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Abstract 23 

Plant metabolism is a pillar of our ecosystem, food security, and economy. To understand and engineer 24 
plant metabolism, we first need a comprehensive and accurate annotation of all metabolic information 25 
across plant species. As a step towards this goal, we previously created the Plant Metabolic Network 26 
(PMN), an online resource of curated and computationally predicted information about the enzymes, 27 
compounds, reactions, and pathways that make up plant metabolism. Here we report PMN 15, which 28 
contains genome-scale metabolic pathway databases of 126 algal and plant genomes, ranging from 29 
model organisms to crops to medicinal plants, and new tools for analyzing and viewing metabolism 30 
information across species and integrating omics data in a metabolic context. We systematically 31 
evaluated the quality of the databases, which revealed that our semi-automated validation pipeline 32 
dramatically improves the quality. We then compared the metabolic content across the 126 organisms 33 
using multiple correspondence analysis and found that Brassicaceae, Poaceae, and Chlorophyta 34 
appeared as metabolically distinct groups. To demonstrate the utility of this resource, we used recently 35 
published sorghum transcriptomics data to discover previously unreported trends of metabolism 36 
underlying drought tolerance. We also used single-cell transcriptomics data from the Arabidopsis root to 37 
infer cell-type specific metabolic pathways. This work shows the continued growth and refinement of 38 
the PMN resource and demonstrates its wide-ranging utility in integrating metabolism with other areas 39 
of plant biology. 40 
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Introduction 41 

Plant compounds are critical for the health, growth, and development of not only the plant, but also our 42 
planet and its biosphere. They allow the plant to defend itself from biotic and abiotic stressors (Weng 43 
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2014). The products of plant metabolism are also critical for humans, being the source of most human 44 
nutrition and numerous medicinally-useful compounds (Wurtzel and Kutchan 2016). It is therefore 45 
critical that we can understand, predict, and influence plant metabolism for the furtherance of 46 
economic, public health, and environmental preservation goals. 47 

To provide the research community with comprehensive information about plant small-molecule 48 
metabolism, we previously introduced the Plant Metabolic Network (PMN), a plant-specific online 49 
resource of metabolic databases (Schläpfer et al. 2017). Accessible at https://plantcyc.org, the resource 50 
contains known plant metabolites, the reactions that create and consume them, the enzymes that 51 
catalyze the reactions, and the pathways into which the reactions can be organized. PMN consists of 52 
PlantCyc, a database of all experimentally-supported information found in the literature from any plant 53 
species, as well as single-species databases with a mix of experimentally-supported and 54 
computationally-predicted information, which allow researchers to explore each species’ unique 55 
metabolism.  56 

The single-species databases were created using a computational pipeline we developed (Schläpfer et al. 57 
2017). This pipeline is organized into three major stages: Enzyme prediction, done with the Ensemble 58 
Enzyme Prediction Pipeline (E2P2) software (Chae et al. 2014; Schläpfer et al. 2017); pathway, reaction, 59 
and compound prediction, done with the PathoLogic software (Karp et al. 2011; Karp et al. 2016; Karp et 60 
al. 2019); and pathway refinement, done with the Semi-Automated Validation Infrastructure (SAVI) 61 
software (Schläpfer et al. 2017). E2P2 predicts enzymatic functions of the proteins in a plant’s genome 62 
based on a reference protein sequence dataset (RPSD) using BLAST (Altschul et al. 1990) and PRIAM 63 
(Claudel-Renard et al. 2003). PathoLogic, distributed as part of the Pathway Tools software (Karp et al. 64 
2019), takes in the enzyme annotation and retrieves from MetaCyc (Caspi et al., 2019), a pan-species 65 
reference database of metabolism that serves as a reference for PMN, all reactions that E2P2 predicted 66 
to be catalyzed by those enzymes, and predicts pathways based on the reaction complement (Schläpfer 67 
et al. 2017). Finally, SAVI applies previous pathway-level curation decisions to the new database. For 68 
example, a pathway might have been marked by curators to be present in all plants, in which case the 69 
pathway, along with its reactions and compounds, will be added to any plant database for which it was 70 
not predicted by PathoLogic, though the pathway will not have any enzymes associated to it. This 71 
pipeline enables the creation of a genome-scale metabolic pathway database for any plant species with 72 
a sequenced genome or transcriptome. 73 

Here we describe PMN 15, the latest release of PMN that has grown substantially in both content and 74 
tools. We demonstrate the utility of the PMN resource by applying recently published omics data to gain 75 
insights into plant physiology and cellular level metabolism. Additionally, we systematically compare 126 76 
species in the context of metabolism to identify metabolic domains and pathways that distinguish plant 77 
families. Finally, we present new website tools for viewing and analyzing metabolic data including a Co-78 
Expression Viewer and subcellular boundaries for metabolic pathways.  79 

  80 
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Results 81 

PMN is a comprehensive resource of plant metabolism databases 82 

PMN is a collection of databases for plant metabolism with a substantial amount of experimentally 83 
supported information. The latest release (version 15) contains 126 databases of organism-specific 84 
genome-scale information of small-molecule metabolism alongside the pan-plant reference database 85 
PlantCyc (Figure 1). Together, these databases include 1,280 pathways, of which 1,163 have direct 86 
experimental evidence of presence in at least one plant species. In addition, PMN 15 includes 1,167,691 87 
proteins encoding metabolic enzymes and transporters where 3,436 have direct experimental evidence 88 
for at least one assigned enzymatic function. There are 9,129 reactions (of which 34% have at least one 89 
enzyme from a plant species that has direct experimental evidence of catalyzing it), and 7,316 90 
compounds. This large volume of metabolic information makes PMN a unique resource for plant 91 
metabolism. 92 

The reference database, PlantCyc, is a comprehensive plant metabolic pathway database. PlantCyc 93 
15.0.1 contains experimentally supported metabolic information from 515 species. Most of the data 94 
come from a few model and crop species (Figure 1A). For example, Arabidopsis thaliana contributes to 95 
43.4% of experimentally supported enzyme information in PlantCyc, followed by 7.46% from 96 
Chlamydomonas reinhardtii and 3.37% from Zea mays. Compared to other metabolic pathway 97 
databases such as KEGG (Kanehisa and Goto 2000; Kanehisa et al. 2017) and Plant Reactome (Naithani 98 
et al. 2017; Naithani et al. 2020), PlantCyc has substantially higher numbers of experimentally supported 99 
reaction and pathway data (Figure 1B). PlantCyc 15 includes 3,077 experimentally validated reactions 100 
with at least one curated enzyme and 1,163 curated pathways. Plant Reactome (Naithani et al. 2020) 101 
includes 1,887 and 320 curated reactions and pathways (Gramene release #61), while KEGG includes 102 
543 experimentally-supported pathways as of February, 2021. The reference information in PlantCyc is 103 
incorporated into MetaCyc, which also includes experimentally supported metabolic information from 104 
non-plant organisms and is used to predict species-specific pathway databases (Caspi et al. 2020).   105 

