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Highlights 13 

 14 
● Chromatin accessibility changes longitudinally upon butyrate exposure in colon cancer 15 

cells. 16 
● Chromatin regions that close in response to butyrate are enriched among distal 17 

enhancers. 18 
● There is strong overlap between butyrate-induced peaks and peaks associated with 19 

SWI/SNF synthetic lethality. 20 
● Butyrate-induced peaks are enriched for colorectal cancer GWAS loci and somatic 21 

variation in colorectal cancer. 22 

Summary 23 

Butyrate is a four-carbon fatty acid produced in large quantities by bacteria found in the 24 

human gut. It is the major source of colonic epithelial cell energy, can bind to and agonize short-25 

chain fatty acid G-protein coupled receptors and functions as a histone deacetylase (HDAC) 26 

inhibitor. Anti-cancer effects of butyrate are attributed to a global increase in histone acetylation 27 

in colon cancer cells; however, the role that corresponding chromatin remodeling plays in this 28 

effect is not fully understood. We used longitudinal paired ATAC-seq and RNA-seq on HCT-116 29 
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colon cancer cells to determine how butyrate-related chromatin changes functionally associate 30 

with cancer. We detected distinct temporal changes in chromatin accessibility in response to 31 

butyrate with less accessible regions enriched in transcription factor binding motifs and distal 32 

enhancers. These regions significantly overlapped with regions maintained by the SWI/SNF 33 

chromatin remodeler, and were further enriched amongst chromatin regions that are associated 34 

with ARID1A/B synthetic lethality. Finally, we found that butyrate-induced chromatin regions 35 

were enriched for both colorectal cancer GWAS loci and somatic mutations in cancer. These 36 

results demonstrate the convergence of both somatic mutations and GWAS risk variants for 37 

colon cancer within butyrate-responsive chromatin regions, providing a molecular map of the 38 

mechanisms by which this microbial metabolite might confer anti-cancer properties. 39 

Introduction 40 

Dietary components that reach the colon are used by the colonic microbial community 41 

and yield diverse metabolites. Among these are fermentation products known as short-chain 42 

fatty acids (SCFAs) (Wu et al., 2018). Butyrate is among the most well-studied SCFAs in the 43 

context of colorectal cancer (Donohoe et al., 2012). Butyrate has a variety of functions, including 44 

HDAC inhibition (Donohoe et al., 2012) and binding to GPCR receptors (Husted et al., 2017). 45 

Colonic epithelial cells metabolize butyrate as a primary source of energy, but due to the 46 

Warburg effect, glucose is utilized instead of butyrate as the primary energy source in colon 47 

cancer cells (Donohoe et al., 2012; Fleming et al., 1991; Roediger, 1982). It is hypothesized that 48 

this allows butyrate to accumulate intracellularly and act as a potent HDAC inhibitor in colon 49 

cancer cells. This accumulation of butyrate further manifests in global increases in histone 50 

acetylation and subsequent chromatin remodelling that are expected to underlie its anti-cancer 51 

effects on colon cancer cells, including diminished proliferation (Donohoe et al., 2012). Such 52 

chromatin accessibility changes in response to butyrate have been previously studied in rumen 53 

epithelial cells (Fang et al., 2019)  and leukemia cells (Frank et al., 2016). However, the specific 54 
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changes in chromatin accessibility and associated gene expression changes induced by 55 

butyrate exposure in colon cancer cells have not been well characterized. 56 

HDAC inhibition has been linked to a number of protein complexes involved in cancer, 57 

including the SWI/SNF (SWItch/Sucrose Non-Fermentable) complex (Fukumoto et al., 2018). 58 

SWI/SNF complex subunits are collectively mutated in approximately 20 percent of all cancers 59 

(Garraway and Lander, 2013; Kadoch et al., 2013; Mathur et al., 2017). ARID1A is the most 60 

frequently mutated subunit in this complex. ARID1A mutations sensitize cancer cells to HDAC 61 

inhibition (Fukumoto et al., 2018). ARID1A loss has also been shown to drive colon cancer in 62 

mice via impairment of enhancer-mediated gene regulation (Mathur et al., 2017). However, 63 

combinations of loss of function in SWI/SNF complex subunits can induce synthetic lethality in 64 

cancer cells. For example, a loss of function of both ARID1A and ARID1B induces synthetic 65 

lethality in HCT-116 colon cancer cells (Kelso et al., 2017). Though HDAC inhibition and 66 

SWI/SNF mutations and regulation are linked in the context of cancer, their mechanisms of 67 

interaction and the role of butyrate remain unclear.  68 

The interactions between the human gut microbiome and common germline genetic 69 

variants and somatic mutations in the host is an area of active research providing the potential 70 

for discovery of new cancer risk factors and treatments. One recent study demonstrated that the 71 

gut microbe metabolite gallic acid may interact with somatic mutations in p53 to influence 72 

oncogenesis (Kadosh et al., 2020). Butyrate is considered to be an ideal candidate to discover 73 

such gene-environment interactions due to its diverse cellular functions and direct relationship 74 

to dietary fiber intake (Bultman, 2014). In this study, we aim to identify how butyrate modulates 75 

the effect of both common germline variants and somatic mutations that influence colorectal 76 

cancer through butyrate-stimulated chromatin accessibility changes in human host cells. 77 
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Results 78 

