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Abstract 

Models of cognitive function typically focus on the cerebral cortex, ignoring functional links 

to subcortical structures. This view neglects the highly-conserved ascending arousal system's 

role and the computational capacities it provides the brain. In this study, we test the hypothesis 

that the ascending arousal system modulates cortical neural gain to alter brain dynamics’ low-

dimensional attractor landscape. Our analyses of spontaneous functional magnetic resonance 

imaging data and phasic bursts in both locus coeruleus and basal forebrain demonstrate precise 

time-locked relationships between brainstem activity, low-dimensional energy landscapes, 

network topology, and spatiotemporal travelling waves. We extend our analysis to a cohort of 

experienced meditators and demonstrate locus coeruleus-mediated network dynamics were 

associated with internal shifts in conscious awareness. Together, these results present a novel 

view of brain organization that highlights the ascending arousal system's role in shaping both 

the dynamics of the cerebral cortex and conscious awareness.      
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Main Text 

It is often difficult to see the forest for the trees, but to fully understand a concept typically 

involves an accurate depiction of both. That is, we need to comprehend not only the detailed 

workings of a specific system, but also how that system functions within a broader context of 

interacting parts. Modern theories of whole-brain function exemplify this challenge. For 

instance, activity in the brain has been shown to incorporate signatures of both local 

computational specificity (e.g., specialized regions within the cerebral cortex) as well as system-

wide integration (e.g., the interactions between the cortex and the rest of the brain)1,2. 

Anatomical evidence suggests that the balance between integration and segregation is 

mediated in part by the relatively fixed white matter connections between cerebral cortical 

regions1 – local connectivity motifs support segregated activity, whereas the axonal, re-entrant 

connections between regions act to integrate the distributed signals via a highly interconnected 

structural backbone3. However, how the human brain is also capable of remarkable contextual 

flexibility given this relatively fixed connectivity remains poorly understood. 

 

During cognitive tasks, neural activity rapidly reconfigures the functional large-scale network 

architecture of the brain in order to facilitate coordination between otherwise segregated 

cortical regions. Precisely how this flexibility is implemented in the brain without altering 

structural connectivity remains an open question in systems neuroscience. Although it is often 

overlooked in theories of whole brain function, the neuromodulatory ascending arousal system 

is well-placed to mediate this role4. The arousal system is comprised of a range of nuclei spread 

across the brainstem and forebrain that send wide-reaching axons to the rest of the central 

nervous system5. At their target sites, arousal neurons release neuromodulatory 

neurotransmitters that shape and constrain a region’s processing mode – altering their 

excitability and responsivity without necessarily causing them to fire an action potential4,6. As 

a result, subtle changes in the concentration of neuromodulatory chemicals can cause massive 

alterations in the dynamics of the target regions, leading to nonlinear effects on the 

coordinated patterns of activity that emerge from ‘simple’ neuronal circuits4. 

 

The ascending arousal system also contains substantial heterogeneity – unique cell populations 

project in diverse ways to the cerebral cortex, and also release distinct neurotransmitters. One 

key dichotomy is the distinction between adrenergic neuromodulation  (predominantly via the 
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locus coeruleus [LC]), which promote arousal and exploratory behaviour7, and cholinergic 

neuromodulation (such as via the basal nucleus of Meynert [BNM]), which are associated with 

attentional focus and vigilance8. These highly interconnected9 structures both promote 

wakefulness and arousal10,11, albeit via distinct topological projections to the cerebral cortex: 

the LC projects in a diffuse manner that crosses typical specialist boundaries, whereas the 

BNM projects in a more targeted, region-specific manner12 (Fig. 1A). The two systems have 

also been linked with distinct and complimentary computational principles: the noradrenergic 

LC is presumed to modulate interactions between neurons (response gain)13, whereas the 

cholinergic BNM is presumed to facilitate divisive normalization (multiplicative gain)14. Based 

on these anatomical and computational features, we have hypothesized that the interaction 

between these two neuromodulatory systems is crucial for mediating the dynamic, flexible 

balance between integration and segregation in the brain15. 

 

Another crucial feature of the ascending arousal system is that the number of neurons that 

project to the cerebral cortex is several orders of magnitude smaller than those that project 

back to the brainstem and forebrain16–18. Based on this feature, we further hypothesize that 

shifts in arousal are realized through a low-dimensional modulation of the ongoing neural 

activity (‘brain state’)17. Conceptually, low-dimensional brain state dynamics can be depicted 

as evolving on a brain state energy landscape29, where the energy of a given state corresponds 

to the occurrence probability, e.g. high energy brain states have a low occurrence probability 

(and v. v.). That is brain states evolve along the energy landscape topography, much like a ball 

rolls under the influence of gravity down a valley and requires energy to traverse up a hill, this 

corresponds to an evolution towards an attractive or repulsive brain state, respectively. This 

technique can resolve what might otherwise be obscured states of attraction (and repulsion) 

in a multi-stable system and has been successfully applied to the dynamics of spiking 

neurons19,20, blood oxygenation level dependent (BOLD) functional magnetic resonance 

imaging (fMRI)21,22, and magnetoencephalography (MEG)23. The approach offers a number of 

conceptual advances, but perhaps most importantly, it renders the otherwise daunting task of 

systems-level interpretation relatively intuitive. Importantly, this framework is not a mere 

analogy30, as the topography of the attractor landscape shares a 1-to-1 correspondence with 

the generative equations required to synthesize realistic neural timeseries data24. In this 
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manuscript, we test these ideas by combining high-resolution resting state fMRI data with 

analytic techniques from the study of complex systems. 

