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Abstract 

The NBA player Stephen Curry has a habit of turning away from the basket right after taking 

three-point shots, presumably because he can predict the success of his shot. For such a 

consciously accessible prediction to be possible, Stephen Curry needs access to internal 

processes of outcome prediction and valuation. Computational simulations and empirical 

data suggest that the quality of internal prediction processes is related to motor expertise. 

Whether the results of internal predictions can reliably be consciously accessed is less clear. 

In the current study, 30 participants each practiced a virtual goal-oriented throwing task for 

1000 trials. Every second trial, they were required to verbally predict the success of the 

current throw. Results showed that on average, conscious prediction accuracy was above an 
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individually computed chance level, taking into account individual success rates and 

response strategies. Furthermore, prediction accuracy was related to throwing performance. 

Participants with better performance predicted the success of their throws more accurately 

than participants with poorer performance. Moreover, for the poorer performing 

individuals, movement execution was negatively affected by the verbalized predictions 

required, and they did not show variation in speech characteristics (response latency) 

between correct and incorrect predictions. This indicates reduced quality of conscious access 

to internal processes of outcome prediction. 

Keywords:  action outcome prediction, conscious access, forward model, response latency, 

response amplitude
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1 Introduction 1 

Theories of internal models claim that the predictive outcomes of forward models play 2 

an essential role in motor learning (McNamee & Wolpert, 2019). Forward models are a 3 

set of neural processes that integrate information from the current state of the system 4 

and its environment with motor commands and sensory signals from movement 5 

execution to predict sensory consequences of that movement (Miall & Wolpert, 1996). 6 

Sensory and motor noise increase the uncertainty in the state estimate of the system. 7 

Forward models act as filters capable of reducing this uncertainty and attenuating 8 

unwanted information, or highlighting information critical for control. Furthermore, 9 

forward models can be used to transform motor errors, which are differences between 10 

desired and actual sensory outcomes of a movement into corresponding corrections in 11 

motor commands, thereby providing appropriate signals for motor learning (Wolpert et 12 

al., 1995). Based on computational simulations, it is suggested that learning is faster the 13 

better the forward model is able to model the dynamics of the movement and its effects 14 

(Jordan & Rumelhart, 1992). In line with this, empirical and anecdotal evidence confirm 15 

that processing and valuation of motor errors based on forward model predictions is 16 

strongly related to learning. First, it has been shown that neurophysiological correlates of 17 

predictive error valuation increase with learning (Beaulieu et al., 2014; Lutz et al., 2013; 18 

Maurer et al., 2021). Second, participants with extended experience in a throwing task 19 

particularly motor experts, that is throwers with high accuracy show more distinct signs 20 

of predictive error valuation on the neurophysiological level (Joch et al., 2017; Maurer et 21 

al., 2015; Maurer et al., 2021). Third, there is anecdotal evidence that motor experts are 22 

aware of their own errors and can consciously predict them even before they perceive 23 
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any external feedback: The alleged predictive abilities of NBA players like Stephen Curry 24 

can be observed in both professional and amateur game videos, and in them it can be 25 

observed that shortly after the ball leaves the player’s hand, the players already cheer in 26 

cases of successful throws or express their disappointment in cases of missed throws. 27 

But is it really possible to gain conscious access to the predictive output of forward 28 

models in highly complex motor tasks like basketball shooting? And taken even further, 29 

might conscious access to prediction processes influence forward model computations? 30 

If so, would this influence be beneficial, as it has been shown in an apparent motion 31 

paradigm (Vetter et al., 2014), or detrimental, as proposed by the theory of reinvestment 32 

(Masters et al., 1993; Masters & Maxwell, 2008), and indicated by studies on perception-33 

action coupling (Beilock et al., 2002; Farrow & Abernethy, 2003)? Without delving deeply 34 

into theories and models of consciousness, it has to be acknowledged that the term 35 

“consciousness” has different meanings, such as reaching from a waking state or 36 

subjectivity to an experimental variable of brain differences attributable to 37 

consciousness (Baars, 2015). In the present study “conscious access” is defined as the 38 

ability to report contents of perceptual states; according to this definition, perception 39 

itself is not limited to the processing of sensory (afferent) signals, as perception can arise 40 

from afferent and efferent information as well as cognitive (top-down) signals. Hence, if 41 

people with reliably working forward models have conscious access to the output of the 42 

forward model, they should be able to verbally predict the outcome of a motor action 43 

before any external feedback about the outcome is available. Arbuzova and colleagues 44 

(2021) examined metacognitive abilities in the discrimination of two different outcomes 45 

based on predictions in a virtual goal-oriented throwing task. Discrimination accuracy 46 
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was governed by an online staircase procedure aimed at fixing performance at 47 

approximately 71% correct. Results from this study do not allow conclusions about 48 

absolute discrimination accuracy (i.e., effect prediction), but, confidence about the 49 

discrimination ratings (metacognitive ability) was relatively high across different 50 

informational domains (visual, visuomotor, motor). This shows that aspects of one’s own 51 

movement execution are principally available for conscious use, at least with respect to 52 

the monitoring of performance.  53 

The conscious accessibility of sensorimotor prediction with respect to action outcomes 54 

has been investigated in athletes involved in different sports. The focus of most studies 55 

has been on anticipatory estimates of other players’ actions, based purely on visual 56 

information, for example in basketball shooting (e.g., Abreu et al., 2012; e.g., Aglioti et 57 

al., 2008; Li & Feng, 2020; Özkan et al., 2019), volleyball smashes (e.g., Cañal-Bruland et 58 

al., 2011; Wright et al., 1990), soccer penalty kicks (Tomeo et al., 2013), or other game 59 

situations (for a review see Abreu et al., 2017). Since predictions in these studies were 60 

exclusively based on observations of motor actions, available sensorimotor information 61 

was incomplete, and visual information differed compared to when actions were 62 

executed. That is, observers lacked internal efferent information about motor 63 

commands, and did not have access to proprioceptive or haptic information associated 64 

with the related movement either. But, in contrast to performers, observers take a third-65 

person perspective. Hence, they can use visual information from whole body kinematics.  66 