Butyrate decreases chromatin accessibility in distal enhancer regions 79 

The HDAC-inhibitory effect of butyrate is well-documented (Donohoe et al., 2012). 80 

HDAC inhibition suggests greater histone acetylation throughout the genome, which our own 81 

experiments confirmed (Fig. S1). To test the effect of butyrate on the chromatin conformation of 82 

colon cancer cells, we exposed HCT-116 cells to control conditions or butyrate. We generated 83 

longitudinal ATAC-Seq libraries for three time points at 9, 18, and 24 hours for the butyrate-84 

exposed samples and the controls. We sequenced a total of 746,181,642 ATAC-Seq reads 85 

(range = 44,659,678-138,802,186 reads per replicate). For each time point, we observed strong 86 

nucleosome phasing and transcription start site enrichment (Fig. S2). Differential accessibility 87 

analysis indicated the number of peaks opening and closing in response to butyrate treatment 88 

was roughly equal over the time course (Fig. 1A & Table S1). In total, 6,128 peaks were found 89 

to be differentially accessible during at least one time point (FDR < 0.1, |log2(Fold Change)| > 1; 90 

Fig. 1A), representing ~12% of the 52,530 peaks tested (Table S2). Principal components 91 

analysis demonstrated that butyrate treatment was the primary source of variation (Fig. S3A). 92 

Furthermore, we observed that the total number of differentially accessible peaks increased as 93 

time progressed and subsequently referred to chromatin regions that became less accessible in 94 

response to butyrate as “closed peaks” and regions that became more accessible as “open 95 

peaks.” While the opening of chromatin was expected given the function of butyrate as an 96 

HDAC inhibitor, the large number of closed peaks despite global increases in histone 97 

acetylation was surprising, albeit not unprecedented (Frank et al., 2016). 98 

Longitudinal gene expression data was also generated using RNA-seq. We sequenced a 99 

total of 810,869,958 RNA-Seq reads (range = 65,806,356-107,642,896 reads per replicate). 100 

Differential expression analysis indicated that approximately 78.4% of genes were differentially 101 
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expressed in response to butyrate during at least one time point (FDR < 0.05), and 69.7% of 102 

those genes were differentially expressed above |log2(Fold Change)| > 1. Principal components 103 

analysis of RNA-seq data suggested that butyrate treatment and time after exposure were the 104 

primary sources of variation in the data (Fig. S3B). Gene set enrichment analysis (GSEA) 105 

indicated several pathways that were differentially expressed; for example, we observed a 106 

significant down-regulation of E2F targets and G2M checkpoint genes, indicating that butyrate 107 

strongly impacted cell growth (Fig. S3C). By combining chromatin-accessibility and gene 108 

expression data, we also found evidence that differentially-accessible regions were associated 109 

with differentially-expressed genes (Fig. S3D). 110 

Next, we inspected the distribution of differentially accessible peaks across the genome. 111 

We found that closed peaks were particularly enriched in intergenic regions that were distal to 112 

the nearest TSS (Fig. 1B). Peaks that were distantly upstream (<-500 kbp from TSS) or 113 

downstream (>500 kbp from TSS) were found to be the most strongly enriched in closed peaks 114 

across all time points, and especially at 9 hours following butyrate exposure. By contrast, the 115 

genomic pattern observed in the open peaks was much less conserved across all three time 116 

points, and the enrichment/depletion effect sizes were relatively modest. This suggests that the 117 

effect of butyrate on closing peaks was more targeted and consistent than the effect on the 118 

opening peaks. 119 

To determine if butyrate-induced peaks were enriched/depleted in cis-regulatory 120 

elements (CREs), we used ENCODE data made available through the SCREEN web interface 121 

to identify candidate CREs (Fig. 1C).  Both closed and open peaks were depleted of promoter-122 

like, proximal enhancer-like, and CTCF-only CREs. Closed peaks were strongly enriched 123 

(log2(FC) > 1) for distal enhancer-like elements. Taken together, these data indicate that 124 

butyrate induced both the closing and opening of peaks across the genome, but the closed 125 

peaks were particularly enriched for distal enhancer regions, especially at 9 hours after butyrate 126 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 7, 2021. ; https://doi.org/10.1101/2021.03.30.437582doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.30.437582
http://creativecommons.org/licenses/by-nc-nd/4.0/


exposure, while the genomic location of the open peaks appeared more sporadic across the 127 

