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Abstract

Elucidating the diversity and complexity of protein local-
ization is essential to fully understand cellular architecture.
Here, we present cytoself, a deep-learning approach for
fully self-supervised protein localization profiling and clus-
tering. cytoself leverages a self-supervised training scheme
that does not require pre-existing knowledge, categories,
or annotations. Training cytoself on images of 1,311 en-
dogenously labeled proteins from the OpenCell database re-
veals a highly resolved protein localization atlas that reca-
pitulates major scales of cellular organization, from coarse
classes such as nuclear, cytoplasmic and vesicular, to the
subtle localization signatures of individual protein com-
plexes. We quantitatively validate cytoself ’s ability to clus-
ter proteins into organelles and protein complex clusters us-
ing a clustering score, and show that cytoself attains higher
scores than previous unsupervised or self-supervised ap-
proaches. Finally, to better understand the inner work-
ings of our model, we dissect the emergent features from
which our clustering is derived, interpret these features in
the context of the fluorescence images, and analyze the per-
formance contributions of the different components of our
approach.

Systematic and large-scale microscopy-based cell assays
are becoming an increasingly important tool for biological
discovery1, 2, playing a key role in drug screening3, 4, drug
profiling5, 6, and for mapping the sub-cellular localization of
the proteome7, 8. In particular, large-scale datasets based on
immuno-fluorescence or endogenous fluorescent tagging com-
prehensively capture localization patterns across the human9, 10

and yeast proteome11. Together with recent advances in com-
puter vision and deep learning12, such datasets are poised to
help systematically map the cell’s spatial architecture. This sit-
uation is reminiscent of the early days of genomics, when the
advent of high-throughput and high-fidelity sequencing tech-
nologies was accompanied by the development of novel algo-
rithms to analyze, compare, and categorize these sequences,
and the genes therein. However, images pose unique obstacles
to analysis. While sequences can be compared against a frame
of reference (i.e. genomes), there are no such references for mi-
croscopy images. Indeed, cells exhibit a wide variety of shapes
and appearances that reflect a plurality of states. This rich diver-
sity is much harder to model and analyze than, for example, se-
quence variability. Moreover, much of this diversity is stochas-
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tic, posing the additional challenge of separating information
of biological relevance from irrelevant variance. The funda-
mental computational challenge posed by image-based screens
is therefore to extract well-referenced vectorial representations
that faithfully capture only the relevant biological information
and allow for quantitative comparison, categorization, and bio-
logical interpretation of protein localization patterns.

Previous approaches to classify and compare images have
relied on engineered features that quantify different aspects of
image content – such as cell size, shape and texture13–16. While
these features are, by design, relevant and interpretable, the un-
derlying assumption is that all the relevant features needed to
analyze an image can be identified and appropriately quantified.
This assumption has been challenged by deep learning’s recent
successes17. On a wide range of computer vision tasks such
as image classification, hand-designed features cannot compete
against learned features that are automatically discovered from
the data itself18, 19. Assuming features are available, the typ-
ical approach consists of boot-strapping the annotation pro-
cess by either (i) unsupervised clustering techniques20, 21, or
(ii) manual curation and supervised learning22, 23. In the case
of supervised approaches, human annotators examine images
and assign annotations, and once sufficient data is garnered,
a machine learning model is trained in a supervised manner,
and later applied to unannotated data17, 18, 23, 24. Another ap-
proach consists of reusing models trained on natural images to
learn generic features upon which supervised training can be
bootstrapped5, 25, 26. While successful, these approaches suffer
from potential biases, as manual annotation imposes our own
preconceptions. Overall, the ideal algorithm should not rely on
human knowledge or judgments, but instead automatically syn-
thesize features and analyze images without a priori assump-
tions – that is, solely on the basis of the images themselves.

Recent advances in computer vision and machine learning
have shown that forgoing manual labeling is possible and nears
the performance of supervised approaches27, 28. Instead of an-
notating datasets, which is inherently non-scalable and labor-
intensive, self-supervised models can be trained from large
uncurated datasets11, 29–32. Self-supervised models are trained
by formulating an auxiliary pretext task, typically one that
withholds parts of the data and instructs the model to pre-
dict them33. This works because the task-relevant informa-
tion within a piece of data is often distributed over multiple
observed dimensions30. For example, given the picture of a
car, we can recognize the presence of a vehicle even if many
pixels are hidden, perhaps even when half of the image is oc-
cluded. Now, consider a large dataset of pictures of real-world
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objects (e.g. ImageNet34). Training a model to predict miss-
ing parts from these images forces it to identify their impor-
tant features32. Once trained, the vectorial representations that
emerge from pretext tasks capture the important features of the
images, and can be used for comparison and categorization35.

Here, we present the development, validation and utility
of cytoself, a deep learning-based approach for fully self-
supervised protein localization profiling and clustering. The
key innovation is a pretext task that ensures that the localization
features that emerge from different images of the same protein
are helpful to distinguish its images from the images of other
proteins in the dataset. We demonstrate the ability of cytoself
to reduce images to feature profiles characteristic of protein lo-
calization, validate their utility to predict protein assignment to
organelles and protein complexes, and compare with previous
image featurization approaches.

Results

A robust and comprehensive image dataset. A prerequisite
to our deep-learning approach is a collection of high-quality
images of fluorescently tagged proteins obtained under uniform
conditions. Our OpenCell10 dataset of live-cell confocal images
of 1,311 endogenously tagged proteins (opencell.czbiohub.org)
meets this purpose. We reasoned that providing a fiducial chan-
nel could provide a useful reference frame for our model to
capture protein localization. Hence, in addition to imaging the
endogenous tag (split mNeonGreen2), we also imaged a nu-
clear fiducial marker (Hoechst 33342) and converted it into a
distance map (see Methods). On average, we imaged the local-
ization of a given protein in about 18.59 field of view (FOV).
Approximately 45 cropped images from each FOV containing
1-3 cells were then extracted for a total of 800 cropped images
per protein. This scale, as well as the uniform conditions un-
der which the images were collected, were important because
our model must learn to ignore image variance and instead fo-
cus on protein localization. Finally, in our approach all images
that represent the same protein were labeled by the same unique
identifier (we used the corresponding synthetic cell line identi-
fier, but the identifier can be arbitrary). This identifier does not
carry any explicit localization information, nor is it linked to
any metadata or annotations, but rather is used to link together
all the different images of the same protein.

A Deep Learning model to generate vectorial image rep-
resentations. Our deep learning model is based on the
Vector Quantized Variational Autoencoder architecture (VQ-
VAE37, 38). In a classical VQ-VAE, images are encoded into
a quantized latent representation, a vector, and then decoded
to reconstruct the input image (see Fig. 1). The encoder and
decoder are trained so as to minimize distortion between input
and output images. The representation produced by the encoder
is assembled by arraying a finite number of symbols (indices)
that stand for vectors in a codebook (Fig. 1b, Supp. Fig.1). The

codebook vectors themselves evolve during training so as to
be most effective for the encoding-decoding task37. The latest
incarnation of this architecture (VQ-VAE-236) introduces a hi-
erarchy of representations that operate at multiple spatial scales
(termed VQ1 and VQ2 in the original VQ-VAE-2 study). We
chose this architecture as a starting point because of the large
body of evidence that suggests that quantized architectures cur-
rently learn the best image representations37, 38. As shown in
Fig. 1b we developed a variant that utilizes a split vector quan-
tization scheme to improve quantization at large spatial scales
(see Methods, Supp. Fig. 1). This new approach to vector quan-
tization achieves better perplexity as shown in Fig. 1c which
means better codebook utilization.