 

Results 

To begin with, we extracted time series data from major subcortical hubs within the 

noradrenergic LC9 (Fig. 1A, red) and cholinergic BNM25 (Fig. 1A, green) systems from 59 

healthy participants who had undergone high-resolution, 7T resting-state functional magnetic 

resonance imaging (fMRI; 2 mm3 voxels; TR = 586 ms repetition time). Given the known 

spatiotemporal interactions between the ascending arousal system and fluctuations in 

cerebrospinal fluid, we first controlled for activity fluctuations in the nearby fourth ventricle, 

which contains no neural structures, but nonetheless can cause alterations in the BOLD signal 

over time. Using the residuals from this regression, we calculated the difference between the 

signals from the LC and BMN (τLC-BNM; concatenated across subjects) and then identified time 

points associated with phasic bursts of LC activity that led to sustained adrenergic (versus 

cholinergic) influence over evolving brain state dynamics (see Methods). Importantly, the 

phasic mode of firing within the noradrenergic arousal system has been specifically linked to 

systemic influences that occur on time-scales relevant to cognitive function8,26. Tracking the 

mean cortical BOLD response around these peaks identified a spatiotemporal travelling wave 

(Fig. 1B; velocity = 0.13ms-1) that propagated from frontal to sensory cortices and tracked 

closely with the known path of the dorsal noradrenergic bundle9, albeit with a preserved 

‘island’ within the parietal operculum (Fig. 1B). These results confirm that coordinated 

macroscale activity patterns align to fluctuations in activity within the ascending arousal system 

of the brainstem27. 
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Figure 1. Sympathetic activity precedes network-level integration. A) regional time series were extracted 

from the locus coeruleus (red), which is thought to alter response gain, and the basal nucleus of Meynert (green), 

which is thought to alter multiplicative gain, and compared to BOLD signal and topological signatures during 

the resting state; B) we observed a anterior-to-posterior traveling wave (velocity ~ 0.13ms-1) following peaks in 

τLC-BNM, which are shown on both the left (LH) and right (RH) hemispheres of a cortical flat map; C) the lagged 

cross-correlation between 𝜏𝐿𝐶−𝐵𝑁𝑀 and PC – dotted line depicts the zero-lag correlation, and the black lines 

depict the upper (lower) bounds of a block-resampled null model; D) mean cortical PC preceding (left) and 

following (right) the zero-lagged 𝜏𝐿𝐶−𝐵𝑁𝑀 value; E) the participation coefficient following peak 𝜏𝐿𝐶−𝐵𝑁𝑀 was 

higher in the right- (red) vs. the left- (blue) hemisphere (p < 0.001; green bar); F) 𝜏𝐿𝐶−𝐵𝑁𝑀 was preceded by 

activity in the posterior > anterior hypothalamus.  

  

Time-varying network topology 

Based on previous empirical28, modelling29 and theoretical15 work, we predicted that phasic 

bursts in τLC-BNM would facilitate network-level integration by modulating increased neural gain 

among regions distributed across the cerebral cortex. As predicted, we observed a strong 

positive relationship between τLC-BNM and network-level integration (p < 0.05; Fig. 1C) across 

the brain (Fig. 1D). An increase in phasic activity within the LC (relative to the BNM) 

consistently preceded an increase in the level of integration within the cerebral cortex that was 

maximal in frontoparietal cortices (and v.v.; Fig. S1). Regional integration occurred earlier in 

the right-hemisphere (Fig. 1E), which is consistent with the known anatomical bias of the LC 

system30,31. A block-resampling null model was applied to ensure that the results were not due 
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to spatial-autocorrelation (p < 0.05; see Methods). Together, these findings provide robust 

evidence for the hypothesis that the balance between ascending noradrenergic and cholinergic 

tone facilitates a transition towards topological integration across the distributed network of 

the brain15. 

 

Neuromodulation of the Attractor Landscape 

The results of our initial analysis confirm that distributed activity in the brain is modulated by 

small groups of neuromodulatory cells in the brainstem and forebrain, which in turn are 

proposed to constrain brain dynamics onto a low-dimensional attractor landscape (Fig. 2A). 