Other studies examined predictions in both observers and performers (Cañal-Bruland et 67 

al., 2015), or in performers alone (Maglott et al., 2019). Performers had to rate outcomes 68 

of basketball shots after their vision was occluded by shutter googles immediately after 69 
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ball release. Results showed that, on average, performers were able to verbally predict 70 

the results of their shots above the level of chance. But, both of these studies reported a 71 

strong judgment bias regarding shooting position and outcome (hits vs. misses). 72 

Performances of shots from the foul line were generally overestimated as compared to 73 

shots taken from other distances (Canal-Bruland et al., 2015), and expert players in 74 

particular had higher biases towards predicting their shots as hits (Maglott et al., 2019). 75 

The authors took that bias into account when calculating the base rate of correct 76 

judgements (i.e., the number of all actual hits being predicted as hits plus the number of 77 

all misses being predicted as misses, relative to the total number of trials) that could be 78 

accounted for by pure chance. Yet, the base rate reflecting pure chance also depends on 79 

the actual individual hit rate, which, however, was not included in the base rate 80 

estimations provided by the authors. Furthermore, in both studies, the shutter googles 81 

were manually controlled, which presumably introduced relatively large temporal 82 

variations of the occlusions, and it must be assumed that some post-release information 83 

about ball trajectory could have been received and processed by participants.  84 

The present study aimed to verify that subjects with experience in a motor task can 85 

consciously predict outcomes of their own actions without any external feedback about 86 

action outcomes being available to them. For the experimental task, a virtual goal-87 

oriented throwing task with parallels to basketball shooting was used. One significant 88 

advantage of studying throwing in this context is the natural delay between movement 89 

(throwing) termination and the availability of outcome feedback. Moreover, since the 90 

task was virtual and movement execution was captured online, the visual information 91 

available to subjects could be precisely controlled. Thus, outcome predictions could be 92 
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based exclusively on information gathered during movement planning (efferent 93 

information) and during movement execution (haptic, proprioceptive, or visual 94 

information), but not on external information about movement effects (e.g., trajectory of 95 

the object to be thrown). Hence, information on the level of an individual’s accuracy in 96 

consciously accessing outcome predictions (predictive accuracy) would provide novel 97 

insight into the quality of forward models and the easiness or efficiency of conscious 98 

access to forward models. Predictive accuracy was quantified by the rate of correct 99 

verbal predictions of throwing outcome, relative to a baseline (chance) level accounting 100 

for individual hit rates and response strategies.  101 

Successful verbalized predictions require at least two separate functions: a predictor and 102 

conscious access to its predictions. Or, conversely, poor predictive accuracy may arise 103 

from two reasons: (i) individuals have poor prediction quality (due to poor forward 104 

models), or (ii) they have difficult or inefficient conscious access to their forward models. 105 

Thus, it is expected that individuals with superior throwing performances (inferring good 106 

forward models) and easy conscious access to internal processes, would be able to 107 

predict their throwing outcomes above the level of chance. In the present study design, 108 

the integrated effect of both aspects was examined, and experimental separation was 109 

not directly possible. But, post-hoc interpretations of the different influences of 110 

prediction quality (i) and easiness of access (ii) on prediction accuracy are provided. As 111 

additional variables contributing to this differentiation, throwing performance and 112 

speech characteristics of verbal responses were analyzed. A possible back wash effect of 113 

conscious access to internal prediction processes results in interference with throwing 114 

performance: The preparation of conscious verbal predictions following movement 115 
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execution might disrupt the motor control process, and hence affect throwing 116 

performance (Beilock et al., 2002; Masters & Maxwell, 2008). These costs of conscious 117 

processing might also manifest themselves in longer verbal response latencies and lower 118 

response volumes due to hesitation (Collins et al., 2000; Seymour, 1970). 119 

2 Materials and Methods 120 

2.1 Participants 121 

Thirty participants (18 female, 12 male) from the student population of the Justus Liebig 122 

University, Giessen, Germany with an average age of 24.13 (SD = 5.77) years participated in 123 

the study. Participants were healthy and had normal or corrected-to-normal vision. Two left-124 

handed subjects practiced the task with the right hand, which had been shown to produce 125 

similar learning curves to right-handed participants in pilot studies. Participants received 126 

course credit or monetary compensation of €8 per hour. The experiment was conducted in 127 

accordance with the ethical standards laid down in the Declaration of Helsinki. The protocol 128 

was approved by the Ethical Review Board of the Justus Liebig University, Giessen. 129 

2.2 Experimental task and apparatus 130 

Participants practiced a novel and complex goal-oriented throwing task that has previously 131 

been used to study motor learning (e.g., Cohen & Sternad, 2009; Maurer et al., 2021; Müller 132 

