merlin Lange, Shruthi Vijaykumar, Luke Hyman, Marco Hein,
for insightful discussions, feedback and for reviewing the manuscript.
Thanks to Kibeom Kim for assistance in data analysis. Thanks to our
colleague Michael Wu and James Zou from Stanford University for
advice. We would like to thank Ashely Lakoduk for reviewing the
manuscript. Finally, thanks to Japan Society for the Promotion of Sci-
ence and its overseas research fellowships and the Chan Zuckerberg
Biohub and its donors for funding this work.

Competing interests The authors declare that they have no compet-
ing financial interests.

Code and data availability Source code for the models used in
this work is available at: https://github.com/royerlab/
cytoself

Correspondence Correspondence and requests
for materials should be addressed to Hirofumi
Kobayashi, Manuel Leonetti and Loic A. Royer
({hirofumi.kobayashi,manuel.leonetti,loic.royer}@czbiohub.org)

Suppl. Files

1. proteins corum.csv, A list of protein subunits collected
from CORUM40 as a ground truth to compute clustering
scores. See Methods for how they were selected.

2. proteins uniloc.csv, A list of proteins that has only one lo-
calization pattern.

3. proteins subunits.csv, List of protein subunits for protein
complexes mentioned in Fig. 2 and Fig. 3b.

Suppl. Figures

model variation organelle-level complex-level
full model 3.41 ± 0.18 5.96 ± 0.25
without nuclear channel 3.35 ± 0.23 5.38 ± 0.19
without distance transform 3.17 ± 0.18 4.90 ± 0.13
without vector quantization 2.98 ± 0.14 4.46 ± 0.15
without id. pretext task 1.13 ± 0.094 1.26 ± 0.062
without split quantization 2.85 ± 0.20 5.04 ± 0.16
without decoder 2.98 ± 0.17 4.48 ± 0.12

Table 1: (Supplementary.) Clustering performance quantifies
the effect of removing the indicated aspects of our model on its
performance. We train the models 5 times, compute 10 different
UMAPs per trained model, and then report mean and standard
error mean (µ± sem.).

model variation organelle-level complex-level
full model 3.46 ± 0.12 5.70 ± 0.19
without nuclear channel 3.43 ± 0.18 4.95 ± 0.16
Lu et al. (conv3 1) 2.19 ± 0.097 2.67 ± 0.045
Lu et al. (conv4 1) 2.33 ± 0.11 2.88 ± 0.10
Lu et al. (conv5 1) 2.91 ± 0.18 3.06 ± 0.084

Table 2: (Supplementary.) Clustering performance in our
full model surpasses the previously reported cell-inpainting
model29. We train the models 5 times, compute 10 different
UMAPs, compute clustering scores using organelle-level and
protein-complex-level ground truth, and then report mean and
standard error of the mean (µ ± sem.). For the latent repre-
sentations in the inpainting model, we examined the 3 network
layers discussed in Lu et al. to produce image representations
for UMAP. Note that our approach works with single fluores-
cence channel whereas the approach by Lu et al. needs at least
two channels.
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Figure 7: (Supplementary.) A schematic of split quantization. (a), Without split quantization, there are only 4 × 4 = 16
quantized vectors in the global representation. (b), With split quantization, there are 4 × 4 × 9 = 144 quantized vectors in the
global representation, resulting in more opportunities for codes in the codebook to be used.
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Figure 8: (Supplementary.) Process of constructing feature spectra. (a) First, the quantized vectors in the local representation
were extracted and converted to a histogram by counting the occurrence of each quantized vector. (b) Next, taking the average of
the histograms per protein ID over the all data and create a 2D histogram. (c) Pearson’s correlation between any two representation
indices were calculated and plotted as a 2D matrix. (d) Finally, hierarchical clustering was performed on the correlation map so
that similar features are clustered together, revealing the structure inside the local representation. The whole process corresponds
to the Spectrum Conversion in Fig. 1a.
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Figure 9: (Supplementary.) Detailed structure of VQ-VAE model. (a) the whole model structure, (b) the structure of encoder1,
(c) the structure of encoder2, (d) the structure of decoder1, (e) the structure of decoder2.
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Figure 10: (Supplementary.) On the basis of the feature clustering, we identified, and manually segmented 11 primary top-
level clusters, which are illustrated them with representative images. The localizations of the example images shown in each
cluster are (i) cytoplasmic/membrane, (ii) cytoplasmmic/nucleoplasm, (iii) ER, (iv) membrane, (v) nucleolus, (vi) vesicles, (vii)
nucleoplasm, (viii) nucleoplasm, (ix) unsuccessful image, (x) cytoplasmic/nucleoplasm, (xi) vesicles.
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Figure 11: (Supplementary.) Identifying the essential components of our model with organelle-level ground truth. Protein
localization maps were derived after removing one-by-one key components of our model. Aligned UMAPs are given to aid
visual comparison.
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Figure 12: (Supplementary.) Identifying the essential components of our model with protein-complex-level ground truth. Protein
localization maps were derived after removing one-by-one key components of our model. Aligned UMAPs are given to aid visual
comparison.
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Figure 13: (Supplementary.) Clustering performance in our full model surpasses the previously reported cell-inpainting model29.
We train the models 5 times, compute 10 different UMAPs, compute clustering scores using organelle-level and protein-complex-
level ground truth, and then report mean and standard error of the mean. For the latent representations in the inpainting model,
we examined the 3 network layers discussed in Lu et al. to produce image representations for UMAP. Note that our approach
works with single fluorescence channel whereas the approach by Lu et al. needs at least two channels.
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Figure 14: (Supplementary.) Comparing UMAP representation of latent representation from cytoself and cell-inpainting29 anno-
tated with organelle-level ground truth. Aligned UMAPs are given to aid visual comparison.
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Figure 15: (Supplementary.) Comparing UMAP representation of latent representation from cytoself and cell-inpainting29 anno-
tated with protein-complex-level ground truth. Aligned UMAPs are given to aid visual comparison.
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