time points. 128 

 
Figure 1. Butyrate decreases chromatin accessibility in distal enhancer regions. 
(A) Differentially accessible genomic regions as measured by ATAC-seq. Showing three time 
points following butyrate treatment compared to untreated controls. The average log2(CPM) is 
shown. Blue points are regions that become significantly more accessible in response to 
butyrate treatment (open peaks; FDR < 0.05 and log2(FC) > 1). Red points are regions that 
become significantly less accessible in response to butyrate treatment (closed peaks; FDR < 
0.05 and log2(FC) < -1). Numbers above the blue points and below the red points indicate the 
total number of significantly more open and closed peaks at each time point, respectively. 
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(B) Enrichment of open and closed regions at different distances from the nearby transcription 
start sites (TSS). Enrichment was calculated using a hypergeometric test, with the 
log2(Hypergeometric Fold Change) values shown on the y-axis. Positive values along the y-
axis indicate that the regions in the given distance bin are enriched relative to the background 
of all tested regions, negative values indicate that they are depleted. The column labeled 
“ALL” indicates all open/closed peaks across all time points considered together. ‘*’ indicates 
FDR < 0.05, ‘**’ indicates FDR < 0.01, ‘***’ indicates FDR < 0.001. Negative numbers along 
the x-axis indicate regions that are upstream of a nearby TSS, and positive numbers are 
downstream of a nearby TSS. (C) Enrichment of open and closed peaks overlapping with 
different HCT116 candidate cis-regulatory elements (CREs) as determined from ENCODE 
data and made available through the SCREEN web interface. Only shown are 
enrichment/depletion of all significantly open and closed peaks aggregated across all three 
time points. Lines through each point indicate the 95% bootstrapped confidence interval of the 
log2(Hypergeometric Fold Change). 

 129 

Butyrate-induced closed peaks are enriched for transcription factor binding, 130 

including SWI/SNF complex, AP-1 complex, and TEAD binding sites. 131 

We next investigated whether differential peaks were significantly enriched for specific 132 

transcription factor binding targets. We compared our differentially accessible peaks to 133 

previously generated ChIP-seq peaks for the HCT-116 cell line (Fig. 2A). Open peaks were 134 

strongly depleted for most of the ChIP-seq signals, especially at 18 and 24 hours after butyrate 135 

exposure. Closed peaks, in contrast, showed significant enrichment in ChIP-seq signals across 136 

all three time points. In particular, SWI/SNF subunits SMARCA4 and SMARCC1 ChiP-seq 137 

peaks were the most strongly enriched among the butyrate-induced closed peaks at 9 hours, 138 

with a log2(FC) of 2.46, suggesting that butyrate-induced closure of SWI/SNF binding sites is a 139 

particularly strong signal, especially early on following butyrate exposure. Binding sites for AP-1 140 

complex subunits FOSL1 and JUND were also strongly enriched in closed peaks, as well as 141 

TEAD, CEBP, CBX3, SP1, SRF, JAK2, and ATF3 binding sites. 142 

We also used the HOMER motif finding software to identify enriched motifs de novo in 143 

both closed and open peaks (Fig. 2B) (Heinz et al., 2010). The most enriched motif in closed 144 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 7, 2021. ; https://doi.org/10.1101/2021.03.30.437582doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.30.437582
http://creativecommons.org/licenses/by-nc-nd/4.0/


peaks was similar to a Fos-associated binding motif, where 49.57% of all closed peaks 145 

contained such a motif, compared to 30.73% of the background regions. Other enriched motifs 146 

in closed peaks included those associated with the TEAD2, OTX1, and RUNX1 transcription 147 

factors. The open peaks contained only one significant de novo motif (using the HOMER-148 

recommended significance cutoff) associated with transcription factor Zinc Finger Protein 692 149 

(ZNF692). Taken together, these data suggest that butyrate exposure results in the selective 150 

closure of multiple distal regulatory elements and chromatin loops that are being actively 151 

maintained by the AP-1 complex and the SWI/SNF complex. 152 

 153 
 154 
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Figure 2. Butyrate-induced closed peaks are enriched for transcription factor binding, 
including SWI/SNF complex, AP-1 complex, and TEAD binding sites. 
(A) Enrichment of Butyrate-induced peaks with ChIP-seq peaks. Each row corresponds to a 
different ChIP-Seq experiment performed on HCT-116 cells. Points indicate open (blue) and 
closed (red) peaks at 9, 18, and 24 hours after butyrate treatment. Lines through each point 
indicate the 95% bootstrapped confidence interval of the log2(Hypergeometric Fold Change). 
(B) Top de novo motifs enriched in all significant butyrate-induced peaks as identified by the 
HOMER motif finding software. Showing the top 4 de novo motifs found across all closed 
peaks, and the only de novo motif in the open peaks that meets the HOMER-recommended 
significance threshold. Titles of each motif indicate if they were enriched in open/closed 
peaks, the protein with the best-matching known motif, the P-value of the enrichment statistic, 
the percentage of target (%T) sequences that contain the motif, and the percentage of 
background (%BG) sequences that contain the motif. 