& Sternad, 2004; Pendt et al., 2011). The task is inspired by the British pub game “Skittles”, 133 

where a ball attached to the top of a post by a string has to be swung around the post to hit 134 

target objects on the opposite side. In addition to the ballistic nature of the task preventing 135 

online corrections during movement execution, this throwing task allows a temporal 136 

separation of movement execution and its terminal outcome, because the outcome is 137 
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temporally delayed with respect to the movement. The task was executed semi-virtually. 138 

That is, participants executed a real ballistic throwing movement using a metal lever device 139 

(manipulandum), while the movement and its outcome were only visible on a computer 140 

screen from an overhead perspective (see Fig. 1).  141 

 142 

Figure 1. Experimental setup of the Skittles task. The participant uses a manipulandum 143 
to throw the virtual ball (green) with a horizontal rotational movement. The ball is 144 
released by lifting off the index finger from a contact sensor at the tip of the 145 
manipulandum. The ball travels on an elliptical pathway around the blue post  to hit a 146 
red target. 147 
 148 

The Skittles task was carried out using MATLAB R2018a (The Mathworks, Inc.) using the 149 

Psychophysics Toolbox version 3.0.14 (Brainard, 1997). On the screen in front of each 150 

subject, a virtual equivalent of the metal lever was displayed, which participants used to pick 151 

up and throw a green virtual ball (radius on screen = 4.2 mm) around a blue center post 152 

(radius on screen = 21 mm) in order to hit a red target (radius on screen = 4.2 mm). The 153 
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elliptical trajectory of the ball around the center post was defined by the angle and velocity 154 

of the manipulandum at the moment of ball release. The calculation of the ball trajectory 155 

was based on a physical model of the task (Müller & Sternad, 2004) with the following 156 

parameters: center post (radius = 0.25 m; position: x = 0.0 m, y = 0.0 m), target (radius = 0.05 157 

m; position: x = 0.8 m, y = 0.9 m), ball (radius = 0.05 m; mass = 0.1 kg), spring constant (1.0 158 

N/m). In the regular version of the task, participants were able to see the ball moving 159 

towards the target after ball release. Whenever the minimum distance between the 160 

trajectory of the ball center and the center of the target (Dmin) was less than or equal to 161 

twice the radius of the ball/target, the ball collided with the target (hit). For the subjects, this 162 

was apparent visually, because the target was pushed away from its position, and 163 

acoustically by the sound of two colliding billiard balls. In trials where Dmin was larger than 164 

twice the radius of the ball/target, the ball missed the target. In the experimental version, in 165 

every second trial the ball vanished from the screen immediately after its release from the 166 

virtual lever. In these trials, subjects did not receive any information about the movement 167 

outcome. 168 

2.3 Study procedure 169 

Task execution was accomplished as follows: Participants sat on a stool placed 100 cm in 170 

front of a 19-inch, 4:3 computer monitor (model: Dell P190St, screen resolution: 1280 x 1024 171 

pixels, refresh rate: 60 Hz). Their right arms rested on the foam padded manipulandum, 172 

which was fixed on a height-adjustable stand at the vertical rotation axis below the elbow 173 

joint of the participant (Figure 1). An integrated magnetic angle sensor with a resolution of 174 

12 bit (0.09 deg) measured the lever rotation with a sampling rate of 1000 Hz. Movement 175 

was restricted to the horizontal plane, more specifically, to rotation around a fixed vertical 176 
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axis. To pick-up the virtual ball, participants placed their index fingers on an electrical 177 

contact sensor at the tip of the lever to close an electrical circuit. They then “threw” the ball 178 

by moving the manipulandum in an outward horizontal movement similar to a Frisbee toss, 179 

and starting in front of their bodies. As soon as the participant’s finger was lifted from the 180 

manipulandum, the virtual ball was released from the virtual lever. To explain the task to the 181 

participants, a miniature model of the real Skittles game was used to clarify the task. To 182 

prevent a fast, rhythmic execution of subsequent trials, participants were instructed to start 183 

every trial by moving the tip of the virtual lever into a red circle positioned left of the fixed 184 

end of the lever (35° clockwise relative to the horizontal axis; see Figure 1). Immediately 185 

after the tip of the virtual lever reached the circle, it turned yellow. The circle turned green 186 

when the lever was held steady within the yellow circle for one second. The green starting 187 

circle signaled that participants were free to start the movement at any time. Note, 188 

however, that the subjects did not start the movement in reaction to the green signal. The 189 

aim of the task was to hit the target as frequently as possible. 190 

The movement result was to be predicted verbally by the subjects within 2.5 seconds after 191 

ball release by the German words for hit (“Treffer”) or miss (“Fehler”). The verbal utterances 192 

were recorded for later analysis. For this purpose, a clip-on microphone (Monacor ECM-193 

501L/SK), a phantom power adapter (MG STAGELINE EMA-1), and a microphone 194 

preamplifier (IMG STAGELINE MPA-202) were used. The output signal from the preamplifier 195 

was captured using a 16-bit data acquisition device (National Instruments PCIe-6321), and 196 

Matlab Data Acquisition Toolbox time synchronized with the data from the Skittles 197 

apparatus (angular and touch sensor) with a sampling frequency of 10.000 Hz. 198 
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2.4 Study design 199 