The effects of noradrenaline and acetylcholine can also be easily viewed through this lens: by 

integrating the brain, noradrenaline should flatten the attractor landscape (Fig. 2A, red), 

whereas in contrast, the segregative nature of cholinergic activity should act to deepen attractor 

valleys (Fig. 2A, green). In previous work, we have shown a correspondence between low-

dimensional brain state dynamics across multiple cognitive tasks and the heterogenous 

expression of metabotropic neuromodulatory receptors17. This implies that neuromodulators 

act similar to catalysts in chemical reactions, which lower (or raise) the activation energy (EA) 

required to transform chemicals from one steady state (or energy well) to another (Fig. 2B). 

In the context of the interconnected, heterarchical networks that comprise the cerebral cortex, 

this would have the effect of flattening (or deepening) the attractor landscape, promoting 

variable (or rigid) brain states32 (Fig. 2A).  
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Figure 2 – LC and BNM mediated shifts in attractor landscape brain state space dynamics. A) an 

attractor landscape, which defines the energy required to move between different brain states: by increasing 

response gain, the LC should flatten the attractor landscape (red); by increasing multiplicative gain, the BNM 

should deepen the attractor wells (green); B) the topography of the attractor landscape can be conceptualized as 

similar to the activation energy (EA) that must be overcome in order to catalyze the conversion of one chemical 

to another; C) Empirical brain state transition energy as a function of MSD and TR of the baseline activity (EA, 

Left) and after phasic bursts in LC (red) and BNM (green) – relative to the baseline energy landscape phasic 

bursts in LC (red inset) lead to a flattening or reduction of the energy landscape, whereas peaks in BNM (green 

inset) lead to a raising of the energy landscape.  

 

To elucidate the role of phasic activity from the neuromodulatory system in modifying the 

attractor landscape, we first estimated the energy landscape of BOLD signal dynamics across 

the cerebral cortex. Importantly, the term ‘energy’ here is used in reference to its definition in 

statistical physics and hence does not represent the biological use of the term, which instead 

stands for the energy used by the brain to maintain or change neural activity. Specifically, we 

define the energy, 𝐸(𝑑𝑠, 𝑑𝑡), as the inverse probability of observing a given BOLD state 
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change,  𝐸(𝑑𝑠, 𝑑𝑡) =  1/P(𝑑𝑠, 𝑑𝑡) , where 𝑑𝑠 = 〈|𝒙𝑡+𝑑𝑡 − 𝒙𝑡|2〉𝑟  is the mean-squared 

displacement (MSD) of BOLD neural activity, 𝒙𝑡 = [𝑥1,𝑡 , 𝑥2,𝑡 , … , 𝑥𝑟,𝑡]across 𝑟 voxels and  

𝑑𝑡 is the number of timesteps of size TR from the phasic burst at time 𝑡. In this framework, 

a highly probable relative change in BOLD (as quantified by the MSD) corresponds to a 

relatively low energy transition (i.e., low EA), whereas an infrequently visited state will require 

the most energy (i.e., high EA). 

 

By treating energy as inversely proportional to the probability of brain state occurrence, our 

approach resembles other studies that have been applied to spiking dynamics of neuronal 

populations, spiking neurons19,20, BOLD fMRI21,22, MEG23, and natural scene33. However, 

these studies binarized continuous signals in order to reduce the brain state space (to 2𝑟 

states), however this approach requires the fitting of a threshold, which can be problematic in 

continuously recorded data. In contrast, our approach reduces the dimensionality by analysing 

the likelihood of a change in BOLD activity (i.e., the MSD), and thus retains the dimensionality 

of the underlying signal without the need for thresholding. This coordinate transformation – 

which switches from an absolute state space to a relative state space – is akin to switching 

from a ‘birds-eye’ or 3rd person view to one which views the attractor landscape from the 

perspective of the current brain state (i.e., a ‘brain-centric’ or 1st person view). This approach 

overcomes a major limitation inherent to the birds-eye view approach which requires a large 

sample size to sufficiently sample the brain state space. 

 

With this in mind we turned our attention to the relationship between attractor landscape 

dynamics and the ascending arousal system. To test the hypothesis that the neuromodulatory 

system alters the topography of the attractor landscape, we calculated BOLD MSD landscape 

energetics following phasic bursts of both LC and BNM (see Methods) and compared these 

relative to sampled brain evolutions without LC and BNM arousal (baseline). The attractor 

landscapes for these three states are defined by the energy for a given MSD and TR. Figure. 

2C demonstrates the baseline attractor landscape, which corresponds to the reaction pathway 

in Fig. 2B. As expected, for short TR intervals, small MSD were energetically preferable to 

large MSD – i.e., there were only small deviations in the BOLD signal (MSD is projected into 

the page see Fig. S3 for alternate view). Further analysis revealed an energetically preferable 
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(i.e., attractor) state at 10 TR and 30 MSD (Fig. 2B, black). Confirming our hypothesis for the 

role of LC and BNM (Fig. 2A), the energy for this secondary attractor is lowered (raised) after 

an LC (BNM) phasic burst, relative to baseline (Fig. 2B, red and green, respectively). 