Protein localization encoding via self-supervision. Our
model consists of two pretext tasks applied to each individ-
ual cropped image: First, it is tasked to encode and then de-
code the image as in the original VQ-VAE model. Second, it
is tasked to predict the protein identifier associated with the
image solely on the basis of the encoded representation. In
other words, that second task aims to predict, for each single
cropped image, which one of the 1,311 proteins in our library
the image corresponds to. The first task forces our model to dis-
till lower-dimensional representations of the images, while the
second task forces these representations to be strong predictors
of protein identity, This second task assumes that protein lo-
calization is the primary image information that is correlated
to protein identity. Therefore, predicting the identifier associ-
ated with each image is key to encouraging our model to learn
localization-specific representations. Interestingly, it is accept-
able, and in some cases perfectly reasonable, for these tasks to
fail. For example, when two proteins have identical localiza-
tion, it is impossible to resolve the identity of the tagged pro-
teins from images alone. Moreover, the autoencoder might be
unable to perfectly reconstruct an image from the intermediate
representation, when constrained to make that representation
maximally predictive of protein identity. It follows that the real
output of our model is not the reconstructed image, nor the pre-
dicted identity of the tagged protein, but instead the distilled
image representations, which we refer to as ‘localization en-
codings’ obtained as a necessary byproduct of satisfying both
pretext tasks. Specifically, our model encodes two represen-
tations for each image that correspond to two different spatial
scales: the local and global representations, that correspond to
VQ1 and VQ2 respectively. The global representation captures
large-scale image structure scaled-down 4×4 pixel image with
576 features (values) per pixel. The local representation cap-
tures finer spatially resolved details (25 × 25 pixel image with
64 features per pixel). We use the global representations to
perform localization clustering, and the local representations to
provide a finer and spatially resolved decomposition of protein
localization.

Mapping the protein localization landscape with cytoself.
Obtaining image representations that are highly correlated with
protein localization and invariant to other sources of hetero-
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Figure 1: Self-supervised deep learning of protein subcellular localization with cytoself. (a) Workflow of the learning process.
Only images and the proteins identifiers are required as input. We trained our model with a second fiducial channel for the cell
nuclei, but its presence is optional as its performance contribution is negligible (see Fig. 4). The protein identification pretext task
ensures that images corresponding to the same or similar proteins have similar representations. (b) Architecture of our VQ-VAE-
236 based Deep Learning model featuring our two innovations: split-quantization and protein identification pretext task. Numbers
in the encoders and decoders indicate encoder1, encoder2, decoder1 or decoder2 (Supp. File. 5). Global Representation and Local
Representation use different codebooks. (c) The level of utilization of the codebook (i.e. perplexity) increases and then saturates
during training and is enhanced by applying split quantization.

geneity (i.e. cell state, density, and shape) is only the first
step for biological interpretation. Indeed, while these repre-
sentations are lower dimensional than the images themselves,
they still have too many dimensions for direct inspection and
visualization. Therefore, we performed dimensionality reduc-
tion using the Uniform Manifold Approximation and Projection
(UMAP) algorithm on the set of global localization-encodings
obtained from all images (see Methods). In the resulting
UMAP (Fig. 2) each point represents a single (cropped) im-
age in our test dataset (i.e. 10% of entire dataset, see Methods)
which collectively form a highly detailed map of the full di-
versity of protein localizations. This protein localization atlas
reveals an organization of clusters and sub-clusters reflective of
eukaryotic subcellular architecture. We can evaluate and ex-
plore this map by labeling each protein according to its sub-
cellular localization obtained from independent manual anno-
tations of our image dataset (Supp. File 2). The most pro-
nounced delineation corresponds to nuclear (top right) versus
non-nuclear (bottom left) localizations (encircled and expanded
in Fig. 2, top right and bottom left, respectively). Within the
nuclear cluster, sub-clusters are resolved that correspond to
nucleoplasm, chromatin, nuclear membrane, and the nucleo-
lus. Strikingly, within each region, tight clusters that corre-
spond to specific cellular functions can be resolved (dashed out-
lines). For example, subunits involved in splicing (SF3 splice-
some), transcription (core RNA polymerase) or nuclear im-
port (Nuclear pore) cluster tightly together (outlined in Fig. 2,
dashed outlines). Similarly, sub-domains emerge within the
non-nuclear cluster, the largest corresponding to cytoplasmic
and vesicular localizations. Within these domains are several

very tight clusters corresponding to mitochondria, ER exit sites
(COPII), ribosomes, and clathrin coated vesicles (Fig. 2). The
many gray dots outside of these discrete localization domains,
often correspond to proteins that exhibit mixed localization pat-
terns (Fig. 2). Prominent among these is a band of proteins
interspersed between the nuclear and non-nuclear regions (ex-
panded in Fig. 3a). Representative proteins chosen along that
path show a continuous gradation from mostly cytoplasmic to
mostly nuclear localization.

Quantifying cytoself ’s clustering performance. To validate
our results, clustering scores were computed (see Methods,
Fig. 4, and Supp. Table 1) using two ground-truth annotation
datasets to capture known protein localization at two differ-
ent scales: the first is a manually curated list of proteins with
unique organelle-level localizations (Supp. File 3), whereas the
second is a list of proteins participating in stable protein com-
plexes derived from the CORUM database39 (Supp. File 1).
While the first ground-truth dataset helps us assess how well
our encodings cluster together proteins belonging to the same
organelles, the second helps us assess whether proteins inter-
acting within the same complex – and thus functionally related
– are in proximity.

Identifying cytoself ’s essential components. To evaluate the
impact of different aspects of our model on its clustering per-
formance, we conducted an ablation study. We retrained our
model and recomputed a protein localization UMAPs after in-
dividually removing each component or input of our model (see
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Figure 2: High-resolution Protein Localization Atlas. Each point corresponds to a single image from our test dataset of 109,751
images. To reveal the underlying structure of our map, each point in the central UMAP is colored according to 11 distinct protein
localization categories (mitochondria, vesicules, nucleoplasm, cytoplasm, nuclear membrane, ER, nucleolus, Golgi, chromatin
domain). These categories are expanded in the surrounding circles. Tight clusters corresponding to functionally-defined protein
complexes can be identified within each localization category. Only proteins with a clear and exclusive localization pattern are
colored, gray points correspond to proteins with other or mixed localizations. Within each localization category, the resolution
of cytoself representations is further illustrated by labeling the images corresponding to individual proteins in different colors
(dashed circular inserts). Note that while the colors in the central UMAP represent different cellular territories, colors in the
inserts are only used to delineate individual proteins, and do not correspond to the colors used in the main UMAP. The list of
annotated proteins are indicated in the Supp. File 3
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Figure 4: Clustering performance quantifies the effect of re-
moving the indicated components of our model on its perfor-
mance. For each model variation, we trained five model in-
stances, compute UMAPs for ten random seeds, compute clus-
tering scores using organelle-level and protein-complex-level
ground truth, and then report mean and standard error of the
mean.