In addition to the reference database PlantCyc, PMN 15 contains 126 organism-specific metabolism 106 
databases (Figure 1C, Supplemental Table S1). These databases range widely in the plant lineage 107 
including several green algae and nonvascular plants. The majority of the plants are angiosperms with 108 
the Poaceae family most highly represented with 25 organisms. There are also 8 pairs of wild and 109 
domesticated plants, including rice, wheat, tomato, switchgrass, millet, rose, cabbage, and banana, 110 
alongside their wild relatives (Supplemental Table S2). Finally, PMN 15 includes 6 medicinal plants 111 
(species whose primary use is considered medicinal): Camptotheca acuminata, Cannabis sativa, 112 
Catharanthus roseus, Ginkgo biloba, Salvia miltiorrhiza, and Senna tora. The newest addition to the list 113 
of the medicinal plants is Senna tora, which is a rich source for anthraquinones and whose recent 114 
genome sequencing and metabolic complement annotation helped discover the first plant gene 115 
encoding a type III polyketide synthase catalyzing the first committed step in anthraquinone 116 
biosynthesis (Kang et al. 2020). This rich collection of species-specific metabolic pathway databases 117 
enables a wide range of analyses and comparisons. 118 

PMN has grown significantly since its initial release (Figure S1A-H), with PMN 15 containing 2.5-fold 119 
more pathways, 4-fold more reactions, 3-fold more compounds, and 153-fold more enzymes than PMN 120 
1. The focus on small-molecule metabolism means that processes involving the polymerization of 121 
macromolecules, such as transcription, translation, and DNA replication are excluded. Data in the PMN 122 
databases are represented using structured ontologies consisting of hierarchical classes to which 123 
pathways and compounds are assigned by PMN curators, which makes statistical enrichment analyses 124 
possible. The pathway and compound ontology classes, alongside the phylogeny of the included species, 125 
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illustrate the breadth of metabolic information and species included in the database (Figure 1D, E). 126 
Prominent specialized metabolism classes such as terpenoids and phenylpropanoids are highly 127 
represented in the databases.  128 

To promote interoperability and cross-referencing with other databases, PMN databases contain links to 129 
several compound databases such as ChEBI (Chemical Entities of Biological Interest) (Hastings et al. 130 
2016), PubChem (Kim et al. 2021), and KNApSAcK (Nakamura et al. 2014). ChEBI release 197 has 58,829 131 
entries and serves as a primary source of compound structural information during curation into PMN 132 
databases. Within PMN, 65% (4,746) of compounds link to ChEBI. PubChem is another chemical 133 
database, containing over 270 million chemical entries as of March 2021, and 95% (6,982) of PMN 134 
compounds link to it. Linking to these chemical databases provides a more in-depth source of 135 
information on the compounds and their physical and chemical properties. In summary, PMN is a broad 136 
resource for plant metabolism and continues to be under active development and expansion. 137 

Manual validation of pathway predictions reveals the continued necessity of manual curation 138 

PMN databases include a large amount of computationally-predicted data. Predicting pathways for 139 
many species allows us to evaluate the quality of the predictions quantitatively. To estimate the extent 140 
of incorrectly-predicted pathways in the PMN databases, and to measure the overall accuracy of the 141 
computational predictions, both alone and in conjunction with manual curation, we evaluated the 142 
prediction of 120 randomly-selected pathways (approximately 10% of the 1280 pathways in PMN) on 143 
both the released organism-specific databases (also called Pathway Genome Databases (PGDBs) in 144 
Pathway Tools) and naïve prediction versions generated using only computational prediction (see 145 
Methods). Biocurators evaluated the pathway assignments to the 126 organisms currently in PMN, and 146 
classified them as “Expected” (predicted phylogenetic range is consistent with information in the 147 
literature), “Broader” (predicted taxonomic range includes expected range but is too broad), “Narrower” 148 
(predicted taxonomic range is within expected range but is too narrow), or as Non-PMN Pathways (NPP, 149 
not known to be present in plants or algae) (Figure 2, Supplemental Tables S3, S4). In the naïve 150 
prediction databases, only 15% of selected pathways were predicted within the phylogenetic ranges 151 
expected from the literature, and 58% were NPPs. In the released PGDBs, however, 78% of evaluated 152 
pathways were predicted as expected. In addition to correcting the prediction for 94% of all NPPs of the 153 
surveyed pathways, incorporating curated information also reduced the percent of pathways predicted 154 
beyond their expected phylogenetic ranges from 13% to 4%. Thus, the application of phylogenetic 155 
information and manual curation drastically improves the quality of pathway prediction throughout 156 
PMN databases over the use of computational prediction alone. 157 

PMN data can distinguish phylogenetic groups 158 

PMN 15’s utility depends on the completeness and accuracy of the data it contains for its 126 159 
organisms. Objectively evaluating the quality and richness of PMN’s data is not straightforward, 160 
however, because there is no "gold standard" to compare PMN against. If PMN 15 contains data that 161 
accurately reflect the diversity of all 126 organisms, it should be possible to differentiate known groups 162 
of plants based upon their metabolic data. If plants in a specific group cluster together based on their 163 
metabolic content, this may indicate that the unique metabolism of the group is well-represented in 164 
PMN. If a known group cannot be differentiated from others, this may indicate that more research and 165 
curation are needed to understand the group’s unique metabolism and can thereby guide future 166 
research and curation. 167 

To determine whether different groups of plants can be differentiated solely by their metabolic capacity, 168 
we performed multiple correspondence analysis (MCA), a type of dimension reduction analysis that is 169 
similar to principal component analysis but can be used for categorical data (Tenenhaus and Young 170 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 31, 2021. ; https://doi.org/10.1101/2021.03.30.437738doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.30.437738
http://creativecommons.org/licenses/by/4.0/


5 

1985; Greenacre et al. 2006). MCA was carried out using presence-absence matrices for pathways, 171 
reactions, and compounds (Figure 3 and Supplemental Figure S2; Supplemental Table S5). Reactions 172 
were considered present only if at least one enzyme in the species was annotated as catalyzing the 173 
reaction. Independently, the plants were categorized according to phylogenetic groups. Dimensions 1 174 
and 3 of the pathway and compound MCA, and dimensions 1 and 2 of the reaction MCA, separated the 175 
species into several phylogenetic groups (Figure 3A and Supplemental Figure S2C, G, H). Phylogenetic 176 
groups that clearly cluster together and away from other groups include algae, non-flowering plants, 177 
Brassicaceae, and Poaceae (Figure 3A and Supplemental Figure S2G, H). Dimension 1 separates the 178 
chlorophytes from land plants and dimension 3 separates certain angiosperm families such as the 179 
Brassicaceae and Poaceae well. No clear separation was observed among other eudicot groups. In 180 
addition, dimension 2 of the pathway and compound MCA mostly separated a small number of highly 181 
curated species from all the rest (Figure S2A, E; Supplemental Table S5). Overall, the MCA clustering 182 
shows that some groups of plants can be readily differentiated based on their metabolic information 183 
(compounds, enzymes, reactions, pathways) in PMN, while other groups cannot, suggesting that further 184 
curation of species in these groups may be beneficial. 185 