Specifically, LC activity (relative to baseline; Fig. 2C, red inset) flattened the energy landscape, 

thus making the second attractor state and previously unlikely trajectories far more probable, 

whereas BNM activity (relative to baseline; Fig. 2C, green inset) caused the energy landscape 

to be elevated, thus promoting local trajectories and making large MSD trajectories 

energetically expensive. These patterns are analogous to modulating a physical landscape in 

which towns sit within valleys separated by impassable mountains – when BNM is high, the 

towns remain isolated, whereas when LC is high, the towns are separated by easily navigated 

rolling plains and novel combinations of consecutive brain states can be realised.  

 

We next asked whether LC and BNM combined together synergistically to alter the attractor 

landscape. To achieve this, we isolated simultaneous phasic peaks in both LC and BNM 

(𝜏𝐿𝐶+𝐵𝑁𝑀). We found that the LC + BNM attractor landscape differed markedly from either 

independent LC or BNM activation, shifting the brain state into divergent regimes than could 

be explained by the HRF. By comparing the MSD energy topography for a given TR slice we 

found that the landscape switched from an anti-correlation to uncorrelated with the HRF. In 

other words, the cooperative behaviour between the noradrenergic and cholinergic systems 

allowed the brain to reach unique states that neither could facilitate individually. To examine 

how simultaneous LC+BNM activity altered the attractor landscape, we compared the energy 

relative to the two individual landscapes. As demonstrated in Fig. S4, the attractor landscape 

following phasic bursts of LC+BNM differed in magnitude from that expected from a linear 

superposition of the LC and BNM attractor landscape – i.e., LC+BNM ≠ (LC) + (BNM). 

Furthermore, to explore the dominance of either LC or BNM in this signal, we minimised the 

relationship LC+BNM = 𝛼 LC + 𝛽 BNM (conditional upon 𝛼 and 𝛽  being positive 

constants) and found that 𝛼 = 0.16 and 𝛽 = 0.84 gave the best match to the LC+BNM 

energy landscape. That is, the BNM attractor landscape dominates the simultaneous 

LC+BNM attractor, which is consistent with the unidirectional synaptic projections from the 

LC that synapse upon the BNM on their way through to the cortex12, and suggests that phasic 

LC+BNM bursts may be initiated by the LC in order to elicit a cascade of BNM activity. 
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Conscious awareness of shifts in attractor landscape 

Interpreting the relationship between neuroimaging data and conscious awareness is 

notoriously challenging. For instance, it is currently not possible to directly determine the 

contents of self-directed thought without intervening, and thus altering, the contents of 

consciousness34. Although we can’t determine the contents of consciousness directly, we can 

use task designs to modulate the state of consciousness. To this end, we leveraged data from 

a group of 14 expert meditators who were asked to meditate during an fMRI scanning 

session35, and to press a button when they noticed that their focus had drifted from their breath 

(Fig. 3A). At this point, there is a mismatch between expectation and conscious awareness, 

which is an internal state that has been previously linked to the activation of the noradrenergic 

system, both in theoretical36,37and computational38 work. Based on these studies, we predicted 

that the switch in internal conscious awareness would be facilitated by increases in locus 

coeruleus-mediated integration and subsequent reconfiguration of low-dimensional brain 

states. Analysing time-resolved network data with a finite impulse response model, we 

observed a peak in locus coeruleus activity (Fig. 3B), TR-to-TR mean squared displacement 

(Fig. 3C) and elevated network-level integration (Fig. 3D) surrounding the change in conscious 

awareness (all pPERM < 0.01). These results confirm that the locus coeruleus mediates energy 

landscape reconfigurations and that these changes modulate internal states of conscious 

awareness.  
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Figure 3 – Awareness of intrinsic state changes. A) participants performing breath-awareness meditation 

(Focus; blue) were trained to respond with a Button Press (orange) when they became Aware (purple) that they 

had become Distracted (i.e., their attention had wandered from their breath) and to then re-focus their Attention 

(blue) on their breath; B) we observed a peak in 𝜏𝐿𝐶−𝐵𝑁𝑀 (i.e., LC > BNM; red) ~4 seconds before the button 

press, which then returned to low levels (i.e., BNM > LC) in the 2-4 seconds following the button press; C) the 

Mean Squared Displacement (MSD; dark orange) of TR-to-TR BOLD signal was increased above null values 

around the peak in 𝜏𝐿𝐶−𝐵𝑁𝑀, as well as following the re-establishment of attentional focus (in panels B & C, grey 

shading depicts 95th percentile of block-resampled null distribution); D) we observed a peak in mean participation 

coefficient (PC) ~4 seconds (2 TRs) prior to the Button Press during the task. All: grey shading depicts 95th 

percentile of null distribution i.e., outside grey shading indicates a value different than null [p < 0.05]; and lower: 

red shading represents SEM error bars).  

 

 

Discussion 

Our results provide evidence for an arousal-mediated macroscopic network and attractor 

landscape reconfiguration which tracks with moment-to-moment alterations in conscious 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 30, 2021. ; https://doi.org/10.1101/2021.03.30.437635doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.30.437635
http://creativecommons.org/licenses/by-nc-nd/4.0/


 13 

awareness. By tracking  fluctuations in BOLD within the noradrenergic LC and the cholinergic 

BNM, we were able to demonstrate fundamental ways in which the low-dimensional, dynamic 

and topological signature of cortical dynamics was directly related to changes within the 

ascending arousal system. Furthermore, we demonstrated a link between these dynamic 

reconfigurations and alterations in conscious awareness in a cohort of experienced meditators. 