Practice took place over two sessions with 500 trials each. Trials were categorized with 200 

respect to practice and experimental conditions (overview in Tab. 1). The first 100 trials of 201 

session one served as a first practice of the task. The regular version of the task was used for 202 

all of these trials. From trial 101 to trial 150, the experimental version was used where ball 203 

flight information was masked for every second trial as described above (“Experimental task 204 

and apparatus”). In these trials, participants did not receive any outcome feedback, while 205 

feedback was normally presented in the other 50 % of trials. From trial 151 to trial 1000, the 206 

regular version of the task was alternated with the experimental version in every other trial 207 

and, additionally, participants were asked to verbally predict the outcomes of their throws in 208 

the trials without ball flight information and outcome feedback (prediction condition). Trials 209 

151-200 served as practice of the verbal prediction. Only trials 201 to 1000 were used for 210 

analyses where the prediction condition (verbal prediction and no outcome feedback) was 211 

contrasted with the regular condition (no verbal prediction, but available outcome 212 

feedback). The alternation of throws with and without feedback was chosen because pilot 213 

data indicated that it was not possible to perform the task successfully without "drifting 214 

away" from the solution manifold of the task without regular feedback.  215 

Tab. 1. Overview of the experimental procedure 216 

 Trials 1-100 Trials 101-150 Trials 151-200 Trials 201-1000 

Experimental 

phases 

Practice: 

Regular task 

version 

Practice: 

Alternation of 

regular task 

Practice: 

Alternation of 

regular task 

Experiment: 

Alternation of 

regular task 
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version and 

experimental 

version in every 

trial 

version and 

prediction 

condition in 

every trial 

version and 

prediction 

condition in 

every trial 

Implementation 

of feedback and 

verbal 

prediction in 

the different 

phases 

100 % of trials 

with outcome 

feedback 

50 % of trials 

with outcome 

feedback and 50 

% of trials 

without 

outcome 

feedback 

50 % of trials 

with outcome 

feedback and 

50 % of trials 

without 

outcome 

feedback and 

with verbal 

prediction 

50 % of trials 

with outcome 

feedback and 

50 % of trials 

without 

outcome 

feedback and 

with verbal 

prediction 

 217 

2.5 Analysis of throwing performance 218 

Behavioral analyses as well as the analyses of verbal responses were done in MATLAB 219 

R2020b (The Mathworks, Inc.). The execution variables (release angle and velocity) and 220 

outcomes in the Skittles task are related in a nonlinear fashion. Furthermore, the task is 221 

redundant, what means that hits and misses are not functions of a dichotomous difference 222 

in throwing execution, but can arise from very different combinations in release angle and 223 

velocity. As a consequence, outcome prediction is not trivial. To account for this difficulty, 224 

only clear target hits (with Dmin ≤ 7 cm) and clear misses (with Dmin ≥ 12 cm) were analyzed 225 

(following Joch et al., 2017; note that trials with Dmin ≤ 10 cm lead to hits). Throwing 226 
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performance was defined as the rate of clear hits in percent of blocks of 100 trials (10 blocks 227 

in total) averaged over all participants. Since conscious verbal predictions could influence 228 

throwing performance, hit rates between the prediction condition and the regular condition 229 

were compared. In these cases, hit rate was determined over 50 trials of each block for both 230 

conditions, because prediction trials and regular trials were alternated every trial.  231 

2.6 Analysis of verbal responses 232 

Verbal predictions of throwing outcomes were examined along two dimensions: First, 233 

prediction accuracy was analyzed in order to test whether participants were able to 234 

consciously access their internal processing of movement errors. Second, characteristics of 235 

speech, concretely variance in the onset and amplitude of verbal responses provided further 236 

information about the ease of conscious access to the predictions. It was assumed that 237 

faster (easier) conscious access would be manifested in earlier and louder prediction 238 

responses. 239 

2.6.1 Prediction accuracy 240 

Prediction accuracy was defined as the rate of correct predictions relative to an individual 241 

baseline or chance level. This was accomplished in several steps. First, the rate of correct 242 

predictions (%CPred) was defined as the percentage of correctly predicted clear hits and 243 

misses of all trials in the prediction condition. This empirical prediction rate was compared to 244 

the individually calculated prediction baselines (%CChance). This baseline depends on two 245 

factors: first, the rate at which participants actually hit (%ActHit) or missed (%ActMiss) the 246 

target in the experimental condition and, second, the rate at which they verbally report hits 247 

(%VerbHit) or misses (%VerbMiss).   248 
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Based on the null hypothesis that verbal estimates are unrelated to the actual occurrence of 249 

hits and misses, we estimated %CChance in the following way: 250 

%CChance = %ActHit * %VerbHit + %ActMiss * %VerbMiss 251 

Prediction accuracy (%AccPred) was then computed as the percentage of correct predictions 252 

above %CChance, normalized with respect to perfect predictions: 253 

%AccPred = (%CPred - %CChance) / (100 - %CChance)  254 

Thus, %AccPred represented the ability of participants to consciously and verbally predict the 255 

outcomes of their throwing movements. 256 

2.6.2 Speech characteristics  257 

To analyze verbal utterances, voltage values from the microphone output were offset-258 

corrected, rectified, and then a moving average calculation (window width 250 values, i.e. 25 259 

ms) was performed. The onset time of a verbal utterance was identified when the averaged 260 

profile exceeded 0.1 V. To determine the amplitudes, the maximum value in the averaged 261 

voltage curve was first determined. To account for general differences in loudness resulting 262 

from different positioning of the microphone and speaking volumes of subjects, all 263 

maximum amplitude values of each test session and subject were divided by their medians. 264 