Supp. Fig. 4, 5), including: (a) the nuclear fiducial channel, (b)
the distance transform applied to nuclear fiducial channel, (c)
the split vector quantization, and (d) the identification pretext
task. We also quantitatively evaluated the effects of their abla-
tion by computing clustering scores for different variants (Fig. 4
and Supp. Table 1). The UMAP results and scores from both
sets of ground-truth labels make it clear that the single most
important component of cytoself, in terms of clustering perfor-
mance, is the protein identification pretext task. The remain-
ing components – the nuclear channel, split quantization, vector
quantization, etc – are important but not crucial. Interestingly,
forgoing the fiducial nuclear channel entirely led to the small-
est decrease in clustering score, suggesting that our approach
works well even in the absence of any fiducial marker – a no-
table advantage that widens the applicability of our approach
and greatly simplifies the experimental design40. Overall, our
data shows a robust fit with ground truth. In conclusion, al-
though all features contribute to the overall performance of our
model, the identification pretext task is the key and necessary
ingredient.

Comparative performance of cytoself. Other unsupervised
(CellProfiler14) or self-supervised (Cell inpainting11) ap-
proaches for image featurization have been previously devel-
oped. We therefore applied these methods to the OpenCell im-
age dataset and then compared the results to that obtained by
cytoself. UMAPs were calculated for each model (see Meth-
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Figure 5: Feature spectral analysis.

Figure 5: (Continued) (a) Features in the local representation
are reordered by hierarchical clustering to form a feature spec-
tra (see Supp. Fig. 2). The color bar indicates the strength of
correlation. Negative values indicate anti-correlation. On the
basis of the feature clustering, we manually identified 11 pri-
mary top-level clusters, which are illustrated with representa-
tive images (see also Supp. Fig. 3). (b) Average feature spec-
trum for each unique localization family. Occurrence indi-
cates how many times a quantized vector is found in the lo-
cal representation of an image. All spectra, as well as the
heatmap are vertically aligned. (c) The feature spectrum of
FAM241A, a poorly characterized orphan protein. (d) Corre-
lation between FAM241A and other unique localization cate-
gories. The highest correlation is 0.777 with ER, next is 0.08
with cytoplasm. (e) Experimental confirmation of the ER lo-
calization of FAM241A. The localization of FAM241A to the
ER is experimentally confirmed by co-expression of a clas-
sical ER marker (mCherry fused to the SEC61B transmem-
brane domain, left) in FAM241A-mNeonGreen endogenously
tagged cells (right). The ER marker is expressed using tran-
sient transfection. As a consequence, not all cells are trans-
fected and levels of expression may vary. Scale bar: 10µm

ods) and compared with our set of ground-truth organelles and
protein complexes. As can be seen (Supp. Fig. 6, 7 and 14),
the resolution obtained by cytoself exceeded that of both previ-
ous approaches. This was also apparent in our calculations of
clustering scores (see Fig. 4 and Supp. Table 1).

Revealing subtle protein localization differences not anno-
tated in existing image-based localization databases. The
key advantage of self-supervised approaches is that they are not
limited by the quality, completeness or granularity of human
annotations. To demonstrate this, we asked whether cytoself
could resolve subtle localization differences that are not present
in image-derived manual annotations – focusing on proteins lo-
calized to intracellular vesicles. Even though several known
sub-categories of vesicles exist (e.g. lysosomes versus endo-
somes), in both OpenCell and HPA (Human Protein Atlas) an-
notations, these groups are annotated simply as ‘vesicles’. This
reflects the difficulty for human curators to accurately distin-
guish and classify localization sub-categories that present sim-
ilarly in the images. To test whether our self-supervised ap-
proach manages to capture these sub-categories, we focused
on a curated list of endosomal as well as lysosomal proteins
identified by an objective criterion. Specifically, we selected
proteins annotated as lysosomal (GO:000576500) or endoso-
mal (GO:0031901) in Uniprot41 (excluding targets annotated
to reside in both compartments), and for which localization in
each compartment has been confirmed independently by mass
spectrometry42, 43. As shown in Supp. Fig. 12, the representa-
tion of the lysosomal versus endosomal images derived from
cytoself form two distinct, well-separated clusters (p < 10−3,
Mann–Whitney U test). This demonstrates that self-supervised
approaches are not limited by ground truth annotations and can
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reveal subtle differences in protein localization not explicitly
present in existing databases.

Extracting feature spectra for quantitative analysis of pro-
tein localization. cytoself can generate a highly resolved map
of protein localization on the basis of distilled image represen-
tations. Can we dissect and understand the features that make
up these representations and interpret their meaning? To iden-
tify and better define the features that make up these repre-
sentations, we created a feature spectrum of the main compo-
nents contributing to each protein’s localization encoding. The
spectra were constructed by calculating the histogram of code-
book feature indices used in each image (see Supp. Fig. 2, and
Fig. 1a, and Methods for details). To group related and pos-
sibly redundant features together, we performed hierarchical
biclustering44 (Fig. 5a), and thus obtained a meaningful linear
ordering of features by which the spectra can be sorted. This
analysis reveals feature clusters of which we manually select
11 from the top levels of the feature hierarchy (Fig. 5a, bottom).
Representative images from each cluster illustrate the variety of
distinctive localization patterns that are present at different lev-
els across all proteins. For example, the features in the first
clusters (i, ii, iii, and iv) corresponds to a wide range of diffuse
cytoplasmic localizations. Cluster v features are unique to nu-
cleolus proteins. Features making up cluster vi correspond to
very small and bright punctate structures, that are often charac-
teristic of centrosomes, vesicules, or cytoplasmic condensates.
Clusters vii, viii, and x correspond to different types of nuclear
localization patterns. Cluster ix are dark features corresponding
to non-fluorescent background regions. Finally, cluster xi cor-
responds to a large variety of more abundant, punctate struc-
tures occurring throughout the cells, primarily vesicular, but
also Golgi, mitochondria, cytoskeleton, and subdomains of the
ER. For a quantitative evaluation, we computed the average fea-
ture spectrum for all proteins belonging to each localization cat-
egory present in our reference set of manual annotations (e.g.,
Golgi, nucleolus, etc., see Fig. 5b and Supp. File. 2). This anal-
ysis confirms that certain spectral clusters are specific to cer-
tain localization categories and thus correspond to characteris-
tic textures and patterns in the images. For example, the highly
specific chromatin and mitochondrial localizations both appear
to elicit very narrow responses in their feature spectra.