In this way, our results provide a novel, systems-level perspective on the distributed dynamics 

of the human brain. 

 

There is growing evidence that distributed neural dynamics in the brain are well described by 

relatively low-dimensional models17,18,39–41, however the biological constraints that impose 

these features on the brain remain poorly understood. Due to the low number of cells in the 

arousal system and their broad projections to the rest of the brain, we theorized that 

neuromodulatory regions are well-placed to shape and constrain the vast number of neurons 

in the cerebral cortex into low-dimensional dynamic modes. Our results confirm this 

prediction by showing that patterns of activity in key regions within the brainstem and 

forebrain relate to fundamental alterations in a dynamically evolving attractor landscape. In 

other words, a brain’s state space is a powerful framework that extends beyond that of mere 

analogy, and the ascending arousal system is well-placed to mediate deformations in the 

attractor landscape.  

 

Much in the same way that there are many different projections of physical maps, each with 

their own strengths and weaknesses (e.g., Mercator projections that preserve shape at the cost 

of size and distance). In this study, we utilized a novel ‘brain-state centric’ or ‘1st person’ view 

for tracking the architecture of the attractor landscape over time. This approach 

conceptualized attractor landscape trajectories relative to the current state, with the energy 

required to navigate the current brain-state to a different spatiotemporal brain-state inversely 

proportional to how frequently this transition occurred. Through this coordinate 

transformation, the role of adrenergic and cholinergic neuromodulation in flattening and 

deepening the landscape was clearly visible. An alternative approach as is typically performed 

is to reduce the dimensionality of brain-state dynamics, coarse-grain this low dimensional 

embedding space, and then count the occurrence of each novel state into a ‘birds-eye’ or ‘3rd 

person’ view. A significant downside of this technique is it requires significant sampling of the 
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parameter space, i.e., long recordings, or heavy coarse-graining, i.e., binarization. As our novel 

technique pools over states, it requires significantly less sampling of the brain-state space. 

Furthermore, the clear result as hypothesized suggests that the 1st person view may be the 

intrinsic view for the ascending arousal system. This relative 1st person view is consistent with 

the role of the phylogenetically ancient system, in overriding ongoing activity to avoid 

imminent danger from the zebrafish to the human. However, a pitfall of this 1st person view 

is that the flight-or-flight response can be engaged unnecessarily overriding ongoing dynamics, 

irrespective of their contents, e.g., during public speaking. In contrast, spatially grounded 

cortical areas such as the early visual system or hippocampal place cells would likely follow the 

3rd person view as the relative location of neural dynamics matters. Given improvements in 

recording length and novel analytic techniques to probe the brains dynamical landscape, we 

expect that the field will ultimately discover even more optimal mappings between 

neurobiology and low-dimensional brain state dynamics. 

 

The results of our state-space analysis have important implications for the biological 

mechanisms underlying cognition. For instance, the concept of locus coeruleus-mediated 

attractor landscape flattening is reminiscent of the α1 receptor-mediated notion of a ‘network 

reset’36. By increasing response gain (Fig. 1A) through the modulation of second-messenger 

cascades4, noradrenaline released by the LC would augment inter-regional coordination29. 

Importantly, this capacity could confer adaptive benefits across a spectrum, potentially 

facilitating the formation of flexible coalitions in precise cognitive contexts42, while also 

forcing a broader landscape flattening (i.e., a ‘reset’) in the context of large, unexpected 

changes26,36.  Similarly, the idea that phasic cholinergic bursts deepens attractor wells is 

consistent with the idea that the cholinergic system instantiates divisive normalization within 

the cerebral cortex14. Numerous cognitive neuroscience studies have shown that heightened 

acetylcholine levels correspond to improvements in attentional precision8,8. By deepening the 

wells of a specific attractor, acetylcholine from the BNM could in effect be acting so as to 

ensure that the brain remains trapped within a particular state and is hence not diluted by other 

(potentially distracting) brain states. Determining the specific rules that govern the links 

between the neuromodulation of the attractor landscape and cognitive function43–45 is of 

paramount importance, particularly given the highly integrated and degenerate nature of the 

ascending arousal system46. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 30, 2021. ; https://doi.org/10.1101/2021.03.30.437635doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.30.437635
http://creativecommons.org/licenses/by-nc-nd/4.0/


 15 

 

Our results also provide a systems-level perspective on an emerging corpus of work that details 

the microscopic circuit level mechanisms responsible for conscious phenomena47. In 

particular, a number of recent studies have highlighted the intersection between the axonal 

projections of the ascending arousal system and pyramidal cell dendrites in the supragranular 

regions of the cerebral cortex as a key site for mediating conscious awareness. For instance, 

optogenetic blockage of the connections between the cell bodies and dendrites of thick-tufted 

layer V pyramidal cells in the sensory cortex causally modulated conscious arousal in mice48. 