Finally, the medians of onset latencies and response amplitudes were determined for all 265 

trials in the four different categories ActHit/VerbHit, ActHit/VerbMiss, ActMiss/VerbHit, 266 

ActMiss/VerbMiss. 267 
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2.7 Statistical analyses 268 

Statistical analysis was performed in JASP (Version 0.14.1). The alpha level was set to .05 for 269 

all statistical analyses. Data normality was checked with the Shapiro-Wilk test, and sphericity 270 

was checked using the Mauchly’s W test. In case of violation of sphericity, the Greenhouse-271 

Geisser correction was used. Changes in performance were tested with repeated 272 

measurement ANOVAs over all sessions, which included Holm corrected post-hoc testing of 273 

single sessions. Direct comparisons of performances between the experimental conditions 274 

(regular vs. prediction) was done using Wilcoxon signed-rank test (due to violation of 275 

normality assumptions), using the rank-biseral correlation coefficient as effect size. A one-276 

sample t-test was used to examine whether prediction accuracy (%AccPred) was above 277 

baseline prediction, with effect sizes determined by Cohen’s d. It was expected that 278 

prediction accuracy would be a function of forward-model quality, and quality of conscious 279 

access. Hence, a Spearman correlation between prediction accuracy and hit rate as well as 280 

between prediction accuracy and the differences in hit rates between the regular condition 281 

and the prediction condition (conscious processing costs) was conducted. Speech 282 

characteristics (response latency and amplitude) were tested by a 2 (actual hit or miss) × 2 283 

(verbalized hit or miss) repeated measures ANOVA, with the difference in hit rate between 284 

the regular condition and the prediction condition as a covariate. In addition, a Bayesian 285 

inference approach was used, with Bayes factors (BF) interpreted as the amount of evidence 286 

for the null and the alternative-hypothesis before versus after inspection of the data 287 

(Verdinelli & Wasserman, 1995). The size of the BFs were interpreted according to Raftery 288 

(1995). BFs 1 - 3 were interpreted as weak evidence for the alternative hypothesis against 289 
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the null hypothesis, 3 - 20 as positive, 20 - 150 as strong, and BFs > 150 as very strong 290 

evidence. 291 

3 Results 292 

3.1 Throwing performance 293 

Figure 2 depicts the development of throwing performance (hit rate). Figure 2A shows the 294 

hit rate over all trials executed. In Figure 2B, only trials carried out under regular conditions 295 

are shown (from trial 201 on), and Figure 2C illustrates the hit rates of only those trials of the 296 

prediction condition (from trial 201 on). Hit rates started at around 50 % on average, and 297 

rose with practice until they levelled off around block seven. ANOVA analyses carried out 298 

with repeated measures showed a significant main effect of block (F(4.65, 134.85) = 18.92, p 299 

< .001, ɳp
2 = .40, BF10 > 150). Post hoc tests revealed significant differences between blocks 300 

1-6 and block 10, practically no differences between block 7 and 10, and no differences 301 

between blocks 8, 9 and 10 (see Tab. 2). Interindividual variance was relatively large in 302 

general (standard deviation of the hit rate of all trials was 13.49 %, see Tab. 3), and even 303 

larger in the prediction condition (SD = 22.71 %). The average hit rate also differed 304 

significantly between the regular condition and the prediction condition (W = 61, p < .001, 305 

rank-biserial correlation = -0.74, BF10 > 150), but there was also large variance between 306 

participants (SD = 20.73 %, Min = -5.24 %, Max = 60.33 %). 307 
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 308 

Figure 2. Development of throwing 309 
performance over all trials (A), over trials 310 
under the regular condition (B), and over 311 
trials under the prediction condition (C). 312 
Thick black lines represent the group 313 
average; thin grey lines represent 314 
individual data.  315 
  316 
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Table 2. Post-hoc comparisons between blocks 1-9 and block 10. 317 

Session Hit rate 
Mean difference 

SE t pholm 

 
BF10 

1 vs. 10 -0.22 0.03 -8.58 < .001 > 150 

2 vs. 10 -0.18 0.03 -6.98 < .001 > 150 

3 vs. 10 -0.19 0.03 -7.24 < .001 > 150 

4 vs. 10 -0.14 0.03 -5.31 < .001 > 150 

5 vs. 10 -0.11 0.03 -4.10 < .001 > 150 

6 vs. 10 -0.01 0.03 -4.85 < .001 > 150 

7 vs. 10 -0.13 0.03 -2.66 .15 6.094 

8 vs. 10 -0.07 0.03 -1.40 1.00 1.760 

9 vs. 10 -0.04 0.03 0.23 1.00 0.210 

 318 

Table 3. Descriptive data of hit rates in the two experimental conditions and both  319 
conditions together (All trials) 320 

 N Mean SD 

Hit rate All trials 30 64.28 13.49 

Hit rate Regular 30 72.26 13.77 

Hit rate Prediction 30 56.00 22.71 

Difference between  
Prediction and Regular 

30 16.27 20.73 

SD = Standard deviation 321 

3.2 Prediction accuracy 322 

The prediction baseline was on average 55.41 % (SD = 12.83 %), which corresponds to the 323 

average chance level for the participants’ predictions. Average prediction accuracy 324 
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(%ACCPred) exceeded the prediction baseline by 6.01 % (SD = 9.61 %) of the potential 325 

accuracy gain by predicting, which was significant (t(29) = 3.42, p = .002, d = .63, BF10 = 326 