Predicting protein organelle localization with cytoself. We
next asked whether feature spectra could be used to predict the
localizations of proteins not present in our training data. For
this purposes, we computed the feature spectrum of FAM241A
– a protein of unknown function that was not present in the
training dataset. Its spectrum is most correlated to the consen-
sus spectrum of proteins belonging to the endoplasmic reticu-
lum (see Fig. 5b-d and Supp. Fig.8). Indeed, FAM241A’s local-
ization to the ER is validated experimentally by co-expression
experiments showing that endogenously tagged FAM241A co-
localizes with an ER marker (Supp. Fig. 5e). In a compan-
ion study10, we further validated by mass-spectrometry that
FAM241A is in fact a new subunit of the OST (oligosaccha-

ryltransferase) complex, responsible for co-translational glyco-
sylation at the ER membrane. Our successful prediction of the
localization of FAM241A suggests that cytoself encodings can
be used more generally to predict organelle-level localization
categories. To demonstrate this, we focused on proteins anno-
tated to localize to a single organelle (i.e., not multi-localizing,
see Supp. File 2). For each of these proteins, we re-computed
the representative spectra for each of their known localization
categories (i.e. ER, mitochondria, Golgi, etc.), but leaving out
that protein, and then applied the same spectral correlation as
described for FAM241A. This allows us to predict the protein’s
localization by identifying the organelle with which its spec-
trum correlates best. Supp. Fig. 9 shows the accuracy of the
predictions derived from this approach: for 88% of proteins,
the spectra correlate best with the correctly annotated organelle.
For 96% of proteins, the correct annotation is within the top
2 predictions, and for 99% it is within the top 3 predictions.
Overall, this form of cross-validation verifies the discriminat-
ing power of our spectra and shows that the information en-
coded in each protein’s spectrum can be interpreted to predict
subcellular localization.

cytoself applicability beyond OpenCell data. Finally, we
asked whether cytoself can make reasonable protein localiza-
tion predictions on images from datasets other than OpenCell.
To answer this question we chose data from the Allen Insti-
tute Cell collection45, which also uses endogenous tagging and
live-cell imaging, making their image data directly compara-
ble to ours. Importantly, the Allen collection uses a cell line
(WTC11, iPSC) whose overall morphology is very different
from the cell line used for OpenCell (HEK293T). We reasoned
that if cytoself manages to capture true features of protein local-
ization, a compelling validation would be that its performance
would be cell-type agnostic. Indeed, localization encodings for
images from the Allen dataset generated by a cytoself model
trained only on OpenCell images revealed strong concordance
between the embeddings of the same (or closely related) pro-
tein that were imaged in both cell datasets (see Supp. Fig. 11b).
This shows that our model manages to predict protein localiza-
tion even under conditions that were not directly included for
training. To facilitate comparison we focused on the intersec-
tion set of nine proteins found in both the OpenCell and Allen
datasets (Supp. Fig. 11a). We ran the same organelle localiza-
tion prediction task and observed that in 88% (8 out of 9) of
cases the correct localization is among the top 3 predictions
(Supp. Fig. 10).

Hypothesizing protein complex membership from images.
The resolving power of our approach is further illustrated by
examining known stable protein complexes, which are found
to form well delineated clusters in our localization UMAP (see
examples highlighted in Fig. 2, dashed line). Fluorescent im-
ages of 11 representative subunits from these complexes illus-
trate these discrete localization patterns (Fig. 3b). To substanti-
ate these observations quantitatively, we computed the correla-
tion of feature spectra between any two pairs of proteins in our
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dataset. This showed a significantly higher correlation for pro-
tein pairs annotated to belong to the same complex in CORUM
compared to pairs that are not (p < 10−10, Mann-Whitney U
Test; Supp. Fig. 15a). To further evaluate the relationship be-
tween proximity in feature space and protein complex member-
ship, we examine the proportion of proteins in OpenCell that
share complex membership with their most-correlated neigh-
boring protein (see Supp. Fig. 15b). We find that 83% of highly
correlated (> 0.95) neighbor proteins are in the same complex,
and even more weakly correlated (> 0.8) proteins are localized
to complexes 60% of the time. These results confirm that close
proximity in feature space is highly indicative of protein com-
plex membership and suggests that the features derived by cy-
toself contain fine-grained information related to very specific
functional relationships.

Discussion

We have shown that a self-supervised training scheme can pro-
duce image representations that capture the organization of pro-
tein subcellular localization (Fig. 2), solely on the basis of a
large dataset of fluorescence images. Our model generates
a high-resolution localization atlas capable of delineating not
only organelles, but also some protein complexes. Moreover,
we can represent each image with a feature spectrum to bet-
ter analyze the repertoire of localization patterns present in our
data. Since a protein’s localization is highly correlated with its
cellular function, cytoself will be an invaluable tool to make
preliminary functional predictions for unknown or poorly stud-
ied proteins, and for quantitatively studying the effect of cellu-
lar perturbations and cell state changes on protein subcellular
localization.

Our method makes few assumptions, but imposes two pre-
text tasks. Of these, requiring the model to identify proteins
based solely on their localization encodings was essential. We
also included Hoescht DNA-staining as a fiducial marker, as-
suming that this would provide a spatial reference frame against
which to interpret localization. Surprisingly however, this
added little to the performance of our model in terms of clus-
tering score. By comparison, the self-supervised approach by
Lu et al.11 applied a pretext task that predicts the fluorescence
signal of a labeled protein in one cell from its fiducial mark-
ers and from the fluorescence signal in a second, different cell
from the same field of view. This assumes that fiducial chan-
nels are available, and that protein fluorescence is always well-
correlated to these fiducials. In contrast, our approach only re-
quires a single fluorescence channel and yields better clustering
performance (Supp. Fig.6, 7, Supp. Table1).

The main difference between our work and the problem
addressed by the Human Protein Atlas Image Classification
competition23 is that we do not aim to predict localization pat-
terns on the basis of manual annotations. Instead, we aim to
discover de-novo the landscape of possible protein localiza-

tions. This frees us from the limitations of these annotations
which include: lack of uniform coverage, uneven annotation
granularity, human perceptive biases, and existing preconcep-
tions on the architecture of the cell. This also circumvents the
time-intensive efforts required to manually annotate images.

While powerful, there remains a few avenues for further de-
velopment of cytoself. For example, we trained our model
using two-dimensional maximum-intensity z-projections and
have not yet leveraged the full 3D confocal images available
in the OpenCell10 dataset. The third dimension might con-
fer an advantage for specific protein localization patterns that
are characterized by specific variations along the basal-apical
cell axis. Other important topics to explore are the automatic
suppression of residual batch effects, improved cell segmenta-
tion via additional fiducial channels, use of label-free imaging
modalities, as well as automatic rejection of anomalous or un-
characteristic cells from our training dataset. More fundamen-
tally, significant conceptual improvements will require an im-
proved self-supervised model that explicitly disentangles cellu-
lar heterogeneity from localization diversity46.

More generally, our ability to generate data is outpacing the
human ability to manually annotate it. Moreover, there is al-
ready ample evidence that abundance of image data has a qual-
ity all its own, i.e. increasing the size of an image dataset of-
ten has higher impact on performance than improving the al-
gorithm itself47. We envision that self-supervision will be a
powerful tool to handle the large amount of data produced by
novel instruments, end-to-end automation, and high-throughput
image-based assays.

Methods

Fluorescence image dataset. All experimental and imag-
ing details can be found in our companion study10. Briefly,
HEK293T cells were genetically tagged with split-fluorescent
proteins (FP) using CRISPR-based techniques48. After nuclear
staining with Hoechst 33342, live cells were imaged with a
spinning-disk confocal microscope (Andor Dragonfly). Typi-
cally, 18 fields of view were acquired for each one of the 1,311
tagged protein, for a total of 24,382 three-dimensional images
of dimension 1024× 1024× 22 voxel.