 155 

Butyrate-induced peaks significantly overlap with regions associated with 156 

synthetic lethality of SWI/SNF complex subunits ARID1A/B 157 

We found that the chromatin accessibility changes that we observed due to butyrate 158 

exposure were similar to those reported in a study conducted by Kelso et al. (Kelso et al., 2017). 159 

In this study, Kelso et al. investigated the chromatin accessibility changes that occurred in the 160 

HCT-116 cell line in response to gene deletion and gene knockdown of two important SWI/SNF 161 

complex subunits, ARID1A and ARID1B. The SWI/SNF complex maintains chromatin 162 

architecture, and mutations in the ARID1A subunit are commonly found in cancer (Kadoch et 163 

al., 2013). Deficiency of the ARID1B subunit is synthetically lethal with ARID1A mutation, and it 164 

was this synthetic lethality that Kelso et al. further investigated in their study. 165 

We analyzed the Kelso et al. (2017) publicly available ATAC-seq data using the same 166 

pipeline as we used for our own butyrate-treated ATAC-seq data (Fig. 3A, see Methods). Using 167 

the 52,530 peaks identified in our study, we identified differentially accessible peaks in the three 168 

treatments relative to our untreated control, as well as the ARID1A -/- & ARID1B KD treatment 169 

relative to the ARID1A -/- treatment as a control. The ARID1A -/- & ARID1B KD vs. ARID1A -/- 170 

comparison identified peaks that were specific to the synthetic lethality phenotype. We identified 171 
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12,324 total differentially accessible peaks, with 1,908, 5,080, and 141 peaks that opened in the 172 

ARID1A -/-, ARID1A -/- & ARID1B KD, and ARID1A -/- & ARID1B KD vs. ARID1A -/- treatments, 173 

respectively, and 3,748, 6,250, and 1,072 peaks that closed in the same three treatments, 174 

respectively. 175 

We found that across the Kelso et al. (2017) differentially accessible peaks, there was 176 

significant overlap with butyrate-induced differentially accessible peaks (Fig. 3B). Butyrate-177 

induced open peaks significantly overlapped with the Kelso et al. open peaks in all treatment 178 

conditions, and they were significantly depleted among the Kelso et al. closed peaks. Butyrate-179 

induced closed peaks were significantly enriched among the Kelso et al. closed peaks in all 180 

treatment conditions, with the strongest effect among the peaks associated with synthetic 181 

lethality (ARID1A -/- & ARID1B KD vs. ARID1A -/- peaks; P < 0.001; log2(Hypergeometric Fold 182 

Change) = 1.87). Among the peaks associated with ARID1A/B synthetic lethality, 19.5% were 183 

also differentially accessible in the same direction in at least one of the butyrate-treated time 184 

points. 185 

To test if the SWI/SNF subunit may be disrupted in response to butyrate treatment, we 186 

analyzed SWI/SNF subunit gene expression using RNA-seq (Fig. 3C). We found that all 187 

subunits of the SWI/SNF complex were significantly down-regulated during at least one time 188 

point (FDR < 0.1), with the exception of SMARCA2 which was significantly upregulated at 9 189 

hours after butyrate exposure. The most significantly down-regulated gene belonging to the 190 

SWI/SNF complex across all three timepoints was ARID1B. Taken together, this indicates that 191 

the effect that butyrate has on these regions may be due in part to genetic down-regulation of a 192 

large number of the SWI/SNF complex subunits. 193 

 194 
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Figure 3: Butyrate-induced peaks significantly overlap with regions associated with 
synthetic lethality of SWI/SNF complex subunits ARID1A/B. (A) Differentially accessible 
genomic regions as measured by ATAC-seq of HCT-116 from data presented in the Kelso et 
al. (2017) study. Showing differential peaks under three conditions: shRNA knock down of 
ARID1B (ARID1B KD), homozygous loss of ARID1A (ARID1A -/-), and both conditions 
simultaneously (ARID1A -/- & ARID1B KD). Differential ATAC-seq peaks of these three 
conditions were determined relative to untreated controls, and were also determined in the 
ARID1A -/- & ARID1B KD treatment relative to the ARID1A -/- control (ARID1A -/- & ARID1B 
KD vs. ARID1A -/-). Blue points are regions that become significantly more accessible in 
response to each treatment (open peaks; FDR < 0.05 and log2(FC) > 1). Red points are 
regions that become significantly less accessible in response to each treatment (closed 
peaks; FDR < 0.05 and log2(FC) < -1). Yellow points are also differentially accessible in at 
least one of the butyrate-treated time points in this study. Fractions above the blue points and 
below the red points indicate the total number of significant open and closed peaks at each 
time point in the denominator, respectively, and the total number that overlap with butyrate-
induced differentially accessible peaks in the numerator. (B) Enrichment of butyrate-induced 
open and closed peaks among the differentially accessible peaks in the Kelso et al. (2017) 
study. Blue and red points indicate the log2(Hypergeometric Fold Change) of butyrate-induced 
open and closed peaks in the three treatment conditions. Lines through each point indicate 
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the 95% bootstrapped confidence interval of the log2(Hypergeometric Fold Change). (C) The 
log2(Fold Change) in gene expression of 10 subunits of the SWI/SNF complex as measured 
by RNA-seq relative to untreated controls. Showing time points 9 hours, 18 hours, and 24 
hours after butyrate treatment. ARID1B is the only subunit that is significantly down-regulated 
in response to butyrate treatment, but the direction of the effect is consistent in the direction of 
down-regulation across all 3 time points for 9 of the 10 subunits. 