Other work has shown that both the noradrenergic49 and cholinergic50 systems alter this 

mechanism, albeit in distinct ways: noradrenaline would promote burst firing due to the α2a 

receptor-mediated closure of Ih HCN leak-channels49, whereas the cholinergic system instead 

prolongs the time-scale of firing via M1 cholinergic receptor activation on pyramidal cell 

dendrites50. In this way, coordinated activity in the ascending arousal system can mediate 

alterations in microcircuit processing that ultimately manifest as alteration in macroscopic 

brain network dynamics. 

 

The vascular nature of the T2* fMRI signal is such that it is impossible to rule out the role of 

haemodynamics in the results we obtained in our analysis. Indeed, there is evidence that 

noradrenaline causes a targeted hyperaemia through the augmentation of G-protein-coupled 

receptors on vascular smooth muscle cells51,52. However, it is also clear that the 

haemodynamics and massed neural action in the cerebral cortex are inextricably linked53,54. In 

addition, there is evidence that stimulation of the locus coeruleus leads to the high-frequency, 

low-amplitude electrophysiological activity patterns characteristic of the awake state10. 

Together, these results argue that the locus coeruleus mediates a combination of 

haemodynamic and neural responses that facilitate integrative neural network interactions and 

subsequently mediate alterations in conscious awareness. 

 

In this manuscript, we have argued that the ascending arousal system provides crucial 

constraints over normal brain function, however there are numerous examples wherein 

pathology within the ascending arousal system leads to systemic impairments in cognition. In 

addition to disorders of consciousness55, dementia syndromes are also crucially related to 

dysfunction within the ascending arousal system. For instance, Alzheimer’s disease has been 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 30, 2021. ; https://doi.org/10.1101/2021.03.30.437635doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.30.437635
http://creativecommons.org/licenses/by-nc-nd/4.0/


 16 

linked to tau pathology within the BNM25, however individuals with Alzheimer’s disease also 

often have pathological involvement of the LC as well56. Similarly, individuals with Parkinson’s 

disease often have extra-dopaminergic pathology in the LC57, as well as in the cholinergic 

tegmentum58. Given the pathological processes at play in these disorders, we expect that other 

neuromodulatory systems will also be impaired, and in turn effect the macroscopic dynamics 

of the system in ways that remain to be elucidated. 

 

In conclusion, we leveraged a high-resolution 7T resting state fMRI dataset to test the 

hypothesis that activity within the ascending arousal system shapes and constrains patterns of 

systems-level network reconfiguration. Our results confirm specific predictions from a recent 

hypothetical framework15, and further delineate the manner in which the autonomic nervous 

system shapes and constraints ongoing, low-dimensional brain state dynamics in the central 

nervous system in a manner that supports changes in conscious awareness. 
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Methods 

7T resting state fMRI  

Sixty-five healthy, right-handed adult participants (mean, 23.35 years; SD, 3.6 years; range 18–

33 years; 28 females) were recruited, of whom 60 were included in the final analysis (four 

participants were excluded due to MR scanning issues, one participant was excluded due to an 

unforeseen brain structure abnormality). Participants provided informed written consent to 

participate in the study. The research was approved by The University of Queensland Human 

Research Ethics Committee. These data were originally described in Hearne et al., 2017. 1050 

(~10 minutes) whole-brain 7T resting state fMRI echo planar images were acquired using a 

multiband sequence (acceleration factor = 5; 2 mm3 voxels; 586 ms TR; 23 ms TE; 400 flip 

angle; 208 mm FOV; 55 slices). Structural images were also collected to assist functional data 

pre-processing (MP2RAGE sequence – 0.75 mm3 voxels 4,300 ms TR; 3.44 ms TE; 256 

slices). 

 

DICOM images were first converted to NIfTI format and realigned. T1 images were 

reoriented, skull-stripped (FSL BET), and co-registered to the NIfTI functional images using 

statistical parametric mapping functions. Segmentation and the DARTEL algorithm were used 

to improve the estimation of non-neural signal in subject space and the spatial normalization. 

From each grey-matter voxel, the following signals were regressed: linear trends, signals from 

the six head-motion parameters (three translation, three rotation) and their temporal 

derivatives, white matter, and CSF (estimated from single-subject masks of white matter and 

CSF). The aCompCor method (Behzadi et al., 2007) was used to regress out residual signal 

unrelated to neural activity (i.e., five principal components derived from noise regions- of-

interest in which the time series data were unlikely to be modulated by neural activity). 

Participants with head displacement > 3 mm in > 5% of volumes in any one scan were 

excluded (n = 5). A temporal band pass filter (0.071 < f < 0.125 Hz) was applied to the data.  