We next asked which metabolic pathways drive the separation of the taxonomic groups on each 186 
dimension (Supplemental Table S5). 70% of the variance in dimension 1 was described by 109 pathways, 187 
all of which were predicted to be either embryophyte-specific pathways or present in a larger 188 
proportion of embryophytes than chlorophytes. This mirrors the separation of the Chlorophyta cluster in 189 
dimension 1 of the MCA plot (Figure 3A; Supplemental Table S5). Similarly, 70% of the variance along 190 
dimension 3 was captured by 150 pathways, of which 81 were associated more strongly with Poaceae 191 
and 69 were associated more strongly with Brassicaceae (Figure 3A; Supplemental Table S5). The 192 
pathways that contributed 95% of the variance in dimension 1, which separates chlorophytes from 193 
embryophytes, were enriched for hormone metabolism (Figure 3B, adjusted p-value = 1.6E-07, 194 
hypergeometric test). Hormone metabolism may have helped support the increased complexity of land 195 
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plants compared to their algal ancestors (Wang et al. 2015). In contrast, pathways responsible for 196 
clustering along dimension 3 were enriched for specialized metabolism (Figure 3C, adjusted p-value = 197 
1.1E-22, hypergeometric test), which is more lineage-specific than other domains of metabolism and can 198 
help distinguish between clades of angiosperms (Chae et al. 2014). Thus, it appears that metabolic data 199 
in PMN can effectively differentiate groups of species not only by the presence or absence of specific 200 
pathways and reactions, but also by the types of metabolic processes which are related to their 201 
evolutionary divergence. 202 

Data analysis tools and applications with external datasets 203 
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PMN contains not only information about the compounds, reactions, and pathways of plant metabolism, 204 
but also a suite of tools to compare and analyze these data. For example, lists of pathways, reactions, 205 
compounds, genes, or other data objects can be assembled into SmartTables for further analyses, or to 206 
export data in a tabular format. Omics data, or any numeric data associated with genes, proteins, or 207 
compounds, can be overlaid onto the pathways and reactions associated with those genes, or uploaded 208 
into Pathway Tools’ Omics Dashboard (Paley et al. 2017; Paley et al., 2021), which allows users to 209 
visualize omics data across experimental timepoints and conditions at various scales of metabolism 210 
including broad metabolic domains, individual pathways, and genes. Here we demonstrate two 211 
applications of integrating omics data with PMN resources to gain novel insights about plant 212 
metabolism. 213 

To demonstrate the utility of the Omics Dashboard in analyzing omics data within a metabolic context, 214 
we turned to a recently published transcriptomic survey of two sorghum cultivars, RTx430 and BTx642, 215 
subjected to drought stress at multiple points throughout the growing season (Varoquaux et al. 2019). 216 
RTx430 is tolerant to pre-flowering drought, whereas BTx642 is tolerant to post-flowering drought. To 217 
see if there was any difference in metabolic gene expression between the two cultivars in response to 218 
post-flowering drought, we examined differentially expressed genes (DEGs) in droughted plants 219 
compared to well-watered plants from the last week of watering (week 9 after sowing) to the first two 220 
weeks of post-flowering drought (weeks 10 – 11). We observed quantitative differences in global 221 
metabolic gene expression between the two cultivars, specifically the consistent down-regulation of 222 
biosynthetic activity from root tissues in the post-flowering drought sensitive cultivar RTx430 compared 223 
to relatively stable expression in the post-flowering drought tolerant cultivar BTx642 (Figure 4A). This 224 
observation is consistent with the authors’ findings that BTx642 demonstrated higher levels of redox 225 
balancing and likely experienced lower levels of reactive oxygen species stress, compared to RTx430, as 226 
a result of drought. By analyzing expression patterns of all metabolic genes, we observed widespread 227 
metabolic down-regulation in RTx430 root tissue, which was not reported previously (Varoquaux et al. 228 
2019). To determine whether the consistent reduction of metabolic gene expression observed in RTx430 229 
roots in response to drought was a global trend in the transcriptome or specific to metabolic genes, we 230 
compared relative expression levels of all non-metabolic root DEGs to all metabolic root DEGs in both 231 
cultivars during the same 3-week period. While the average relative expression decreased each week 232 
among both metabolic and non-metabolic genes in RTx430, the down-regulation was greater among 233 
metabolic genes at both time points (Supplemental Figure S3B). In contrast, BTx642 roots showed no 234 
difference in expression among both metabolic and non-metabolic genes in response to drought 235 
(Supplemental Figure S3B), suggesting a global metabolic homeostasis in sorghum drought tolerance. By 236 
comparing the patterns of expression among DEGs in root and leaf tissues, rather than solely the 237 
number of DEGs, analysis via the Omics Dashboards revealed that roots exhibited stronger genotype-238 
specific responses to drought than leaves, which was not observed previously (Varoquaux et al. 2019). 239 
Drought-responsive DEGs were enriched in metabolic genes among both leaf (p = 2.2E-84, 240 
hypergeometric test) and root (p = 1.7E-114, hypergeometric test) tissues. However, contrary to the 241 
clear cultivar-specific trends shown in the root DEGs (Figure 4A), the metabolic genes did not show any 242 
clear trend in their expression patterns in the leaves of either cultivar as a result of drought (Figure S3A). 243 

In addition to offering a visual overview of metabolism via the Omics Dashboard, PMN’s analytical 244 
toolkit allows researchers to easily conduct enrichment analyses among a set of genes or compounds of 245 
interest. From within a SmartTable, users can view the pathways associated with a set of genes or 246 
compounds, and can then ask whether those genes or compounds are enriched for specific pathways or 247 
classes of pathways. Broader metabolic classifications can also be added to the list of enriched pathways 248 
to better understand which area(s) of metabolism are most enriched. For example, among the set of 249 
drought-responsive DEGs in RTx430 roots, we observed an enrichment in various domains of 250 
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carbohydrate and amino acid biosynthesis and degradation, in addition to chitin degradation, consistent 251 
with the authors’ observation of drought-induced responsiveness of biotic defense genes (Figure 4B). 252 
Thus, by combining PMN’s analytical capabilities with its broad set of metabolic data, users can find 253 
additional means of supporting existing hypotheses, uncovering novel insights, and finding new avenues 254 
for exploration in their own research. 255 

The data-rich resources within PMN can also be integrated with other cutting-edge datasets to 256 
investigate novel biological questions. For example, single cell sequencing technologies, such as drop-257 
seq and the 10X scRNA-Seq platform, have been adapted to plant cells to generate high-resolution 258 
transcriptomic profiles in Arabidopsis root cells (Denyer et al., 2019; Jean-Baptiste et al. 2019; Ryu et al., 259 
2019; Shulse et al. 2019; Zhang et al., 2019; Wendrich et al., 2020). In this study, we downloaded and 260 
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integrated datasets from five existing Arabidopsis root single-cell RNAseq studies to generate a 261 
comprehensive transcriptome profile (Supplemental Table S6). These single-cell level data allow us to 262 
investigate cell type specificity of metabolic pathways and domains at the transcript level. We define cell 263 
type-specific metabolic domains (or pathways) as those whose constituent genes show significantly 264 
higher expression levels (fold change ≥ 1.5, Wilcoxon test p-value 0.05) in certain cell types compared to 265 
their average expression level in total cells. Different metabolic domains showed overlapping as well as 266 
distinct cell type specificity (Figure 5A). First, epidermal and cortex cells were most metabolically active 267 
throughout the various domains of metabolism (Figure 5A). This is consistent with previous observations 268 
that the major groups of metabolites detected in Arabidopsis roots, including glucosinolates, 269 
phenylpropanoids, and dipeptides, were highly abundance in the cortex (Moussaieff et al. 2013). In 270 
contrast, maturing xylem showed relatively low metabolic activity as the major roles of these cells are 271 
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structural support and water/soluble transport (Schuetz et al. 2013). Viewed from the level of metabolic 272 
domains, this analysis demonstrates a diverse range of metabolic activity across unique cell types in 273 
Arabidopsis roots. 274 