Image data pre-processing. Each 3D confocal image was
first reduced to two dimensions using a maximum-intensity
projection along the z-axis followed by downsampling in the
XY dimensions by a factor of two to obtain a single 2D image
per field of view (512 × 512 pixel). To help our model make
use of the nuclear fiducial label we applied a distance trans-
form to a nucleus segmentation mask (see below). The distance
transform is constructed so that pixels within the nucleus were
assigned a positive value that represents the shortest distance
from the pixel to the nuclear boundary, and pixel values outside

8

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 9, 2022. ; https://doi.org/10.1101/2021.03.29.437595doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.29.437595
http://creativecommons.org/licenses/by-nc-nd/4.0/


of the nucleus were assigned a negative value that represents the
shortest distance to the nuclear boundary (see Fig. 1a). For each
dual-channel and full field-of-view image, multiple regions of
dimension 100×100 pixel were computationally chosen so that
at least one cell is present and centered, resulting in a total of
1,100,253 cropped images. Cells (and their nuclei) that are too
close to image edges are ignored. The raw pixel intensities in
the fluorescence channel are normalized between 0 and 1, and
the nuclear distance channel is normalized between -1 and 1.

Nucleus segmentation. Nuclei are segmented by first thresh-
olding the nucleus channel (Hoechst staining) and then apply-
ing a custom iterative refinement algorithm to eliminate under
segmentation of adjacent nuclei. In the thresholding step, a
low-pass Gaussian filter is first applied, followed by intensity
thresholding using a threshold value calculated by Li’s iterative
Minimum Cross Entropy method49, 50. The resulting segmenta-
tion is refined by applying the following steps: (i) we generate
a ‘refined’ background mask by thresholding the laplace trans-
form at zero, (ii) we morphologically close this mask and fill
holes to eliminate intra-nuclear holes or gaps (empirically, this
requires a closing disk of radius at least 4 pixels), (iii) we mul-
tiply this ‘refined’ mask by the existing background mask to re-
store any ‘true’ holes/gaps that were present in the background
mask, (iv) we generate a mask of local minima in the laplace
transform, using an empirically-selected percentile threshold,
and finally (v) we iterate over regions in this local-minima mask
and remove them from the refined mask if they partially overlap
with the background of the refined mask.

Detailed model architecture. All details of our model archi-
tecture are given in Suppl. File. 5 and diagrammed in Fig. 1b.
First, the input image (100×100×2 pixel) is fed to encoder1 to
produce a set of latent vectors which have two destinations: en-
coder2 and VQ1 VectorQuantizer layer. In the encoder2, higher
level representations are distilled from these latent vectors and
passed to the output. The output of encoder2 is quantized in the
VQ2 VectorQuantizer layer to form what we call ”global repre-
sentation”. The global representation is then passed to the fc2
classifier for purposes of the classification pretext task. It is also
passed on to decoder2 to reconstruct the input data of encoder2.
In this way, encoder2 and decoder2 form an independent au-
toencoder. The function of layer mselyr1 is to adapt the output
of decoder2 to match the dimensions of the output of encoder1,
which is identical to the dimensions of the input of encoder2.
In the case of the VQ1 VectorQuantizer layer, vectors are quan-
tized to form what we call the local representations. The local
representation is then passed to the fc1 classifier for purposes
of the classification pretext task, as well as concatenated to the
global representation that is resized to match the local repre-
sentations’ dimensions. The concatenated result is then passed
to the decoder1 to reconstruct the input image. Here, encoder1
and decoder1 form another autoencoder.

Split quantization. In the case of our global representation,
we observed that the high level of spatial pooling required (4×4

pixel) led to codebook under-utilization because the quantized
vectors are too few and each one of them has too many dimen-
sions (Fig. 1b). To solve this challenge we introduced the con-
cept of split quantization. Instead of quantizing all the dimen-
sions of a vector at once, we first split the vectors into sub-
vectors of equal length, and then quantize each sub-vectors us-
ing a shared codebook. The main advantage of split quantiza-
tion when applied to the VQ-VAE architecture is that one may
vary the degree of spatial pooling without changing the total
number of quantized vectors per representation. In practice,
to maintain the number of quantized vectors while increasing
spatial pooling, we simply split along the channel dimension.
We observed that the global representations’ perplexity, which
indicates the level of utilization of the codebook, substantially
increases when split quantization is used compared to standard
quantization (Fig. 1c). As shown in Supp. Fig. 1, split quan-
tization is performed along the channel dimension by splitting
each channel-wise vector into nine parts, and quantizing each
of the resulting ‘sub-vectors’ against the same codebook. Split
quantization is only needed for the global representation.

Global and local representations. The dimensions of the
global and local representations are 4 × 4 × 576 and 25 ×
25 × 64 voxel, respectively. These two representations are
quantized with two separate codebooks consisting of 2048 64-
dimensional features (or codes).

Identification pretext task. The part of our model that is
tasked with identifying a held-back protein is implemented as
a 2-layer perceptron built by alternatively stacking fully con-
nected layers with 1000 hidden units and non-linear ReLU lay-
ers. The output of the classifier is a one-hot encoded vector
for which each coordinate corresponds to one of the 1,311 pro-
teins. We use categorical cross entropy as classification loss
during training.

Computational efficiency. Due to the large size of our image
data (1,100,253 cropped images of dimensions 100 × 100 × 2
pixel) we recognized the need to make our architecture more
efficient and thus allow for more design iterations. We opted
to implement the encoder using principles from the Efficient-
Net architecture to increase computational efficiency without
loosing learning capacity51. Specifically, we split the model of
EfficientNetB0 into two parts to make the two encoders in our
model (Supp.File. 5). While we did not notice a loss of perfor-
mance for the encoder, EfficientNet did not perform as well for
decoding. Therefore, we opted to keep a standard architecture
based on a stack of residual blocks for the decoder52

Training protocol The whole dataset (1,100,253 cropped im-
ages) was split into 8:1:1 into training, validation and testing
data, respectively. All results shown in the figures are from test-
ing data. We used the Adam optimizer with the initial learning
rate of 0.0004. The learning rate was multiplied by 0.1 every
time the validation loss did not improve for 4 epochs, and the
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training was terminated when the validation loss did not im-
prove for more than 12 consecutive epochs. Images were aug-
mented by random rotation and flipping in the training phase.

Dimensionality reduction and clustering. Dimensionality
reduction is performed using Uniform Manifold Approxima-
tion and Projection (UMAP)53 algorithm. We used the refer-
ence open-source python package umap-learn (version 0.5.0)
with default values for all parameters (i.e. the Euclidean dis-
tance metric, 15 nearest neighbors, and a minimal distance of
0.1). We used AlignedUMAP for the clustering performance
evaluation to facilitate the comparison of the different projec-
tions derived from all seven variants of our model (Supp. Fig. 4
and 5) or three variants of the previously described Cell inpaint-
ing model11 (Supp. Figs. 6 and 7). Hierarchical biclustering
was performed using seaborn (version 0.11.1) with its default
settings.