 

Brain parcellation 

Following pre-processing, the mean time series was extracted from 400 pre-defined cortical 

parcels using the Schaefer atlas (Schaefer et al., 2018). Probabilistic anatomical atlases were 

used to define the location of the noradrenergic LC59 and the cholinergic BNM (Ch4 cell 

group)60. The mean signal intensity from each region was extracted and then used for 
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subsequent analyses. To ensure that the BOLD data were reflective of neuronal signals, we 

statistically compared LC and BNM time series with a number of potential nuisance signals 

from: i) the cerebrospinal fluid; ii) the cortical white matter; iii) mean framewise displacement; 

and iv) a 2mm3 sphere in the fourth ventricle (centred at MNI co-ordinates: 0 -45 -30)61. All 

signals were unrelated to LC and BNM activity (|r| < 0.05 in each case), however given the 

spatial proximity of the LC to the fourth ventricle, we opted to use a linear regression to 

residualize the signal from the fourth ventricle. 

 

Phasic increases in neuromodulatory BOLD signal 

To identify phasic increases in neuromodulatory BOLD signal, we calculated the second 

derivative (i.e., the acceleration) of the LC and BNM time series, and then identified points in 

time that fulfilled three criteria: 1) value greater than or equal to 2 s.d. above the mean 

acceleration; 2) value of the original time series, i.e., LC or BNM, was greater than or equal to 

2 s.d. above the mean of the time series within the following 10 TRs (i.e., 5.8 seconds); and 3) 

the time point was not present within the first or last 20 TRs of an individual subjects’ trial (so 

as to avoid potential boundary effects). Using these criteria, we identified 148 τLC-BNM time 

points, 130 τBNM-LC time points and 316 τLC+BNM time points across all 59 subjects. To ensure 

that the choice of 2 s.d. threshold was reflective of the underlying dynamics, we altered this 

threshold between 1-3 s.d. and found robustly similar patterns. For subsequent analyses, we 

identified time points in the 21 TR window surrounding these peaks, and then used these to 

conduct statistical comparisons of the low-dimensional, complex network signature of brain 

network dynamics as a function of phasic ascending arousal system activity. Each of these 

patterns was confirmed using a lag-based cross-correlation analysis, which demonstrated 

similar phenomena to those that we present in the manuscript. 

 

To monitor the propagation of cortical signals with respect to τLC-BNM, τBNM-LC and τLC+BNM, we 

extracted the time-to-peak of the cross-correlation between these signals and each of the 400 

cortical parcels within the 10 TR (i.e., 5.8 second) windows following each identified phasic 

peak. These patterns were mapped onto the cortex (Fig. 1B) for visualization and clearly 

demonstrated anterior-to-posterior direction for the wave. We then used the volumetric MNI 

co-ordinates of the Schaefer parcellation scheme to calculate the average velocity of the 

travelling wave (0.13m s-1). 
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In order to obtain an appropriate null model against which to compare our data, we identified 

5,000 random timepoints within the concatenated dataset that did not substantially overlap 

with the already identified τLC-BNM, τBNM-LC and τLC+BNM time series, and used these to populate 

a null distribution62. Outcome measures were deemed significant if they were more extreme 

than the 95th (or 5th) percentile of the null distribution. Crucially, this ensured that our data 

could not be explained by the characteristic spatial and temporal autocorrelation present in 

BOLD timeseries data. 

 

Modularity Maximization 

The Louvain modularity algorithm from the Brain Connectivity Toolbox (BCT73) was used on 

the neural network edge weights to estimate community structure. The Louvain algorithm 

iteratively maximizes the modularity statistic, Q, for different community assignments until the 

maximum possible score of Q has been obtained: 

𝑄𝑇 =
1

𝓋+
∑(𝑤𝑖𝑗

+ − 𝑒𝑖𝑗
+)𝛿𝑀𝑖𝑀𝑗

𝑖𝑗

−
1

𝓋+ + 𝓋−
∑(𝑤𝑖𝑗

− − 𝑒𝑖𝑗
−)𝛿𝑀𝑖𝑀𝑗

𝑖𝑗

, 

where v is the total weight of the network (sum of all negative and positive connections), wij is 

the weighted and signed connection between regions i and j, eij is the strength of a connection 

divided by the total weight of the network, and δMiMj is set to 1 when regions are in the same 

community and 0 otherwise. ‘+’ and ‘–‘ super-scripts denote all positive and negative 

connections, respectively. The modularity of a given network is therefore a quantification of 

the extent to which the network may be subdivided into communities with stronger within-

module than between-module connections. 