19.19). Prediction accuracy, however, varied greatly between participants (see Fig. 3). There 327 

was a significant positive correlation of %AccPred and hit rate over all trials (r = .44, p = .014, 328 

BF10 = 4.03; Fig. 3A). Since throwing performance differed between the regular condition and 329 

the prediction condition with large variance between participants, it was tested whether this 330 

variance also accounted for the differences in prediction accuracies. A significant negative 331 

correlation of %AccPred with the difference in hit rate between the regular condition and the 332 

prediction condition was found (r = -0.52, p = .003, BF10 = 4.62; see Fig. 3B). This means that 333 

participants with lower hit rates in the prediction condition relative to the regular condition 334 

showed poorer prediction accuracy, in the lowest cases even below baseline level. 335 

 336 

Fig. 3. Correlations of throwing performance with prediction accuracy relative to 337 
individual chance level (see 2.6  “Analysis of verbal responses”). Each dot represents 338 
the average values of a single participant. The dashed line marks the baseline 339 
prediction level (equivalent to chance level). A: Correlation of prediction accuracy 340 
with hit rates over all experimental trials (prediction condition  and regular condition  341 
together). B: Correlation of prediction accuracy with the difference in hit rates 342 
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between the prediction condition  and the regular condition . The larger the difference 343 
value, the lower the performance in the prediction condition .  344 
 345 

3.3 Speech characteristics 346 

 347 

Fig. 4. Average response latencies (A) and response amplitudes (B) differentiated after 348 
actual results of trials (actual hits or misses) and the verbalized responses (verbalized 349 
hits or misses). Error bars represent standard erro rs of the mean. Correction 350 
predictions are marked in green, incorrect predictions are marked in orange. 351 
 352 

Figure 4 shows the response latencies (A) and amplitudes (B) with respect to the verbalized 353 

prediction as a function of actual outcome. It can be observed that responses predicting 354 

misses were generally slower, and tended to also be quieter, than responses predicting hits. 355 

The latency difference was confirmed by a main effect regarding the verbalized result (F(1, 356 

28) = 12.90, p = .001, ɳp
2 = .32, BF10 > 150), but there was no main effect of verbalized result 357 

for the amplitude variable (F(1, 28) = 0.79, p = .38, ɳp
2 = .03, BF10 = .26). There was also a 358 

small main effect for actual result in response latencies (F(1, 28) = 4.78, p = .037, ɳp
2 = .15), 359 

which could, however, be ascribed to an interaction effect (see below). Bayesian statistics 360 

confirmed that the data was not sufficiently informative to allow a strong conclusion to be 361 
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drawn about the main effect actual result (BF10 = 0.434). Nevertheless, later responses of 362 

trials being incorrectly predicted as misses could clearly be observed relative to trials 363 

correctly predicted as misses, and this difference was not observable in the trials predicted 364 

as hits. Classical ANOVA revealed an interaction effect between actual result and verbalized 365 

result (F(1, 28) = 5.41, p = .028, ɳp
2 = .16). A Bayesian mixed-factor ANOVA also determined 366 

that the data were well represented by a model that included both main factors, actual 367 

result and verbalized result, and the actual × verbalized interaction. The BF10 was 7459, 368 

indicating decisive evidence in favor of this model when compared to the null model. 369 

Moreover, the BF10 in favor of indicating the interaction effect on top of the main effect 370 

actual result was 5.82. A tendency for a similar interaction (incorrectly predicted misses 371 

seem to be expressed most quietly) could be observed in amplitude data, which was, 372 

however, neither confirmed by classical nor by Bayesian ANOVA (F(1, 28) = .57, p = .46, ɳp
2 = 373 

.02, BF = .01). There were also no interactions with the covariate performance loss 374 

(differences in hit rates between the regular condition and the prediction condition) in the 375 

amplitude results. 376 

Regarding response latency, the three-way interaction with the covariate actual result × 377 

prediction × performance loss did not achieve significance, but showed a trend for a different 378 

interaction depending on the size of performance loss (F(1, 28) = 5.50, p = .07, ɳp
2 = .11). In 379 

addition, the Bayes model, including the main factors actual result and verbalized result and 380 

the performance loss covariate, strongly outperformed the null model (BF10 > 150), and 381 

weakly outperformed the model including the actual × verbalized interaction (BF10 = 1.48). 382 

To analyze how this trend was supported by the data, a median split was applied with 383 

respect to performance loss: one group showed virtually no performance loss (< 7.76 %) and 384 
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the other showed performance loss (> 7.76 %). Figure 5 illustrates that the interaction 385 

between actual result and prediction exists only in the group of participants who showed no 386 

performance loss in the prediction condition.   387 

 388 

Fig. 5. Average response latencies differentiated after actual results of trials and 389 
verbalized  results for two groups separated based on whether they experienced 390 
performance loss in the prediction condition or not. Error bars represent standard 391 
errors of the mean. 392 

4 Discussion 393 

The present study examined whether subjects experienced in a motor task can consciously 394 

predict outcomes of their own actions without receiving any external feedback about action 395 

outcomes. To this end, participants practiced a virtual goal-oriented throwing task for 200 396 

trials. In every other of the remaining trials, they were then asked to verbally predict 397 
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whether the ball they had just released would hit or miss the target (prediction condition). 398 

They had 2.5 seconds after releasing the ball to make their predictions. No feedback was 399 

given about the trajectory of the ball. In the other half of the trials, participants did not have 400 

to predict outcomes and they could see the ball moving towards the target and hitting or 401 

missing it (regular condition). Results in terms of throwing performance, prediction accuracy, 402 

and speech characteristics of verbal responses were analyzed and compared between the 403 

prediction condition and the regular condition. 404 

Conscious access to outcome predictions is possible, but varies interindividually  405 