Ground truth labels in UMAP representation. We used
two sets of ground truth labels to evaluate the performance of
cytoself at two different cellular scales, a manually curated list
of proteins with exclusive organelle-level localization patterns
(Supp. File 3) and 38 protein complexes collected from the CO-
RUM database 39 (Supp . File 1). The 38 protein complexes
were collected based on the following conditions: i) all sub-
units are present in the OpenCell data, ii) no overlapping sub-
unit across the complexes, iii) each protein complex consists of
more than 1 distinct subunit.

Clustering score. To calculate a clustering score, we assume
a collection of n points (vectors) in Rm: S = {xi ∈ Rm|0 ≤
i ≤ n}, and that we have a (ground truth) assignment of each
point xi to a class Cj , and these classes form a partition of S:

S =
⋃
j

Cj

Ideally, the vectors xi are such that all points in a class are
tightly grouped together, and that the centroids of each class
are as far apart from each other as possible. This intuition is
captured in the following definition of our clustering score:

Γ(Ci) =
σ∗({µ∗(Cj)}j)
µ∗({σ∗(Cj)}j)

Where {.}k denotes the set of values obtained by evaluating
the expression for each value of parameter k, and where µ∗

and σ∗ stand for the robust mean (median) and robust stan-
dard deviation (computed using medians). Variance statistics
were obtained by training the model variant 5 times followed
by computing the UMAP 10 times per trained model.

Feature spectrum. Supp. Fig. 2a illustrates the workflow for
constructing the feature spectra. Specifically, we first obtain
the indices of quantized vectors in the latent representation for
each image crop, and then calculate the histogram of indices in
all images of each protein. As a result, we obtain a matrix of

histograms in which rows correspond to protein identification
(ID) and columns to the feature indices (Supp. Fig. 2b). At this
point, the order of the columns (that is, the feature indices) is
arbitrary. Yet, different features might be highly correlated and
thus either related or even redundant (depending on how “satu-
rated” the codebook is). To meaningfully order the feature in-
dices, we compute the Pearson correlation coefficient between
the feature index “profiles” (the columns of the matrix) for each
pair of feature indices to obtain a 2048 × 2048 pairwise corre-
lation matrix (see Supp. Fig. 2c). Next we perform hierarchical
biclustering in which the feature indices with the most simi-
lar profiles are iteratively merged54. The result is that features
that have similar profiles are grouped together (Supp. Fig. 2d).
This ordering yields a more meaningful and interpretable view
of the whole spectrum of feature indices. We identified a num-
ber of clusters from the top levels of the feature hierarchy and
manually segment them into 11 major feature clusters (ordered
i through xi). Finally, for a given protein, we can produce a in-
terpretable feature spectrum by ordering the horizontal axis of
the quantized vectors histogram in the same way.

Training cell inpainting model on OpenCell data. The cell
inpainting model was constructed using the code provided by
its original authors (https://github.com/alexxijielu/paired cell
inpainting). The whole dataset was split into training, valida-
tion and testing sets (8:1:1). All results shown in the figures are
computed on the basis of the test set. We used the Adam opti-
mizer with the initial learning rate of 0.0004. The learning rate
was multiplied by 0.1 every time the validation loss did not im-
prove for 4 epochs, and the training was terminated when the
validation loss did not improve for more than 12 consecutive
epochs. The features to generate UMAP were extracted from
layers denoted as ”conv3 1”, ”conv4 1” and ”conv5 1” by the
authors.

Applying cytoself on Allen Institute dataset. Image data
from the Allen Institute was downloaded from https://www.
allencell.org/data-downloading.html#DownloadImageData.
Patches were made following the same procedure as OpenCell
dataset including max-intensity projection and downsampling
to match their pixel resolutions. Nuclear center was determined
using the included nuclear label in the Allen Institute dataset.
We randomly selected 80 patches per protein and used these
for analysis.

Feature extraction with CellProfiler. CellProfiler 4.2.1 was
used to extract features from nuclear images (without distance
transform) and fluorescence protein images. In the case of cy-
toself we compute all features compatible to the data including
texture features up to scale 15, for a total of 1397 features that
required 2 days of computation. Only features that do not re-
quire object detection are used, including granularity, texture
and the correlations between the two channels. Each feature
was standardized by subtracting its mean followed by dividing
by its standard deviation before a downstream analysis.

10

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 9, 2022. ; https://doi.org/10.1101/2021.03.29.437595doi: bioRxiv preprint 

https://github.com/alexxijielu/paired_cell_inpainting
https://github.com/alexxijielu/paired_cell_inpainting
https://www.allencell.org/data-downloading.html#DownloadImageData
https://www.allencell.org/data-downloading.html#DownloadImageData
https://doi.org/10.1101/2021.03.29.437595
http://creativecommons.org/licenses/by-nc-nd/4.0/


Evaluation of the relationship between proximity in fea-
ture space and protein complex membership. The Pear-
son’s correlations between any two proteins in the intersection
of OpenCell and CORUM database are computed with their
feature spectra as the proximity metrics in the feature space.
For each protein, find the ‘nearest protein’ with which it has the
highest correlation, and increment the number if the correlation
is higher than a given threshold, and if both of them share at
least one complex in the CORUM database. To take into ac-
count the strength of correlation, we vary the minimal correla-
tion threshold thus obtaining the curve shown in Supp. Fig. 15b.

Statistical analysis. All box plots were generated using mat-
plotlib (version 3.4.2). Each box indicates the extent from the
first to the third quartile of the data, with a line representing
the median. The whiskers indicates 1.5 times the inter-quartile
range. scipy (version 1.8.0) was used to compute P values and
Pearson’s correlations.

Software and hardware. All deep learning architectures
were implemented in TensorFlow 1.1555 on Python 3.7. Train-
ing was performed on NVIDIA V100-32GB GPUs.
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Supplementary Text

Interpreting the features as patterns in the images. An im-
portant and very active area of research in deep learning is the
visualization, interpretation, and reverse-engineering of the in-
ner working of deep neural networks56, 57. To better understand
the relationship between our input images and the emergent
features obtained by cytoself, we conducted an experiment in
which images were passed into the autoencoder while zeroing
a given feature range before decoding. By computing the differ-
ence between the reconstructed images with or without zeroing,
we identify specific regions of the images that are impacted,
and thus causally linked, to that feature. Three examples are
illustrated in Fig. 16: (a) POLR2E, a core subunit shared be-
tween RNA polymerases I, II and III, (b) SEC22B, a vesicle-
trafficking protein, and (c) RPS18, a ribosomal protein. For
each protein we highlight (in red, Supp. Fig. 16a-c) regions
of the images that correspond to the three strongest peaks in
their respective spectra. These difference maps reveal the im-
age patterns that are lost and hence linked to that peak. The
strongest peak (leftmost) of POLR2E’s spectrum clearly corre-
sponds to high intensity punctate structures within nucleoli, a
localization recently established by Abraham et al.58, while the
two other peaks correspond to lower intensity and more diffuse
patterns. In the case of SEC22B the strongest peak (leftmost)
corresponds to cytoplasmic regions with high densities of vesi-
cles. Other peaks in the spectrum of SEC22B correspond to re-
gions with sparse punctate expression. Finally, for RPS18, the
strongest peak (rightmost) corresponds to large, diffuse, and
uniform cytoplasmic regions in the images, whereas the two
other selected peaks correspond to brighter and more speck-
led regions (middle) as well as regions adjacent to the nuclear
boundary (leftmost). This analysis highlights both the inter-
pretability but also the high complexity of the encodings gener-
ated by our model.