We next probed cell-type specificity of individual pathways. Among the 198 pathways associated with at 275 
least 10 genes, 40 pathways (20%) showed specificity in at least one cell type compared to their 276 
background gene expression levels represented by the average expression level of the pathway across 277 
all cell types (Figure 5B). For example, in actively dividing cells, such as meristematic xylem cells, 278 
pathways involved in pyrimidine, histidine, arginine, and lysine biosynthesis showed high activity (Figure 279 
5B). These pathways are involved in essential metabolism, which are critical for maintaining cell division 280 
and growth. On the other hand, hormone biosynthesis pathways, such as cytokinin glucoside and 281 
gibberellin, showed high activity in the cortex. This is consistent with current understanding that the 282 
cortex is one of the predominant cell types that synthesizes these two hormones in the Arabidopsis root 283 
(Antoniadi et al. 2015; Barker et al. 2020). By elucidating cell type-level activity of metabolic pathways, 284 
we can begin to map metabolism at cellular and tissue levels, which will be instrumental in 285 
understanding how metabolism affects plant development and responses to the environment as well as 286 
enabling effective engineering strategies. 287 

Similar to cell-type specificity, the concept of pathway divergence at the individual cell level can also be 288 
explored using single cell transcriptomics data. To probe this question, we asked whether isozymes 289 
catalyzing the same reaction are more likely to be expressed in different cells compared to enzymes 290 
catalyzing different reactions in the same pathway. Isozymes are defined as enzymes encoded by 291 
different genes catalyzing the same reaction, which are usually the result of gene duplication events. We 292 
computed Spearman’s correlation coefficient to measure gene expression pattern similarity between a 293 
pair of enzymes across Arabidopsis root cells. The coefficients computed based on single cell data were 294 
generally lower than that generated by bulk RNA-seq, which may be due to the sparseness of single cell 295 
transcriptomic profiles or high heterogeneity of gene expression across cells. Nonetheless, metabolic 296 
genes in the same pathway showed higher correlation than randomly sampled metabolic genes (Figure 297 
5C), which suggests functional coordination between genes involved in the same pathway at the cellular 298 
level. Isozymes were much less correlated than enzyme pairs catalyzing different reactions in the same 299 
pathway. This indicates that isozymes may have evolved divergent expression patterns in root cells 300 
(Figure 5C). Since isozymes are often the results of gene duplication events, this diversified expression 301 
between isozymes may contribute to retaining duplicated genes through subfunctionalization or 302 
neofunctionalization and fine-tuning metabolic pathways at the cellular level (Panchy et al. 2016). 303 

New capabilities and integration with other databases 304 

Recently we introduced the Pathway Co-Expression Viewer, which integrates information from PMN and 305 
ATTED-II (Obayashi et al. 2018), a database of gene co-expression, to visualize co-expression of the 306 
genes in a pathway for species represented in ATTED-II (Arabidopsis thaliana, Glycine max (soybean), 307 
Solanum lycopersicum (tomato), Oryza sativa (rice), Zea mays (maize), Brassica rapa, Vitis vinifera 308 
(grape), Populus trichocarpa (poplar), and Medicago truncatula). An example is shown in Figure 6A-B; 309 
Lysine biosynthesis is currently known to occur via two distinct routes, utilizing either diaminopimelate 310 
or α-aminoadipate as an intermediate. Its biosynthetic pathway in plants, cyanobacteria, and certain 311 
archaebacteria (PWY-5097) (Figure 6A) converts tetrahydrodipicolinate to L,L-diaminopimelate via L,L-312 
diaminopimelate aminotransferase and is distinct from that of other prokaryotes and of fungi (Hudson 313 
et al. 2006). Lysine biosynthesis is of particular importance as it is both an essential amino acid not 314 
biosynthesized by mammals and it is the least abundant essential amino acid in cereals and legumes 315 
(Wang and Galili, 2016). The Pathway Co-Expression Viewer shows that the genes in this pathway exhibit 316 
high levels of co-expression. The co-expression levels of six pairs of genes are in the top 1% of co-317 
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expressed gene pairs within ATTED-II, while an additional 10 gene pairs are in the top 5% (Figure 6B, 318 
dark gray). This tool provides a convenient way of visualizing the co-expression of genes in a pathway 319 
and thus provides clues as to how the pathway may be regulated. 320 
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PMN 15 introduces an additional feature which provides a new way of visualizing pathways that span 321 
intracellular compartments and include transport reactions. For example, the glutamate-glutamine 322 
shuttle (PWY-7061; Figure 7) from AraCyc is a pathway in which glutamate and glutamine are exchanged 323 
between the mitochondria and chloroplast as a means of ridding the mitochondria of ammonium 324 
produced during photorespiration (Linka and Weber 2005). Membranes that separate compartments 325 
are rendered as gray bars, with both sides labelled, and transporters are shown as breaks in the gray bar 326 
with pairs of brown ovals on either side to suggest a channel. This new feature makes intracellular 327 
transport within pathways clearer and easier to visualize. 328 

  329 
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Discussion 330 

PMN 15 is an extensive and regularly-updated database of compounds, pathways, reactions, and 331 
enzymes for 126 plant and green algae species and subspecies as well as a pan-species reference 332 
database called PlantCyc. We examined the quality of the data contained in the databases by assessing 333 
the accuracy of pathway prediction via manual validation of a randomly-selected subset of predicted 334 
pathways. Using two publicly available transcriptomics datasets, we demonstrated how PMN resources 335 
can be leveraged to characterize and gain insights from omics data. The present work demonstrates that 336 
the Plant Metabolic Network can be a useful tool for various analyses of plant metabolism across 337 
species. 338 

Accuracy of PMN 339 

The ability of PMN to enable research is dependent on the accuracy of its data. We therefore evaluated 340 
the performance of PMN’s metabolic reconstruction pipeline both in its entirety and using only 341 
computational prediction. The manual pathway validation revealed a number of pathways predicted to 342 
be present outside of their known taxonomic range, such as momilactone’s predicted presence across 343 
Poaceae despite being known to exist only in rice and a few other species, some outside of Poaceae (in 344 
which they appear to have evolved convergently) (Mao et al. 2020). While some of these results may 345 
reflect compounds that are, in fact, more widely distributed than currently thought, many such cases 346 
likely result from inaccurate prediction of enzymatic function by E2P2. The performance of enzyme 347 
function prediction using a sequence similarity approach can suffer when dealing with highly similar 348 
enzymes of a shared family (Schläpfer et al. 2017). In cases like momilactone, where the pipeline has 349 
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predicted the pathway in species closely related to species known to possess it, it may be the case that 350 
the predicted species do have most of the enzymes necessary to catalyze the pathway, but that one or a 351 
few of the predicted enzymes actually have a different function in vivo. This may draw attention to cases 352 
where enzymes have gained new functions and allow for exploration of how enzymes evolve. 353 
Meanwhile, cases of universal plant pathways being predicted only in Brassicaceae may indicate the 354 
pitfalls of an overemphasis on Arabidopsis in curation and research, as key enzymes might be predicted 355 
less reliably outside of this clade. This might be the case if there are Brassicaceae-specific variations that 356 
may result in a failure to reliably predict orthologs. A focus on curating information from diverse species 357 
may improve the accuracy of the computational prediction, requiring less semi-automated curation to 358 
fix such errors.  359 