On average, prediction accuracy (as the measure of conscious access to outcome 406 

predictions) exceeded baseline levels by about 6 % of the potential gain in accuracy. This 407 

means that 6 % of what, in theory, could have been achieved above chance when using 408 

internal information was achieved. 100 % in that measure would indicate predictions where 409 

every trial is correctly classified as error or hit, while 0 % represented the prediction 410 

accuracy that can be achieved without conscious access to internal prediction processes. In 411 

this case, verbalized reports of anticipated outcome predictions could only be made at the 412 

chance level. Chance level was reflected in the individual baseline level, taking into account 413 

actual hit rates (%ActHit and %ActMiss) and verbal report rates (%VerbHit and %VerbMiss). Thus, 414 

for accuracies above this level, any improvement in accuracy must have resulted from 415 

information gathered during the throwing movement, particularly from internal sources 416 

including correlates of efferent commands. Variance of above-baseline gains in accuracy 417 

prediction was relatively large between participants, with some individuals achieving gains 418 

of around and above 20 %, while others fluctuated around chance level. As described in the 419 

introduction, predictive accuracy is a function of prediction quality (quality of a task forward 420 
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model) and ease or efficiency of conscious access to the forward model predictions. So, 421 

individuals with higher prediction accuracies must have had good prediction quality and easy 422 

access to their internal processes, while the reason for poorer prediction accuracy may have 423 

been poorer prediction quality and/or more difficult access to internal processes, as quality 424 

of prediction has already been associated with experience or expertise. Forward model 425 

computations contribute to learning (Jordan & Rumelhart, 1992), and extended experience 426 

in a motor task correlates with distinct signs of predictive error processing on the 427 

neurophysiological level (Lutz et al., 2013; Beaulieu et al, 2014; Maurer et al. 2015; Joch et 428 

al., 2017; Maurer et al., 2021). Furthermore, it has been shown that motor experts (sports 429 

athletes) can anticipate the outcomes of other players’ actions with relatively little 430 

information about action parameters, and that this ability rises with skill level (Abreu et al., 431 

2012; Aglioti et al., 2008; Li & Feng, 2020; Tomeo et al., 2013). In these studies, temporal 432 

occlusion paradigms were used, where participants with varying expertise levels watched 433 

videos of motor actions and had to predict the outcomes of the actions shown at different 434 

points in time. In the Aglioti and colleagues’ study (2008), professional basketball players 435 

were capable of correctly predicting shooting outcomes above the level of chance even 436 

before players on the videos released the ball. These motor experts, which professional 437 

players are, were contrasted with participants with high visual experience (sports journalists 438 

and basketball coaches). Pure visual experts needed significantly more information to 439 

correctly judge the outcomes above the level of chance. This difference indicates that motor 440 

expertise facilitates perceptual abilities in general and, more specifically, at least partially 441 

through predictive functions.  442 
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The present study extended these findings to predictive abilities with respect to subjects’ 443 

own movement outcomes. Although experience and expertise in the task used here was not 444 

comparably high to natural experts in terms of practice trials, participants reached a learning 445 

plateau, and similar studies with the same task have shown that hit rates of more than 60 % 446 

coincided with a neurophysiological marker of forward model predictions (Maurer et al., 447 

2015, Joch et al., 2017). In the present study, participants reached an average hit rate of 448 

over 50 % within the first 100 trials, and increased their hit rate average to 72 % in the last 449 

100 trials, taking into account both experimental conditions (prediction and regular). In the 450 

regular condition alone, they even reached a hit rate of over 80 %, although interindividual 451 

variance in performance was relatively high. Thus, individuals with higher hit rates could be 452 

assumed to have had a better forward model of the task and, hence, better prediction 453 

quality than individuals with lower hit rates. This was demonstrated by a positive correlation 454 

between prediction accuracy and hit rates. The second factor of prediction accuracy, ease of 455 

access, also contributed to the clarification of variances between subjects. There was a clear 456 

difference in hit rates between the regular condition and the prediction condition. Hit rates 457 

in the regular condition were on average higher, but there were again large differences 458 

between participants. While about half of the participants did not show much change in hit 459 

rates between the two conditions, the other half experienced large decreases in 460 

performance when throwing outcomes had to be predicted verbally. This difference in hit 461 

rates between the regular condition and the prediction condition correlated negatively with 462 

prediction accuracy. Prediction accuracy was higher when performance loss in the prediction 463 

condition was smaller. This means that the experimental demands of the prediction 464 

condition affected motor task performance more in some individuals than in others. What 465 
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may be the reason for this? During the experimental procedure, participants had to respond 466 

verbally no later than 2.5 seconds after releasing the ball. Hence, preparation of the 467 

response and the focus on accessing relevant internal information for the outcome 468 

prediction might have interfered with motor control processes, leading to a performance 469 

loss in the prediction condition. This observation is in line with well-established findings that 470 

have shown that attention to performance can become counterproductive (Masters, 1992; 471 

Masters et al., 1993). This detrimental effect is suggested to be strongest with skill-focused 472 

attention (internal focus) of step-by-step monitoring and control (Beilock et al., 2002; Beilock 473 