 195 

Differentially accessible chromatin regions are enriched for colorectal 196 

cancer GWAS loci and cancer-associated somatic mutation 197 

To assess the role that butyrate-induced differential accessible regions may have to 198 

cancer, we first assessed if these regions were enriched for colorectal cancer heritability. 199 

Stratified LD-score regression has been used to determine if regions surrounding genes 200 

expressed in tissue-specific manner are enriched for disease heritability as measured by GWAS 201 

summary statistics (Finucane et al., 2018). Given the known association between butyrate and 202 

colorectal cancer, we used this same approach to determine if butyrate-responsive peaks are 203 

associated with colorectal cancer heritability. 204 

The results of our heritability enrichment analysis indicated that open peaks were 205 

significantly enriched for colorectal cancer heritability (P = 0.019), while closed peaks were not 206 

(P = 0.790), where positive normalized effect sizes indicate heritability enrichment (Fig. 4A). 207 

When we restricted our analysis to only distal peaks where the nearest gene is greater than 50 208 

kilobases away, we observed that the enrichment for colorectal cancer heritability slightly 209 

increases in the open peaks (P = 0.004), and the closed peaks remain non-significant. 210 

While this analysis measures colorectal cancer heritability enrichment within butyrate-211 

responsive peaks, we next wanted to investigate the relevance of these peaks to somatic 212 

mutation in cancer. We used somatic mutation data generated by the Pan-Cancer Analysis of 213 

Whole Genomes (PCAWG), which includes 828 samples from the same number of donors 214 

across 16 body sites. We tested sets of peaks to determine if they were enriched or depleted for 215 
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somatic mutations by comparing their somatic mutation rate to the somatic mutation rate in 216 

peaks that were non-responsive to butyrate. 217 

Given that the colon is the site of highest butyrate concentration within the body, we first 218 

limited our analysis to the 60 colorectal cancers available (Fig. 4B). In this analysis, we found 219 

that closed peaks were enriched for high somatic mutation rates (One-sample t-test; P = 220 

0.0008, Average log2(Diff. Peak Mutation Rate / Background Mutation Rate) = 0.258), while 221 

open peaks were not (One-sample t-test; P = 0.438; Average log2(Diff. Peak Mutation Rate / 222 

Background Mutation Rate) = 0.0438). When limiting to only distal peaks, this enrichment 223 

disappeared. As butyrate can translocate into the bloodstream and thus can reach distal body 224 

sites, we next repeated this analysis across several different cancer types (Fig. S4). Notably, it 225 

was only in colorectal cancer where we observed somatic mutation enrichment in closed peaks. 226 

In cancers at various body sites, closed peaks were often significantly depleted of somatic 227 

mutations (Bladder, Brain, Breast, Head and Neck, Kidney, Mesenchymal, Ovary, and Skin), 228 

and in several body sites open peaks were enriched (Head and neck, Kidney, Lung, Prostate, 229 

and Skin). 230 

 
Figure 4: Differentially accessible chromatin regions are enriched for colorectal cancer 
GWAS loci and cancer-associated somatic mutation. (A) Heritability enrichment statistics 
for colorectal cancer as calculated using stratified LD-score regression and colorectal cancer 
GWAS summary statistics. Showing the normalized effect size of enrichment ± standard error. 
Blue points refer to open peaks, red points refer to closed peaks. (B) Somatic mutation 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 7, 2021. ; https://doi.org/10.1101/2021.03.30.437582doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.30.437582
http://creativecommons.org/licenses/by-nc-nd/4.0/


enrichment in butyrate-responsive peaks in 60 colorectal cancer samples. Showing the 
distribution of log2(Diff. Peak mutation Rate / Background Mutation Rate) values on each line. 
P < 0.001 is represented as three asterisks. To test the “OPEN (Distal Peaks)” peak set, only 
57 samples were used because in three samples the relative mutation rate could not be 
calculated due to low number of mutations. 

Discussion 231 

While many studies have demonstrated strong associations between the gut microbiome 232 

composition and various diseases, studying host-microbe interactions has been challenging 233 

from a mechanistic perspective (Bhutia et al., 2017). Certainly, alteration of the gut microbiome, 234 

in some cases with extreme therapies such as fecal microbiota transplantation, has produced 235 

therapeutic benefits in selected circumstances. However, choosing donors can be difficult, and 236 

the composition of bacteria is not guaranteed to remain entirely consistent or perform the same 237 

roles in the new context (Andremont, 2017; van Beurden et al., 2017; Olesen et al., 2016). A 238 

more conventional and controllable approach is to understand underlying mechanisms by 239 

identifying the effects that specific microbes and their metabolites elicit on host cells. Butyrate is 240 

among the most well studied microbial metabolites, and while its role in modifying the cellular 241 

composition of the intestinal lamina propria is known, the impact of butyrate on colonic epithelial 242 

cells at the genomic and gene-level is less well understood. In this work, we studied the effects 243 

of butyrate, a microbial metabolite, on HCT-116 colorectal cancer cells over time to reveal 244 

chromatin accessibility and gene expression changes and their relationship to cancer-related 245 

loci.  246 

To characterize the mechanistic links between the microbial metabolite butyrate and 247 

specific chromatin accessibility and gene expression changes, we performed paired ATAC-seq 248 