Pathway misannotation in the naïve prediction pipeline (see Methods) could also be the result of 360 
PathoLogic’s incorrect integration of enzyme annotation with reference reactions. In addition to 361 
incorporating enzyme predictions, PathoLogic can infer pathways for a given species based on a number 362 
of additional considerations. For example, if a species contains an enzyme which catalyzes a reaction 363 
unique only to one pathway in the PGDB, the pathway is likely to be predicted to be present. 364 
Additionally, if all reactions of a pathway are predicted to be present, the pathway is likely to be 365 
predicted as. Using PathoLogic without taxonomic pruning thus provides increased prediction sensitivity 366 
while also increasing false positives (Karp et al. 2011; Schläpfer et al. 2017). By design, SAVI removes 367 
false-positive and adds false-negative pathways predicted by PathoLogic. Our analyses indicate that the 368 
predominant function of SAVI and PathoLogic’s taxonomic pruning currently is to remove false-positives 369 
and consequently restrict the taxonomic range of predicted pathways, consistent with previous analyses 370 
of SAVI’s performance (Figures 2, S2) (Schläpfer et al. 2017). Interestingly, our manual pathway 371 
assessment revealed that, in certain cases, SAVI should have increased the range of a predicted pathway 372 
and added it to more species than it was predicted for by PathoLogic. For example, the phytol salvage 373 
pathway (PWY-5107) is predicted to be present in all photosynthetic organisms (Valentin et al., 2006). 374 
While PathoLogic incorrectly restricted the predicted range of this pathway to include only angiosperms 375 
even without taxonomic pruning, SAVI did not correct this incorrect taxonomic restriction, nor did it 376 
assign the pathway to the few angiosperm species not predicted by PathoLogic to contain the pathway. 377 
Examples like this may represent errors in the manual curation decisions used by SAVI to make its 378 
correction, or it may reflect new information added to the literature after those curation decisions were 379 
made. Both possibilities represent important information in accurately representing metabolism across 380 
species and highlight the need to regularly update the curation rules upon which SAVI operates. We 381 
therefore reclassified the final pathway assignments in PMN 15 for each pathway whose classification 382 
after SAVI implementation was determined to be anything other than “Expected”. Through the 383 
continual process of introducing new species — and thus new pathways — into PMN, along with regular 384 
curation of those new pathway predictions, SAVI’s correction performance, and thus the overall value of 385 
data in PMN, should continue to improve over time. 386 

Other metabolic pathway databases 387 

PMN strives to differentiate itself from other metabolic pathway databases through the quantity of 388 
curated and computational information, its comprehensive set of tools, and its specific focus on plants. 389 
Other, comparable databases include KEGG (the Kyoto Encyclopedia of Genes and Genomes) (Kanehisa 390 
and Goto 2000; Kanehisa et al. 2017; Kanehisa et al. 2019), Plant Reactome (Gramene Pathways) 391 
(Naithani et al. 2020), and WikiPathways (Slenter et al. 2018). Like PMN, these databases contain 392 
metabolic pathways along with their associated reactions, compounds, and enzymes. KEGG pathways 393 
represent broad metabolic reactions shared among many organisms, and it is common to map genes or 394 
compounds to KEGG pathways alongside Gene Ontology (GO) annotations for enrichment analyses. 395 
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However, because KEGG pathways represent a generalized set of reactions leading to many possible 396 
compound classes (but not to specific compounds), it lacks the granularity to analyze metabolism on a 397 
species-specific level (Altman et al. 2013). For example, a recent study identified enriched KEGG 398 
pathways (e.g., “phenylpropanoid biosynthesis”) among genes belonging to gene families that were 399 
expanded in Senna tora compared with its relatives (Kang et al. 2020). Enrichment analysis of the same 400 
genes using PMN’s StoraCyc 1.0.0 identified individual phenylpropanoid biosynthetic pathways enriched 401 
among the gene set, such as coumarin biosynthesis. PMN and MetaCyc feature structured data that is 402 
both human- and machine-readable, making it possible for users to obtain pathway structure and other 403 
data for their own offline analysis and enabling features such as the pathway Co-Expression Viewer to 404 
be easily incorporated. WikiPathways is another pathway-centric database. WikiPathways is not plant-405 
focused, and takes a crowd-sourced approach, in contrast with PMN’s focus on expert curation. Plant 406 
Reactome, another metabolism database, is specific to plants and green algae as PMN is. However, Plant 407 
Reactome uses Oryza sativa as a reference species to predict reactions and pathways to the 106 other 408 
species currently in the database and uses gene orthology to predict the presence of a pathway, where a 409 
pathway is predicted in a species if at least one rice ortholog for an enzyme in that pathway is present in 410 
that species (Naithani et al. 2020). Pathway prediction in PMN, on the other hand, is more stringent via 411 
its implementation through the PathoLogic and SAVI pipelines. 412 

Associations between metabolism and phylogeny 413 

PMN is organized primarily by species, and a significant component of the expansion over its history has 414 
been in the form of adding new species and subspecies to it. In order for this to be a worthwhile 415 
endeavor and useful to the plant biology research community, the species databases need to be 416 
meaningfully differentiated from one another in ways that accurately reflect their metabolic differences. 417 
Multiple correspondence analysis was therefore performed to determine whether related species would 418 
cluster together, an indication that underlying biology is driving the differences in their database 419 
contents. The analysis revealed that some plant groups such as Brassicaceae, Poaceae, the green algae, 420 
and non-flowering plants each clustered together, showing that these major groups of plants can be 421 
readily differentiated based on their metabolic complements. Within the eudicots, however, there was 422 
little separation apart from the grouping of Brassicaceae. Other groups such as Rosaceae and 423 
Solanaceae did not separate from the other eudicots, even though both groups are known to have 424 
unique metabolism, suggesting that more research and curation on members of these groups is needed. 425 
This analysis also indicated that despite being represented by a number of PMN species, the unique 426 
metabolisms of these groups remain understudied. The separation of Brassicaceae from the other 427 
groups may reflect a more comprehensive body of knowledge about the metabolism of Arabidopsis due 428 
to its status as a model plant and, as a result, a larger number of Brassicaceae-specific pathways being 429 
known than for compounds specific to other clades. The same might be true of the grasses, a clade that 430 
contains economically important crops such as maize, rice, wheat, and switchgrass. These results 431 
suggest that study of representative members of a group could help differentiate the group as a whole 432 
and suggest that much of current knowledge is limited to common pathways. More detailed studies of 433 
the metabolism of other groups are needed to understand what makes them unique.  434 