& Carr, 2001; Wulf et al., 1998). Conscious access of internal prediction processes, however, 474 

does not necessarily require attention to step-by-step components of a movement. The 475 

activation of this access may be more comparable to an external, goal-oriented focus of 476 

attention, which typically only affects less-skilled participants (Wulf & Su, 2007). Thus, the 477 

less-skilled participants in the present study were more impaired by the verbal prediction 478 

requirement, presumably because they had less effective access to information relevant for 479 

outcome predictions, and needed to reallocate attention from motor execution. The results 480 

from analysis of the speech characteristics of the verbal responses support this 481 

interpretation.  482 

Response latency and amplitude are related to throwing performance and prediction 483 

accuracy 484 

Speech production is sensitive, and hesitation and uncertainty of responses can be observed 485 

in measures of response latency and amplitude (Seymour, 1970; Collins et al., 2000). Hence, 486 

possible detrimental effects of conscious access to movement outcome predictions may be 487 

represented by these variables. Movement outcome predictions are based on different 488 
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sources of information gathered during movement planning (efference copy) and movement 489 

execution (haptic, proprioceptive, or visual information; Wolpert et al., 1995), with each of 490 

these modalities producing different time delays and resulting in varying degrees of accuracy 491 

(Cameron et al., 2014; Pasma et al., 2015; Thorpe et al., 1996). It can be assumed that 492 

outcome estimates are continuously produced, resulting in an increase in accuracy of the 493 

input information while the movement is evolving. Hence, responses can be quick if 494 

sufficiently accurate information is available early on, or if predictions are, instead, based on 495 

experience, or are “thoughtlessly” uttered without the subject’s consideration of the actual 496 

input information when making predictions. 497 

In the present study, there was a general observation of quicker (and in tendency also 498 

louder) responses when a hit was predicted, irrespective of whether this turned out to be 499 

true or not. In contrast, response latency differed between correctly and incorrectly 500 

predicted misses: Predictions of trials that were incorrectly predicted as misses were 501 

verbalized more slowly than predictions of trials correctly verbalized as misses. This 502 

difference was only observable in participants without performance loss in the prediction 503 

condition. Moreover, correctly predicted hits and correctly predicted misses had similar 504 

response latencies (and amplitudes), especially in the “no performance loss” group. Hence, 505 

in these cases, input information was probably clear and accurate relatively early, leading to 506 

relatively fast outcome estimates. In contrast, incorrectly predicted misses resulted in slower 507 

response latencies. This indicates that the information gathered here was more ambiguous 508 

for outcome predictions, and that this ambiguity did not resolve over time. Nevertheless, 509 

participants waited longer, apparently hoping for better information resolution, and ended 510 

up answering incorrectly. That this effect was not observed in the “performance loss” group 511 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 30, 2021. ; https://doi.org/10.1101/2021.03.30.437477doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.30.437477
http://creativecommons.org/licenses/by-nc/4.0/


29 

 

indicates limited access to internal prediction processes in these participants. They were 512 

apparently not able to differentiate between accurate and ambiguous input information 513 

and, hence, showed similar response times between correctly and incorrectly predicted 514 

trials. As already described, the latency effect was generally not present in incorrectly 515 

predicted hit trials. The reason for the difference between hit and miss predictions could be 516 

a general bias toward hit responses, as has been observed in other studies (Canal-Bruland et 517 

al., 2015; Maglott et al., 2019). Response bias in the computation of prediction accuracy was 518 

controlled for, but it may have still been inherent in verbal responses. Hence, it is possible 519 

that responses predicting hits were expressed based on experiences instead of waiting for 520 

accurate input information, which led participants to respond (too) early. However, further 521 

experiments would be needed to confirm this assumption.  522 

Taking together results of prediction accuracy, throwing performance, and speech 523 

characteristics of verbal responses, it can be concluded that task expertise allows rapid 524 

access to accurate motor predictions without interference with motor control processes. On 525 

the contrary, when throwing performance is poor, conscious access to internal predictions 526 

negatively affects movement execution, presumably in the form of conscious processing 527 

costs. In light of these results, the question posed in the title can be answered in the 528 

affirmative: Yes, he can! Given the fact that Stephen Curry has exceptionally good throwing 529 

skills, it can be assumed that he has an excellent forward model and good access to internal 530 

predictions. 531 

Limitations 532 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 30, 2021. ; https://doi.org/10.1101/2021.03.30.437477doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.30.437477
http://creativecommons.org/licenses/by-nc/4.0/


30 

 

There are limitations in this study that need to be taken into consideration when 533 

interpreting results. First, no neurophysiological measures were recorded, which could have 534 

provided more direct information about internal prediction processes. Temporal 535 

characteristics of error-related potentials in electroencephalogram measures, such as the 536 

error-related negativity (Falkenstein et al., 1991; Gehring et al., 1993) could have supported 537 

interpretations about the response latency effects. In addition, there might be another 538 

explanation for the variances in prediction accuracy aside from conscious processing costs 539 

that cannot be fully ruled out. In the prediction condition, participants had no visual 540 

feedback about throwing effects (i.e., the ball was masked as soon as it was released). 541 

Although feedback in the form of information about ball trajectory could not have had any 542 

influence on performance in the current trial (since the throwing movement was already 543 

terminated at that point), such feedback might have affected the participants anticipatively. 544 

That is, knowing that a trial would be without feedback could have unsettled and blocked 545 

them. This explanation is regarded as not very likely, but only an experimental separation of 546 

missing visual feedback information about action outcomes from conscious processing costs 547 

can provide a clear differentiation. 548 
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