and RNA-seq on HCT-116 cells to monitor the effects of butyrate on colon cancer cells over 249 

time. We hypothesized that butyrate would increase chromatin accessibility of regions across 250 
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the genome, driving gene expression changes. Despite global increases in histone acetylation 251 

via butyrate, widespread, targeted ‘closing’ of regions of chromatin was more strongly 252 

associated with significant effects on the cells. Interestingly, SWI/SNF subunits were collectively 253 

downregulated upon butyrate exposure, and the closed chromatin regions we identified were 254 

actively maintained by the SWI/SNF complex. This indicates that butyrate alters chromatin 255 

accessibility in multiple ways, both directly via HDAC inhibition, and indirectly via 256 

downregulation of the SWI/SNF complex, thus disrupting maintenance of chromatin structure.  257 

Additionally, we find that butyrate may influence colorectal cancer susceptibility both in 258 

terms of germline variation and somatic mutation, our assumption being that through changing 259 

the accessibility of the relevant genomic variants butyrate modulates their downstream 260 

phenotypic effects. Interestingly, the open peaks were enriched for germline variation 261 

associated with colorectal cancer, while the closed peaks were enriched for somatic variants in 262 

colorectal cancer. The specificity of the somatic mutation enrichment to colorectal cancer was 263 

further notable, as it suggests that the tissue that is most directly exposed to butyrate is the 264 

most relevant in terms of potential gene-environment interactions. 265 

We acknowledge that our conclusions are limited in their scope. Further experiments are 266 

necessary to determine the direct mechanism by which butyrate affects SWI/SNF-associated 267 

regions. The fact that the SWI/SNF effect is strongest at 9 hours after exposure indicates that 268 

this is the strongest initial effect of butyrate exposure, and other transcriptional and chromatin 269 

accessibility effects may be downstream consequences of early SWI/SNF inhibition. The 270 

associations with germline and somatic colorectal cancer risk also warrants further experimental 271 

investigation. The fact that peaks that open in response to butyrate are enriched for heritability 272 

as measured by a GWAS of common variants while closed peaks are enriched for somatic 273 

variation in cancer is an interesting finding that we were not able to address in the scope of this 274 

study. Additionally, it is not clear from this study to what extent these findings can be 275 

generalized to non-cancerous cells, where butyrate does not accumulate at high concentrations. 276 
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Finally, it is not clear to what extent cancerous cells may adapt to high levels of butyrate over 277 

time, potentially circumventing the anti-cancer effects of butyrate exposure. 278 

In conclusion, we present evidence that highlights potential mechanisms by which 279 

butyrate, a prevalent microbial metabolite, influences colorectal cancer risk. The global effects 280 

of butyrate on chromatin accessibility have been observed in the past, and it is likely that other 281 

microbial metabolites have similarly dramatic effects on host gene expression and chromatin 282 

accessibility. Dietary composition is known to play a role in the production of butyrate, and 283 

increasing the production of butyrate in the gut has been proposed as a therapeutic strategy to 284 

treat a wide range of human diseases (Canani et al., 2011). We believe that this study can help 285 

direct further efforts to develop such therapies and to more thoroughly understand their 286 

mechanism of action. 287 

Methods 288 

Cell Culture 289 

HCT-116 cells were purchased from Sigma (91091005).  HCT-116 cells were grown in 290 

Dulbecco’s Modified Eagle’s Medium (DMEM, Sigma-Aldrich) supplemented with 10 percent 291 

Fetal Bovine Serum (FBS, Gibco) in T25 flasks. At 60 percent confluency, media was replaced 292 

with serum-free DMEM media containing differential quantities of butyrate (Alfa Aesar) for 293 

various times. Replicates were exposed to the same conditions in different flasks. At designated 294 

times, 50,000 cells from each replicate were frozen in 10 percent Dimethyl sulfoxide (DMSO) 295 

and 90 percent FBS to be used for ATAC-Sequencing. The remaining cells in the flask were 296 

snap frozen to be utilized for RNA-Sequencing.  297 
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ATAC-Seq 298 

ATAC-seq was performed on 50,000 HCT-116 cells from each treatment. Each 299 

treatment was done in biological replicate. All conditions were performed in the same batch. 300 

50,000 cells were established as yielding the highest quality libraries for HCT-116 cells. 301 

Protocols for ATAC-Seq performed as described (Buenrostro et al., 2013, 2015). These libraries 302 

were pooled and sequenced on a Next-Seq 500 (Illumina), obtaining 101 base pair paired-end 303 

data.  304 

RNA-Sequencing 305 

RNA was extracted from HCT-116 cells using the RNA-Easy Mini Plus Kit (Qiagen). 306 

Likewise, each treatment was performed in biological duplicate consistent with the ATAC-seq 307 

duplicates.  All conditions were performed in the same batch. 2 ug of total RNA, quantified using 308 

the Qubit RNA HS kit,  was used as input for Tru-seq mRNA Stranded kit (Illumina). Standard 309 

Illumina protocols were performed. The libraries were pooled and sequenced on a Next-seq 500 310 