Previous work making use of PMN 435 

PMN has been used in a variety of ways by the plant research community. One common use is to find 436 
metabolic information about a specific area of metabolism, such as finding sets of biosynthesis genes for 437 
a particular compound or sets of compounds under study, or finding pathways associated with a set of 438 
genes highlighted by an experiment. Clark and Verwoerd (2011) used AraCyc to determine different 439 
biosynthetic routes for anthocyanin pigments and predict minimal sets of genes which could be mutated 440 
to eliminate pigment production. Pant et al. (2015) performed metabolite profiling on phosphorus-441 
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deprived Arabidopsis wild type plants and phosphorus-signaling mutants. PMN was used to find genes in 442 
the biosynthetic pathways of metabolites which showed altered concentration in the mutants and P-443 
deprived plants. Saptari and Susila (2018) examined the expression of hormone biosynthesis genes 444 
during somatic embryogenesis in Arabidopsis and rice. The authors used PMN to identify hormone 445 
biosynthetic genes and performed expression analysis on the identified gene set. Kooke et al. (2019) 446 
used AraCyc (alongside other databases) to identify genes involved in glucosinolate and flavonoid 447 
metabolism, and then examined the relationship between methylation of these genes and metabolic 448 
trait values. Uhrig et al. (2020) examined diurnal changes in protein phosphorylation and acetylation, 449 
and used PMN’s pathway enrichment feature to identify AraCyc pathways enriched for proteins 450 
associated with these protein modification events. 451 

A second common use of PMN is to study broader patterns in plant metabolism. Hanada et al. (2011) 452 
explored two rival hypotheses which attempt to explain the large number of Arabidopsis metabolic 453 
genes for which single mutants show weak or no phenotypes, and used data from PMN to determine 454 
the connectivity of different metabolites in the network. Chae et al. (2014) compared primary and 455 
specialized metabolism in plants and green algae and found that specialized metabolism genes have 456 
different evolutionary patterns from primary metabolism genes. Moore et al. (2019) used AraCyc in 457 
assembling lists of enzyme-coding genes involved in primary and specialized metabolism, and then 458 
explored associations between various qualities and metrics of the genes and their involvement in 459 
primary or specialized metabolism. The PlantClusterFinder (Schläpfer et al. 2017) software was also used 460 
in that analysis. Song et al. (2020) set out to test the hypothesis that stoichiometric balance imposes 461 
selection on gene copy number. AraCyc pathways were used as a source of functionally-related gene 462 
groups to test for reciprocal retention. 463 

A third use of PMN is in genome annotation. Gupta et al. (2015) used RNA-seq data from blueberry 464 
(Vaccinium corymbosum) to annotate a draft genome sequence for the plant. Gene models were 465 
BLASTed against metabolic genes from AraCyc and other species-specific pathway genome databases, 466 
and the results were used to improve the annotations. The annotations were then used to examine 467 
blueberry metabolism. Similarly, Najafabadi et al. (2017) took transcriptomes of Ferula gummosa Boiss., 468 
a relative of carrot that is the source of the aromatic resin galbanum, and used BLASTx against enzyme-469 
coding genes from PMN as a source for annotation of enzyme-coding genes in Ferula. 470 

Conclusions 471 

PMN provides an important resource for organizing and making accessible plant metabolism 472 
information. The study of plant metabolism enables improvement of the productivity, nutrition, and 473 
resilience of crop plants, and furthers understanding of how wild plants function in their ecosystems. 474 
PMN data and tools have been used by researchers to answer a broad range of biological questions from 475 
development to physiology to evolution. The latest release of PMN, PMN 15, has the breadth and depth 476 
of metabolic information that should enable even a wider spectrum of questions to be pursued in plant 477 
biology. 478 

  479 
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Methods 480 

The PMN pipeline 481 

New plant databases introduced in each version of PMN are Tier 3 BioCyc databases (Karp et al. 2019), 482 
which indicate that the information is based mostly on automated prediction using their genome. Any 483 
experimentally-supported enzymes and pathways in Metacyc or Plantcyc that are annotated as 484 
belonging to the organism are also imported into the database along with their citations and codes for 485 
the type of evidence the cited papers present. The plant’s remaining complement of enzymes is 486 
predicted, and its metabolites and pathways are in turn predicted based on the enzymes.  487 

Bringing a new species or subspecies into PMN begins with the sequenced and annotated genome with 488 
predicted protein sequences. To be considered for inclusion, a genome must pass a quality metric in the 489 
form of BUSCO (Benchmarking Single-Copy Orthologs) (Simão et al. 2015; Waterhouse et al. 2018), 490 
which assesses genome completeness using a database of proteins expected to be present in all 491 
eukaryotes, with matches assessed using HMMER (http://hmmer.org) (Potter et al. 2018). A score of at 492 
least 75% “complete” is required for inclusion in PMN. If a genome passes this metric, it can then be run 493 
through the PGDB creation pipeline. First, splice variants are removed, leaving one protein sequence per 494 
gene, with the longest variant being retained. The sequences are classified as enzymes or non-enzymes, 495 
and enzymatic functions are predicted, using the Ensemble Enzyme Prediction Pipeline (E2P2) software 496 
(Chae et al. 2014; Schläpfer et al. 2017). E2P2 uses BLAST and PRIAM to assign enzyme function based 497 
on sequence similarity to proteins with previously-known enzymatic functions based on functional 498 
annotations taken from several sources including MetaCyc (Caspi et al. 2020), SwissProt (UniProt 499 
Consortium 2021), and BRENDA (Chang et al. 2021). The genomes included in PMN 15 were checked 500 
using BUSCO v 3.0.2 using the Eukaryota ODB9 dataset. Enzyme prediction for PMN 15 was done using 501 
E2P2 v4.0 and RPSD v4.2, which was generated using data from PlantCyc 12.5, MetaCyc 21.5, BRENDA 502 
(downloaded April 4, 2018), SwissProt (downloaded April 4, 2018), TAIR (downloaded April 5, 2018), 503 
Gene Ontology (Downloaded April 4, 2018), and Expasy (release of March 28, 2018). 504 

Once enzymes are predicted, they must be assembled into pathways by the PathoLogic function of 505 
Pathway Tools (Karp et al. 2019). The set of predicted pathways is then further refined using the Semi-506 
Automated Validation Infrastructure (SAVI) software (Schläpfer et al. 2017). SAVI is used to 507 
automatically apply broad curation decisions to the pathways predicted for each species. It can be used, 508 
for example, to specify particular pathways that are universal among plants and should therefore be 509 
included in all species’ databases even if not predicted by PathoLogic. SAVI can also be used to specify 510 
that a particular pathway is known to be present only within a specific plant clade. Therefore, if the 511 
pathway is predicted in a species outside of that clade, it should be considered a false prediction and 512 
removed. PMN 15 was generated using Pathway Tools 24.0 and SAVI 3.1. 513 

The final parts of the pipeline are grouped into three stages: refine-a, refine-b, and refine-c. In refine-a, 514 
the database changes recommended by SAVI are applied to the database and pathways added or 515 
approved by SAVI have SAVI citations added. In refine-b, pathways and enzymes with experimental 516 
evidence of presence in a plant species are added to that PGDB if they were not predicted, and 517 
appropriate experimental evidence codes are added. In refine-c, authorship information is added to the 518 
PGDB, the cellular overview is generated, and various automated data consistency checks are run. 519 

The convention for PGDB versions was updated in PMN 15. Taking SorghumbicolorCyc 7.0.1 as an 520 
example, the first number, 7, is incremented when the PGDB is re-generated de novo from a new 521 
version of MetaCyc and/or a new genome assembly. The second, 0, is incremented when there are error 522 
corrections or other fixes to the content of the database. A third, 1 in the example, may be added when 523 
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the database is converted to a new version of Pathway Tools without being regenerated, a process that 524 
does not alter the database contents. 525 