Cropping based on fiducial channel centering versus
content-based centering. Since the fiducial nuclear marker
is used to centralize the input images around a nucleus it, is the
marker necessary? To answer this question we trained cytoself
on a dataset cropped on the basis of the image content alone (lo-
cal image entropy) – forgoing the nuclear channel entirely. We
compare the clustering scores obtained from this dataset with
those obtained from the dataset cropped by centering nuclei
and found the difference to be negligible (see Supp. Fig. 13).
This result shows that the texture of the protein localization pat-
terns is more important than the relative position of the fiducial
marker to the protein fluorescence, or of its position within the
cropped images. The main advantage of using the nuclear fidu-
cial marker is to optimize the layout of the crops relative to the
cells. Ideally we want to have one crop per cell, and one cell
per crop. In contrast, random cropping without fiducial marker
cannot ensure that every cell is used.

Dataset splitting into training, validation, and test sets.
The training protocol described in the Methods section intro-
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duces data-leakage between training, validation and test data at
pixel level. Another approach for splitting the data would be to
split crops per field of view to ensure no that each pixel occurs
only in one subset (train, validation or test). In the following
we show that splitting our data along field of view does not
change our results. We also explain why splitting the data into
train-val-test sets is not as critical for self-supervised as it is for
supervised learning.

First, we revisit our motivations for splitting the data in train-
ing, test, and validation sets. In a supervised setting, splitting
the data in training, test, and validation sets serves two impor-
tant purposes: (i) the test set is used to make an estimate of the
performance of the model after supervised training, which is
likely to generalize to further unseen data if it is in-distribution.
(ii) the validation set is used during training to adjust the learn-
ing rate as well as to ensure early stopping to avoid over-fitting
which could degrade performance on the test set. These consid-
erations (i, ii, iii) are important for supervised learning. How-
ever, in our case, all training is self-supervised, and because the
auto-encoder reconstruction and protein identification pretext
tasks are not used after training and the performance metrics
such as losses are not important for our end purpose. For the
typical use-case of generating a feature vectors from input im-
ages, we never need to infer the identity of the tagged proteins
nor do we need to reconstruct these images. While we do not
use the pretext-tasks per se after training, we do use the re-
sulting trained models and the latent representations that these
models produce for given input images. Instead, we evaluated
these models independently using our clustering score based on
manually curated localization annotations. It follows then, that
with our approach we could simply use the full dataset for train-
ing, without splitting the data. However, in general, it is often
advantageous for technical purposes to do a train-val-test split
to measure model convergence and detect over-fitting. The only
disadvantage perhaps is that we could have trained cytoself on
all of our data. In an abundance of caution, we use the test data
for all analysis, but we could also have used the training data
for the reasons explained above. Notwithstanding, it is in gen-
eral preferable to avoid over-fitting, even in a self-supervised
setting.

To ensure that our model does not overfit, we split our dataset
per field-of-view and retrained the cytoself model. As shown in
Supp. Fig. 18a, the gap between training and validation loss
does not increase after about 120 epochs and 5 days of train-
ing, indicating that over-fitting does not occur. Another piece
of evidence that our model did not over-fit to the training data
is that our cytoself model actually works on images from the
Allen Cell Collection (see Supp. Fig. 11). One last point is
to verify that indeed our results are not sensitive to the data-
splitting method. First, we check whether the results of our
ablation study still hold when splitting our dataset per field of
view. To check this we recomputed the clustering scores. As
shown in the Supp. Fig. 18b), the relative positions among these
model variants stays roughly the same. Overall these results

show that the different splitting scheme does not affect the rel-
ative performance between variants of our approach. Similarly,
we recompute the UMAP in Fig. 2 of our manuscript and find
no difference in how well clustered the data is (see Fig. 18c).
Lastly, we redid the analysis on FAM241A and reach the same
conclusion (see Fig. 18d). Overall, these results show that the
technical choice of data splitting does not affect our results or
conclusions.

Supplementary Table

approach organelle-level complex-level
cytoself full model 3.41 ± 0.18 5.96 ± 0.25

w/o nuclear channel 3.35 ± 0.23 5.38 ± 0.19
w/o dist. transform 3.17 ± 0.18 4.90 ± 0.13
w/o vec. quantization 2.98 ± 0.14 4.46 ± 0.15
w/o id. pretext task 1.13 ± 0.094 1.26 ± 0.062
w/o split quantization 2.85 ± 0.20 5.04 ± 0.16
w/o decoder 2.98 ± 0.17 4.48 ± 0.12

Lu et al. (conv3 1) 2.19 ± 0.097 2.67 ± 0.045
Lu et al. (conv4 1) 2.33 ± 0.11 2.88 ± 0.10
Lu et al. (conv5 1) 2.91 ± 0.18 3.06 ± 0.084
CellProfiler 0.129 ± 0.013 0.124 ± 0.0074

Table 1: (Supplementary.) Clustering performance in our
full model surpasses the previously reported cell-inpainting
model11. We train the models 5 times, compute 10 different
UMAPs, compute clustering scores using organelle-level and
protein-complex-level ground truth, and then report mean and
standard error of the mean (µ ± sem.). For the latent repre-
sentations in the inpainting model, we examined the 3 network
layers discussed in Lu et al. to produce image representations
for UMAP. Note that our approach works with single fluores-
cence channel whereas the approach by Lu et al. needs at least
two channels.

Supplementary Files

1. proteins corum.csv, A list of protein subunits collected
from CORUM39 as a ground truth to compute clustering
scores. See Methods for how they were selected.

2. proteins uniloc.csv, A list of proteins that has only one lo-
calization pattern.

3. proteins uniorg.csv, A list of proteins that localizing with
unique organelles.

4. proteins subunits.csv, A list of protein subunits for protein
complexes mentioned in Fig. 2 and Fig. 3b.

5. model structures.zip, Detailed structure of VQ-VAE
model, including (a) the whole model structure, (b) the
structure of encoder1, (c) the structure of encoder2, (d)
the structure of decoder1, (e) the structure of decoder2.