(Illumina), obtaining 101 base pair paired-end data. 311 

ATAC-seq Analysis 312 

Sequences were run through the Big Data Script ATAC-seq pipeline created by the 313 

Kundaje lab (https://github.com/kundajelab/atac_dnase_pipelines). Data was processed as 314 

previously described (Corces et al., 2016; Miyamoto et al., 2018). The Several dependencies 315 

were utilized (Daley and Smith, 2013; Langmead and Salzberg, 2012; Quinlan and Hall, 2010). 316 

This pipeline utilizes macs2 (Zhang et al., 2008) for peak calling. Peaks were called by merging 317 

all of the optimal IDR peak calls from each time point. Read counts per peak were calculated 318 

using the bedtools coverage command line utility (Quinlan and Hall, 2010). Prior to calling 319 

differential peaks, counts were quantile normalized using the preprocessCore package in R. 320 
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This was necessary to overcome a strong increase in noise observed in time points 18 and 24 321 

following butyrate treatment. Quantile-normalized counts were then used to identify differentially 322 

accessible ATAC-seq peaks using edgeR (Robinson et al., 2010). The two replicates at each 323 

time point were individually compared to three control samples taken at 9 hours, 18 hours, and 324 

24 hours. Peaks with a q-value less than 0.1 and a | log2(Fold Change) | > 1 were considered to 325 

be differentially accessible. The same workflow was used to analyze the ATAC-seq data 326 

produced by Kelso et al, with the exception of using the merged peaks from our study rather 327 

than re-calling peaks on their data. 328 

RNA-sequencing Analysis 329 

Reads were deduplicated using Super Deduper (Petersen et al., 2015) and adapters 330 

were trimmed using Trim Galore version 0.6.6 and Cutadapt version 1.18 (Martin, 2011). 331 

GRCh37 was used as the reference genome. Reads were aligned using STAR version 2.7.6a 332 

(Dobin et al., 2013). These files were sorted and used as input for HTSeq version 0.11.3 333 

(Anders et al., 2015). Raw counts were analyzed using DESeq2 (Love, Huber, and Anders 334 

2014). Genes were only considered if their counts per million (CPM) exceeded 1 in at least one 335 

of the replicates of each treatment, and then only if cutoff was met in all treatments, resulting in 336 

13,398 genes. Significance was assigned with a q-value < 0.05 after Benjamini and Hochberg 337 

correction (Dabney et al., 2011). Gene set enrichment analysis of differentially expressed genes 338 

were performed using Enrichr (Kuleshov et al., 2016). 339 

Enrichment analysis - distance from transcription start site (TSS) 340 

The distance of each ATAC-seq peak to the nearest gene was calculated by using the 341 

GREAT web service version 3.0.0 (McLean et al., 2010). Peaks were associated with nearby 342 

genes using the “Basal+extension” approach, where the basal domain is defined as a minimal 343 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 7, 2021. ; https://doi.org/10.1101/2021.03.30.437582doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.30.437582
http://creativecommons.org/licenses/by-nc-nd/4.0/


regulatory domain surrounding and including each gene, which is defined as 5,000 base pairs 344 

upstream to 1,000 base pairs downstream. This basal region is extended by up to 1 megabase, 345 

or until it reaches the basal domain of another gene. This means that an ATAC-seq peak can be 346 

associated with multiple genes if it is found in the extended regulatory region of both of those 347 

genes. Enrichment of specific subsets of the peaks at different distances from nearby genes 348 

were calculated using a two-sided hypergeometric test. All tested peaks were used as a 349 

background population for each subset of peaks tested. 350 

Enrichment analysis - ENCODE cis-regulatory elements 351 

ENCODE cis-regulatory element regions were downloaded from 352 

https://screen.encodeproject.org/, and a enrichment analysis was carried out much in the same 353 

way as described in the previous section. BEDTools was used to identify ATAC-seq peaks that 354 

overlapped with ENCODE cis-regulatory elements. A two-sided hypergeometric test was used, 355 

with all tested peaks as a null background, to determine if specific differentially accessible 356 

ATAC-seq subsets were enriched for the four cis-regulatory element categories - promoter-like, 357 

proximal enhancer-like, distal enhancer-like, and ctcf-only elements. 358 

Enrichment analysis - ChIP-seq datasets 359 

Peaks for 20 transcription factor ChIP-seq experiments in HCT-116 cell line were 360 

downloaded from ENCODE, with the exception of the ChIP-seq peaks for the SMARCA4 and 361 

SMARCC1 subunits of the SWI/SNF complex which were previously published and made 362 

available upon publication (Mathur et al., 2017). Two-sided hypergeometric tests were used as 363 

described in the previous methods sections to determine if the differentially accessible peaks 364 

were enriched for specific ChIP-Seq signals. 365 
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Enrichment analysis - Kelso et al. Dataset 366 