 

For each epoch, we assessed the community assignment for each region 500 times and a 

consensus partition was identified using a fine-tuning algorithm from the Brain Connectivity 

Toolbox (BCT; http://www.brain-connectivity-toolbox.net/). We calculated all graph 

theoretical measures on un-thresholded, weighted and signed connectivity matrices73. The 

stability of the γ parameter was estimated by iteratively calculating the modularity across a 

range of γ values (0.5-2.5; mean Pearson’s r = 0.859 +-0.01) on the time-averaged connectivity 

matrix for each subject – across iterations and subjects, a γ value of 1.0 was found to be the 

least variable, and hence was used for the resultant topological analyses. 
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Participation Coefficient 

The participation coefficient, PC, quantifies the extent to which a region connects across all 

modules (i.e. between-module strength) and has previously been used to successfully 

characterize hubs within brain networks (e.g. see 75). The PC for each region was calculated 

within each temporal window as,  

PC = 1 − ∑ (
𝜅𝑖𝑠𝑇

𝜅𝑖𝑇
)

2
𝑛𝑀

𝑠=1

 

where kisT is the strength of the positive connections of region i to regions in module s at time 

T, and kiT is the sum of strengths of all positive connections of region i at time T. Negative 

connections were discarded prior to calculation. The participation coefficient of a region is 

therefore close to 1 if its connections are uniformly distributed among all the modules and 0 

if all of its links are within its own module. 

                   

 

Principal Component Analysis 

Pre-processed data from each subject was concatenated to form a multi-subject time series 

and a spatial PCA was performed on the resultant data16. The time series of each PC was then 

estimated by calculating the weighted mean of the group-level BOLD time series associated 

with each respective principal component. To aid inference, group-level tPC time series were 

calculated by taking the mean for each PC time series across all subjects. This and all 

subsequent code are freely available at http://github.com/macshine/bsi/. 

 

Brain State Displacement and the Energy Landscape 

To quantify the change in BOLD activity following phasic bursts of neuromodulation we 

calculated the BOLD mean-squared displacement (MSD). The MSD is a measure of the 

deviation in BOLD activity, 𝒙𝑡 = [𝑥1,𝑡 , 𝑥2,𝑡 , … , 𝑥𝑟,𝑡]  for 𝑟 parcels, with respect to the activity 

at the phasic onset, 𝑡0. The MSD is calculated as the average change of each voxel 

𝑀𝑆𝐷 =  〈|𝒙𝑡+𝑑𝑡 − 𝒙𝑡0
|

2
〉𝑟 , 

The MSD is calculated for different 𝑡0  across 𝑑𝑡  TRs. The energy of each brain state 

displacement, 𝐸(𝑑𝑠, 𝑑𝑡), is then equal to the inverse probability, P(𝑑𝑠, 𝑑𝑡), of its occurrence: 
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𝐸(𝑑𝑠, 𝑑𝑡) =
1

P(𝑑𝑠, 𝑑𝑡)
. 

 

Meditation Dataset 

Fourteen healthy right-handed non-smoking meditation practitioners (11 female; age 28-66) 

underwent Siemens 3T MRI scanning (T1: TR = 2600 msec, TE = 3.9 msec, TI = 900 msec, FOV 

= 24 cm, 256 x 256 matrix, voxel dimensions = 1 x 1 x 1 mm3; T2*:  weighted gradient-echo pulse 

sequence, TR = 1500 msec, TE = 30 msec, flip angle = 90 deg, FOV = 192 cm, 64 x 64 matrix, voxel 

dimensions = 3 x 3 x 4 mm3). All participants signed a consent form approved by the Institutional 

Review Board at Emory University and the Atlanta Veterans Affairs Research and 

Development Committee as an indication of informed consent. Participants were asked to 

meditate for 20 min in the MRI scanner by maintaining focused attention on the breath and 

keeping the eyes closed. They were instructed to press a button whenever they realized their 

mind had wandered away from the breath, and then return their focus to the breath. The 

epoch of time immediately prior to the button press was thus the moment in time in which 

each individual recognized that their focus had deviated from their breath. This information 

was used to construct a finite impulses response model that mapped the 5 TRs prior-to and 

following each button press. We then modelled LC>BNM activity, low-dimensional dynamics 

and network topology around this epoch to construct a model of state-space reconfiguration 

as a function of intrinsic conscious awareness. Non-parametric, block-resampling null 

distributions were utilized for statistical testing (p < 0.05). 
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Supplementary Figures 

 

Figure S1. Time-varying correlations. Average correlation preceding (left) and following (middle) the zero-

lagged 𝜏𝐿𝐶−𝐵𝑁𝑀 value, along with the difference between the two (right); squares represent eight pre-defined sub-

networks: Vis – visual, SM – somatomotor, DAN – dorsal attention, VAN – ventral attention, LIM – limbic, 

CON – control, DMN – default and TP – temporal pole. 

 

 

Figure S2. Low-dimensional peri-phasic time-series. A) un-thresholded flat map projections of PC1-4; B) 

time-locked patterns of PC1-4  with respect to τLC-BNM (red) and τBNM-LC (green). 

 

 

Figure S3. Energy landscape of baseline neural dynamics and under neuromodulatory tone. State 

transition energy as a function of MSD and TR of the baseline activity (black) and after phasic bursts in LC (red) 

and BNM (green) 
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Figure S4 – LC and BNM move dynamics to differing regimes than unaroused activity and their 

simultaneous combination LC+BNM. The attractor landscape of simultaneous LC+BNM phasic bursts 

relative to their linear superposition, suggesting the simultaneous combination may allow the system to reach 

particularly unique brain-states that neither individually could reach.  
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