Supplementary Figures
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Supplementary Figure 1: A schematic of split quantization. (a), Without split quantization, there are only 4× 4 = 16 quantized
vectors in the global representation. (b), With split quantization, there are 4 × 4 × 9 = 144 quantized vectors in the global
representation, resulting in more opportunities for codes in the codebook to be used.
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Supplementary Figure 2: Process of constructing feature spectra. (a) First, the quantized vectors in the local representation were
extracted and converted to a histogram by counting the occurrence of each quantized vector. (b) Next, taking the average of the
histograms per protein ID over all the data to create a 2D histogram. (c) Pearson’s correlations between any two representation
indices were calculated and plotted as a 2D matrix. (d) Finally, hierarchical clustering was performed on the correlation map so
that similar features are clustered together, revealing the structure inside the local representation. The whole process corresponds
to the Spectrum Conversion in Fig. 1a.
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Supplementary Figure 3: Representative images for the 11 top-level clusters. We show representative images for all 11 clusters
and the corresponding localizations categories (i) cytoplasmic/membrane, (ii) cytoplasmmic/nucleoplasm, (iii) ER, (iv) mem-
brane, (v) nucleolus, (vi) vesicles, (vii) nucleoplasm, (viii) nucleoplasm, (ix) unsuccessful image, (x) cytoplasmic/nucleoplasm,
(xi) vesicles.
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Supplementary Figure 4: Identifying the essential components of our model with organelle-level ground truth. Protein local-
ization UMAPs are derived after removing each components of our model separately. Aligned UMAPs are given to aid visual
comparison.
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Supplementary Figure 5: Identifying the essential components of our model with protein-complex-level ground truth. Protein
localization UMAPs are derived after removing each components of our model separately. Aligned UMAPs are given to aid
visual comparison.
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Supplementary Figure 6: Comparing the UMAP representations between cytoself and cell-inpainting11 annotated with organelle-
level ground truth. Aligned UMAPs are given to aid visual comparison.
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Supplementary Figure 7: Comparing the UMAP representations between cytoself and cell-inpainting11 annotated with protein-
complex-level ground truth. Aligned UMAPs are given to aid visual comparison.
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Supplementary Figure 8: Fluorescence images for FAM241A (a) versus representative images of other ER localized proteins (b).
Protein localization and nuclei are displayed in gray and blue respectively. Scale bar: 10µm
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Supplementary Figure 9: Predicting the localization category of mono-localized OpenCell proteins by correlating the cytoself
spectra of each protein with the representative spectra of each category – in a leave-one-out fashion. Result: 88% of proteins are
correctly classified. For 96% of proteins the correct annotation is within the top 2 predictions, and for 99% it is within the top 3
predictions.
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Supplementary Figure 10: Comparing the predicted localization categories of proteins present both in OpenCell and the Allen
Institute dataset. We find 9 proteins in the intersection between the two datasets (9 out of 11 in the Allen dataset). We compute
the feature spectra from images from the Allen dataset, predict the corresponding localization categories, and compare these to
the predictions done on the basis of the OpenCell images. Localization categories are predicted in the same way as done for
FAM241A.
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Supplementary Figure 11: Visualizing the predicted localization categories of proteins present both in OpenCell and the Allen
Institute dataset. The cytoself model is trained only on OpenCell data which is the same full model used throughout this work.
Example images (a) and UMAPs (b) from OpenCell and Allen Institute datasets for the same or related proteins. The min and
max intensities of each image are adjusted to ensure comparable visibility. All representative images were randomly selected.
Scale bar 10 µm. Protein names and contour lines in orange color are from OpenCell dataset, and those in green color are from
Allen Institute dataset.
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Supplementary Figure 12: cytoself discriminates between lysosomal and endosomal proteins. (a) We selected 11 proteins in
OpenCell annotated in Uniprot as lysosomal or endosomal that are independently confirmed as such by mass spectrometry42, 43.
We show that cytoself is able to distinguish the lysosomal from endosomal proteins solely on the basis of the fluorescence images.
All of these proteins are annotated on the basis of the images as ”vesicles” in both HPA and OpenCell. The min and max intensities
of each image are adjusted to ensure comparable visibility. All representative images were randomly selected. Scale bar: 10 µm.
(b) Clustering of these proteins on the basis of the feature spectra. (c) Feature spectra correlations for pairs of lysosomal and
endosomal proteins, and for mixed lysosomal-endosomal pairs. The p-values are computed using the Mann-Whitney U test.
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Supplementary Figure 13: Clustering performance of cytoself is not significantly affected by using a training dataset cropped with
or without using the nuclear fiducial channel. We avoid the use of the fiducial marker by: extracting a large number of random
crops from the images, computing the histogram of each crop, computing the entropy of each of these histograms, sorting the
crops by entropy, and keeping the top half of highest entropy. Variance statistics were obtained by training model variants 5 times
followed by computing UMAP 10 times per trained model. The p-values are computed using Student’s t-test.
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Supplementary Figure 14: Comparing cytoself with CellProfiler-derived image representations. Despite our best efforts (multiple
attempts with different feature normalization schemes) CellProfiler features lead to very poor clustering score (< 0.13) versus
cytoself (> 3). (a) UMAP using cytoself features annotated with organelle-level ground truth. (b) UMAP using Cell Profiler
features annotated with organelle-level ground truth. (c) UMAP using cytoself features annotated with protein-complex-level
ground truth. (d) UMAP using Cell Profiler features annotated with protein-complex-level ground truth.
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Supplementary Figure 15: Highly correlated spectra imply shared protein complex membership. (a) Feature spectra of protein
pairs that are in the same complex according to CORUM39 show significantly higher correlations than those that are not in
the same complex, confirming quantitatively that the feature spectra are sensitive enough to encode complex-specific patterns.
However, the spread in correlations also indicates that not all interacting proteins have strongly correlated spectra which is
expected when considering that proteins can participate in different protein complexes and thus exhibit mixed localizations. In
contrast, the correlation of feature spectra for protein pairs that are not in CORUM are typically close to zero with less spread,
suggesting that it is rare for non-interacting proteins to have highly correlated spectra. (b) We plot the proportion of proteins
in both OpenCell and CORUM that share protein-complex membership with their most correlated neighbor. When we consider
only correlations above a threshold of 0.95 we find that in 83.3% of cases the protein with the strongest correlation is in a shared
complex. For a threshold of 0.90 the value is 66.3%, and for a threshold of 0.5 the value is 47.9%. The p-value is computed using
the Mann-Whitney U test.
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Supplementary Figure 16: Interpreting image spectral features. Feature spectra were computed for each example proteins (a)
POLR2E, (b) SEC22B, and (c) RPS18. Subsequently, information derived from the indicated major peaks of their feature spectra
was removed by zeroing them out before passing the features again through the decoder. Highlighted in red are the differences
between the resulting output images for the corresponding features and reconstructed image with full features on. The feature
classes outlined in Fig. 5 are shown as background color for reference. The pixel intensities are rescaled to the minimum and
maximum of each image. Scale bars: 10µm
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Supplementary Figure 17: Reconstructed images with full features on, specific features off and the differences. Each panel and
column correspond to those in Supp. Fig. 16. The pixel intensities are rescaled to the minimum and maximum of each image.
Scale bars: 10µm
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Supplementary Figure 18: Training cytoself on image crops split by fields of view does not affect our results and conclusions.
Splitting by fields of view ensures that each pixel occurs only once in the training data, validation data or test data, exclusively.
(a) Training history on datasets split on fields of view showing that no over-fitting occurs even after more than 120 epochs. (b)
Clustering scores obtained from datasets split on fields of view show that the conclusions of our ablation study are unchanged.
(c) The appearance of the UMAP shown in Fig. 2 is not fundamentally affected by splitting on fields of view. (d) Splitting by
fields of view does not affect our result that FAM241A is localized in the ER.
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