Publicly available ATAC-seq data from the Kelso et al. study was analyzed using the 367 

same pipeline as we used for our own butyrate-treated ATAC-seq data (Fig. 3A). This produced 368 

sets of differentially accessible peaks that could then be directly compared to between the two 369 

studies. Two-sided hypergeometric tests were used as described in the previous methods 370 

sections to determine if there was significant overlap between differentially accessible peaks in 371 

the two datasets. 372 

HOMER motif analysis 373 

The HOMER motif analysis software was used to identify motifs that were enriched in 374 

differentially accessible peaks, with all tested peaks used as a background. All de novo motifs 375 

identified at P < 1e-12 are shown in Fig. 2b. The HOMER findMotifsGenome.pl command was 376 

used with the default parameters. 377 

LD-score regression analysis of colorectal cancer GWAS 378 

Stratified LD score regression was used to test whether colorectal cancer heritability was 379 

enriched in peaks that open or close in response to butyrate treatment (Bulik-Sullivan et al., 380 

2015; Finucane et al., 2015, 2018). Using colorectal cancer GWAS data from (Zhou et al., 381 

2018), enrichment was tested in two sets of open (1330 and 3194 peaks respectively) and 382 

closed (1453 and 2935 peaks respectively) peaks evaluated against different backgrounds. The 383 

regression was adjusted for the set of all background peaks relevant to each enrichment test, 384 

and enrichment for open and closed peaks were tested separately. In all tests, we added a 10kb 385 

window on either side of each peak. 386 
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Analysis of somatic variants associated with cancer 387 

A total of 828 whole-genome somatic variants VCF files were downloaded from data 388 

storage services provided by the Pan-Cancer Analysis of Whole Genomes (PCAWG) project 389 

(ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium, 2020). These samples all 390 

came from the TCGA wing of the study that was conducted in the USA. Both SNPs and indels 391 

were included in the analysis. The somatic mutation rate was calculated in the differentially 392 

accessible ATAC-seq peaks for each sample, and then compared to the mutation rate in the 393 

non-differentially accessible peaks. This same mutation rate ratio was also calculated for the 394 

just the distal peaks. Samples were then grouped by body site of origin, and the log-transformed 395 

ratios were tested using a two-sided, one-sample t-test to determine if the regions were 396 

enriched or depleted of somatic variations relative to the background mutation rate. 397 

Cell Counting Assays 398 

Cells were grown in T25 flasks in triplicate - three flasks per condition per treatment. At 399 

designated times, cells were trypsinized, resuspended, and counted using a hemocytometer. 400 

This was independently repeated three times. Results were visualized using ggplot2 (Wickham, 401 

2016). 402 

Extracting Nuclear Protein 403 

HCT-116 cells were lysed in 10 mM Tris·Cl, pH 7.4, 10 mM NaCl, 3 mM MgCl2, 0.1% 404 

(v/v) Igepal CA-630. The supernatant was removed (cytoplasmic protein). The nuclear pellet 405 

was lysed with Radioimmunoprecipitation assay (RIPA) buffer. Protein quantification of nuclear 406 

extract was performed using Bicinchoninic acid assay (BCA, Pierce). For total protein extraction 407 

to be used for Western blots, however, RIPA buffer (Pierce) was the only lysis buffer utilized.  408 
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HDAC Activity in Nuclear Extracts 409 

HCT-116 nuclear extracts were treated with 1.5 mM butyrate in triplicate. We performed 410 

Fluor De Lys HDAC fluorometric activity assay (Enzo Life Sciences) with manufacturer’s 411 

protocols, using 6 µg of nuclear extract and 200 µM substrate in a 50 µL total reaction each 412 

Fluor De Lys HDAC fluorometric activity assay (Enzo Life Sciences). This was incubated for 2 413 

hours at 37 °C. 50  µL of developer was added. Fluorescence was measured at 350 excitation 414 

450 emission 15 minutes later. This was performed on a Tecan Infinite M1000 Pro. Costar 3628 415 

flat bottom 96 well plates were used for HDAC assays. 416 

 417 

Statistical Analysis of HDAC activity and Cell Number 418 

Overall significance was assessed by One-way ANOVA (ANalysis Of VAriance). 419 

Differences between groups were revealed via post-hoc Tukey HSD (Honestly Significant 420 

Difference) test. All measurements were visualized as standard error of the mean (SEM).  421 

Western Blots 422 

25 µg of protein, quantified with BCA, was loaded onto Bolt 10 percent Bis-Tris gels 423 

(Invitrogen) and transferred via iBlot 2 technology (Invitrogen). Standard Licor protocol was 424 

performed.  LI-COR Odyssey Infrared Imaging System was used to visualize results. Western 425 

blots were independently validated three times. Anti-Histone H3 (acetyl K9 + K14 + K18 + K23 + 426 

K27) antibody (ab47915) was used to measure acetylation of histones. Monoclonal Anti-B-Actin 427 

(A5316, Sigma) was used as a control.  428 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 7, 2021. ; https://doi.org/10.1101/2021.03.30.437582doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.30.437582
http://creativecommons.org/licenses/by-nc-nd/4.0/


Data and Software Availability 429 

The accession number for the ATAC-Seq and RNA-Seq data generated in this study and 430 

reported in this paper can be found in SRA under Bioproject PRJNA715317. 431 

Supplementary Information 432 

Supplemental Information includes Supplemental Experimental Procedures, six figures, 433 

and two tables. 434 
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