Changes in curation policy 526 

Since its initial 1.0 release, some changes in curation policy have been made to PMN and PlantCyc. In 527 
2013, the Arabidopsis-specific database, AraCyc, switched from identifying proteins by locus ID to using 528 
the gene model ID. This eliminates ambiguity when multiple splice variants exist for a single locus. In 529 
PMN 10, the policy for all species was switched from using the first splice variant to the longest. This was 530 
done because a longer splice variant is likely to have more domains, making it easier to determine its 531 
function. 532 

In PMN 10, the database narrowed its focus strictly to small-molecule metabolism, and pathways 533 
involved solely in macromolecule metabolism (such as protein synthesis) were removed. 534 
Macromolecules have never been the focus of PMN, and provision of information about them is a role 535 
better served by other databases with tools specifically suited to large heteropolymers like proteins and 536 
DNA/RNA. 537 

In version 13 of PMN, the PlantCyc database was limited to only include pathways and enzymes with 538 
experimental evidence to support them. The original purpose of including all information, experimental 539 
and computational, in PlantCyc was to allow cross-species comparison, a function now served by the 540 
virtual data integration and display functionality recently introduced in Pathway Tools (Karp et al. 2019). 541 
PlantCyc now serves as a repository of all experimentally-supported compounds, reactions, and 542 
pathways for plants. 543 

Manual pathway prediction validation 544 

120 PMN pathways were randomly selected to manually assess pathway prediction accuracy. The 126 545 
organism-specific PGDBs were then re-generated using E2P2 and PathoLogic alone, with PathoLogic set 546 
to ignore the expected phylogenetic range of the pathway and call pathway presence / absence based 547 
only on the presence of enzymes (no taxonomic pruning), no SAVI, and skipping the step of importing 548 
pathways with experimental evidence of a species into that species database if the pathway was not 549 
predicted. This resulted in a set of PGDBs based purely on computational prediction that we refer to as 550 
“naïve prediction PGDBs”. Biocurators evaluated the accuracy of each of the 120 pathway’s prediction 551 
across all 126 organisms in PMN in the naïve prediction PGDBs and, separately, in the released version 552 
of PMN. Specifically, we evaluated whether pathway assignments to the PGDBs reflected the taxonomic 553 
range of the pathway as expected from the literature. Each pathway’s assignment to the naïve 554 
prediction PGDBs and released PGDBs was classified with respect to the expected taxonomic range as 555 
either “Expected” (predicted and expected species are mostly the same), “Broader” (pathway is 556 
predicted beyond its expected range), “Narrower” (predicted range of the pathway is smaller than the 557 
expected range), or it was identified to be a non-plant or non-algal pathway, and therefore classified as 558 
a non-PMN pathway. 559 

Presence-absence matrices 560 

In order to analyze the pathways, reactions, and compounds (PRCs) in each species’ database, presence-561 
absence matrices were generated for each of these three data types. Each is a binary matrix containing 562 
the list of PMN organisms as its rows and a list of PRCs of one type as its columns. Each matrix element 563 
is equal to 1 if the organism contains the PRC and 0 if it does not (Supplemental Files S1-S3). Reactions 564 
were only marked as present in a species if the species had at least one enzyme annotated to the 565 
reaction, whether predicted or from experimental evidence. Since PRCs that are present in either only 566 
one organism or all organisms are not useful in differentiating plant groups, we excluded these PRCs 567 
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from further analysis. Separately, a table was generated that maps the species to one of several pre-568 
defined taxonomic groups (Supplemental File S4). The groups were selected manually to best represent 569 
the diversity of species in PMN and included monophyletic and paraphyletic groups, as well as a 570 
polyphyletic “catch-all” group (“Other angiosperms”). The PRC matrices and the plant group table were 571 
used to investigate relationships among the species through the lens of metabolism. The PRC matrices 572 
were produced using a custom lisp function (Supplemental File S5). 573 

Multiple correspondence analysis 574 

The PRC matrices were used to perform multiple correspondence analysis (MCA) (Greenacre et al. 575 
2006). This is a technique similar to principal component analysis (PCA) but is frequently used with 576 
categorical (binomial or multinomial) data. It differs from PCA in that a complete disjunctive table (CDT) 577 
is first produced from the input matrix. In a CDT, each multinomial variable i (a column in the input 578 
matrix) is split into Ji columns where Ji is the number of levels of variable i. In this analysis, the variables 579 
are the pathways, reactions, or compounds (PRCs), and there are two levels for each, present and 580 
absent. Each CDT column ji therefore corresponds to one level of one variable and is initially set equal to 581 
1 for species for whom that PRC is present and 0 otherwise. Each group of Ji columns therefore contains, 582 
in each row, one column equal to 1 and Ji–1 columns equal to 0. In this analysis, therefore, each 583 
pathway results in two columns in the CDT, set to 1 0 if the pathway is present and 0 1 if the pathway is 584 
absent. MCA then scales the values of each column in the CDT according to the rarity of that level of that 585 
variable, so that each CDT column sums to 1. The remainder of the procedure is the same as in PCA. 586 
Because of the scaling, a species will be further from the origin in the MCA scatterplot if it possesses 587 
uncommon PRCs or lacks common ones. The MCA was performed using the MCA() function of the R 588 
package FactoMineR v2.3 (Lê et al. 2008). The MCA scatter plots were colored using the columns of the 589 
plant group table (Supplemental File S4) to elucidate relationships between the MCA clusters and plant 590 
groups. The scatter plots were generated using ggplot2 v3.3.4. 591 

Metabolic domain enrichment 592 

To examine the pathways associated with each MCA axis, the percentage of variance explained by the 593 
presence or absence of each pathway, found in pwy.mca$var$contrib (where pwy.mca is the R object 594 
returned by FactoMineR’s MCA function when run on the pathway matrix), was exported to a tab-595 
delimited text file. To determine which metabolic domains, if any, were overrepresented in the set of 596 
pathways describing the variance of MCA dimensions 1 and 3, we ran an enrichment analysis of the set 597 
of pathways explaining the 95th percentile of the variance. Pathways were mapped to a metabolic 598 
domain using supplementary information from (Schläpfer et al. 2017). Pathways left unmatched were 599 
manually assigned to a metabolic domain by expert curators and a new pathway-metabolic domain 600 
mapping file version 2.0 was created (Supplemental Table S7). Enrichment background was set as all 601 
pathways from PMN’s 126 organism-specific databases, all of which were assigned to metabolic 602 
domains. Enrichment was calculated using the phyper() function from the R stats package and p-values 603 
were corrected for multiple hypothesis testing at a false discovery rate (FDR) of 5%. 604 

Omics Dashboard and Enrichment Analysis 605 

The sorghum drought transcriptomics data from (Varoquaux et al. 2019) were downloaded from: 606 
https://www.stat.berkeley.edu/~epicon/publications/rnaseq/. We specifically used their log-fold change 607 
and differential expression analysis results. For both leaf and root samples, the sets of all expressed 608 
genes were filtered to include only those differentially expressed in either cultivar as a result of post-609 
flowering drought (using an FDR of 5%). Corresponding expression data for both gene sets were then 610 
filtered to include only the week prior to, and the first two weeks of post-flowering drought (weeks 9-611 
11). The resulting data sets were then directly uploaded into PMN’s Omics Dashboard for visual analysis 612 
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of metabolic trends. Enrichment analysis of metabolic genes among leaf and root DEGs as a result of 613 
post-flowering drought was calculated in R version 3.6.3 with a hypergeometric test using the phyper() 614 
function from the stats package. The background used for this enrichment analysis was all Sorghum 615 
bicolor genes (McCormick et al. 2018) from the Sorghum bicolor genome annotation v3.1.1 downloaded 616 
from Phytozome v12. Violin plots were generated using the geom_violin() function within the ggplot2 617 
package in R version 3.6.3. Statistical differences between non-metabolic and metabolic DEGs as a 618 
function of time were determined by two-way ANOVA followed by Tukey’s Honest Significant Difference 619 
(HSD) test (p < 0.05) using the lsmeans() functions within the lsmeans package in R version 3.6.3. 620 
Pathway enrichment among the set of metabolic root DEGs was calculated using the “Genes Enriched 621 
for Pathways” functionality within the “Enrichments” dropdown of a SmartTable. We performed an 622 
enrichment analysis using Fisher’s Exact test and Benjamini-Hochberg correction at an FDR of 5% with 623 
the set of all pathway genes from SorghumbicolorCyc (version 7.0.1) as the background. 624 

Cell type activity analysis 625 

We downloaded and integrated datasets from 5 existing Arabidopsis root single-cell RNAseq studies. 626 
Briefly, raw fastq files for 21 datasets derived from studies by (Zhang et al. 2019), (Jean-Baptiste et al. 627 
2019), (Denyer et al. 2019), (Ryu et al. 2019), and (Shulse et al. 2019) were downloaded, trimmed, and 628 
mapped using the STARsolo tool v.2.7.1a. Whitelists for each dataset were obtained either from the 10X 629 
Cellranger software tool v. 2.0 for the 10X-Chromium samples, or after following the Drop-seq 630 
computational pipeline (https://github.com/broadinstitute/Drop-seq/releases/tag/v2.3.0), extracting 631 
error-corrected barcodes from the final output for the Drop-seq samples. Valid cells within the digital 632 
gene expression matrices computed by STARSolo were then determined as those having total unique 633 
molecular identifier (UMI) counts greater than 10% of the 1st percentile cell, after filtering for cells with 634 
very high (20,000) UMIs. Cells containing greater than 10% mammalian reads, greater than 10% 635 
organellar (chloroplast or mitochondrial) reads, or cells having transcripts from fewer than 200 genes 636 
were filtered out. Filtered digital gene expression matrices were then pre-processed using the Seurat 637 
(v3.1.0) package after removing protoplast-inducible genes (Birnbaum et al. 2003), using the 638 
SCTransform method (with 5000 variable features). All Seurat objects were then integrated together 639 
using the approach from (Stuart et al. 2019), applying the SelectIntegrationFeatures, 640 
PrepSCTIntegration, FindIntegrationAnchors, and IntegrateData functions from the Seurat R package, 641 
using 5000 variable features, 20 principal components, and otherwise default parameters. Cell clusters 642 
were computed using the Seurat functions, FindNeighbors and Find Clusters, 20 principal components 643 
and a resolution parameter of 0.8. Index of Cell Identity (ICI) scores were computed using a combination 644 
of existing ATH1 microarray and RNAseq single cell datasets (Supplemental Table S6). Briefly, arrays 645 
were normalized using the gcrma R package, and RNA-seq data were trimmed using the bbduk tool, and 646 
mapped using bbmap (sourceforge.net/projects/bbmap/). Transcript counts were quantified using the 647 
featureCounts tool (Liao et al. 2014). Raw RNAseq counts were then normalized using the edgeR 648 
package (v 3.26.0), with the “upperquartile” method. Normalized reads were then further normalized 649 
with the gcrma-normalized microarray data using the Feature-Specific Quantile Normalizations (FSQN) 650 
method (Franks et al. 2018) to obtain a dataset consisting of both RNA-seq and microarray-based cell-651 
type specific transcriptome measurements. This dataset was then used to build an ICI (Birnbaum and 652 
Kussell 2011) specification matrix using the methods described by (Efroni et al. 2015). This specification 653 
table was then used to compute ICI scores for each cell in the integrated single-cell dataset, along with 654 
p-values derived from random permutation. 655 

To map the single-cell data to metabolic domains, pathways, and enzymes, we used AraCyc v.17.0, 656 
which includes 8556 metabolic genes and 650 pathways. We used the pathway-metabolic domain 657 
mapping file version 2.0 (Supplemental Table S7) to map the pathways to 13 metabolic domains. To 658 
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avoid biases introduced by small sample size to the cell type specificity analysis, we only included 659 
pathways containing at least 10 genes whose transcripts were detected in the single cell data described 660 
above. Based on these criteria, 198 out of 650 pathways were included in this analysis. To compute cell 661 
type specificity at the transcript level, we first calculated the expression level for a pathway or domain 662 
per cell type by taking the average of expression values for all the genes annotated to this pathway or 663 
domain within this cell type. The cell type specificity was defined as the cell type(s) for which the 664 
expression level of a pathway or domain was at least 1.5-fold higher than their background expression, 665 
which was calculated by taking the average of expression values for all the genes annotated to this 666 
pathway or domain in all cells. Since the expression levels of a pathway or domain per cell type could be 667 
influenced by gene expression outliers, we only included the cell types in which more than 50% of genes 668 
associated with the pathway or domain showed higher expression than their background expression 669 
based on a Wilcoxon test followed by a multiple hypothesis test adjustment using FDR with a threshold 670 
of 0.01. The background expression level of a gene was calculated by taking the average of its expression 671 
values in all the cells included in this study. Heatmaps were generated using the R package ggplot2 v.3.1. 672 
To compute cell type specificity at the pathway level, we first selected the set of pathways containing at 673 
least 10 genes whose transcripts were captured by the single cell transcriptomic data to avoid biases 674 
that could be introduced by small sample size. Based on these criteria, 30% (198 out of 650) Arabidopsis 675 
pathways were included in this analysis.  676 

In a metabolic network, isozymes are defined as enzymes encoded by different genes catalyzing the 677 
same reaction, which are usually the result of gene duplication events. To investigate whether isozymes 678 
tend to be expressed in different cells compared to enzymes catalyzing different reactions within the 679 
same pathway, we analyzed gene expression pattern similarity between a pair of enzymes across 680 
Arabidopsis root cells by computing Spearman’s correlation. To prevent having correlations between 681 
self, we removed enzymes that are mapped to more than one reaction in a pathway as well as pathways 682 
that contain only one reaction. Spearman’s correlation coefficients were computed using the function 683 
cor() in R. Significant correlation coefficients were determined using an R package scran v.1.18.5 (Lun et 684 
al. 2016). Distribution of Spearman’s rho was compared using a one-way ANOVA followed by post-hoc 685 
adjustment with Tukey’s test in R. The box plot was generated using the R package ggplot2 v.3.1. 686 
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GO = Gene Ontology 701 

JI = Jaccard Index 702 

KEGG = Kyoto Encyclopedia of Genes and Genomes 703 

MCA = multiple correspondence analysis 704 

NPP = Non-PMN pathway 705 

PCA = principal component analysis 706 

PGDB = pathway genome database 707 

PMN = Plant Metabolic Network 708 

PRC = pathway, reaction, or compound 709 

SAVI = Semi-automated Validation Infrastructure 710 
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