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Abstract

Learning from a limited number of experiences requires suitable inductive biases. While
inductive biases are central components of intelligence, how they are reflected in and shaped by
population codes are not well-understood. To address this question, we consider biologically-
plausible reading out of arbitrary stimulus-response maps from arbitrary population codes, and
develop an analytical theory that predicts the generalization error of the readout as a function
of the number of examples. Our theory illustrates in a mathematically precise way how the
structure of population codes allow sample-efficient learning of certain stimulus-response maps
over others, and how a match between the code and the task is crucial for sample-efficient
learning. We observe that many different codes can support the same inductive biases and
by analyzing recordings from the mouse primary visual cortex, we demonstrate that biological
codes are metabolically more efficient than other codes with identical biases. We apply our
theory to experimental recordings of mouse primary visual cortex neural responses, elucidating
a bias towards sample-efficient learning of low frequency orientation discrimination tasks. We
demonstrate emergence of this bias in a simple model of primary visual cortex, and further show
how invariances in the code to stimulus variations affect learning performance. We extend our
methods to time-dependent neural codes. Finally, we discuss implications of our theory in the
context of recent developments in neuroscience and artificial intelligence. Overall, our study
suggests sample-efficient learning as a general normative coding principle.

Introduction

The ability to learn fast is crucial for survival in a complex and an everchanging world, and the
brain is remarkably efficient in this. Often, only a few experiences are sufficient to learn a task,
whether acquiring a new word [1] or recognizing a new face [2]. Despite the importance and ubiquity
of sample efficient learning, our understanding of the brain’s information encoding strategies that
support this faculty remains poor [3, 4, 5].

In particular, when learning and generalizing from past experiences, and especially from few
experiences, the brain relies on implicit assumptions it carries about the world, or its inductive biases
[6, 5]. Reliance on inductive bias is not a choice: inferring a general rule from finite observations
is an ill-posed problem which requires prior assumptions since many hypotheses can explain the
same observed experiences [7]. Consider learning a rule that maps photoreceptor responses to a
prediction of whether an observed object is a threat or is neutral. Given a limited number of
visual experiences of objects and their threat status, many threat-detection rules are consistent
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with these experiences. By choosing one of these threat-detection rules, the nervous system reveals
an inductive bias. Without the right biases that suit the task at hand, successful generalization
is impossible [6, 5]. Therefore, in order to understand why we learn certain tasks accurately and
rapidly over others, we must understand the brain’s inductive biases [3, 4, 5].

We study sample efficient learning in a general neural circuit model which comprises of a
population of sensory neurons and a readout neuron learning a stimulus-response map with a
biologically-plausible learning rule (Fig 1A). In this circuit, inductive bias arises from the nature of
the neural code for sensory stimuli. While different population codes can encode the same stimulus
variables and allow learning of the same output with perfect performance given infinitely many
samples, learning performance can depend dramatically on the code when restricted to a small
number of samples, where the reliance on and the effect of inductive bias are strong (Fig 1B,C,D).
Given the same sensory examples and their associated response values, the readout neuron may
make drastically different predictions depending on the inductive bias set by the nature of the code,
leading to successful or failing generalizations (Fig 1C,D). We say that a code and a learning rule,
together, have a good inductive bias for a task if the task can be learned from a small number of
examples.

In order to understand how population codes shape inductive bias and allow fast learning of
certain tasks over others with a biologically plausible learning rule, we develop an analytical theory
of the readout neuron’s learning performance as a function of the number of sampled examples,
or sample size. We find that the readout’s performance is completely determined by the code’s
kernel, a function which takes in pairs of population response vectors and outputs a representational
similarity defined by the inner product of these vectors. We demonstrate that the spectral properties
of the kernel introduce an inductive bias toward explaining sampled examples with simple stimulus-
response maps and determine compatibility of the population code with learning task, and hence the
sample-efficiency of learning. We observe that many codes could support the same kernel function,
however, by analyzing data from mouse primary visual cortex (V1) [8, 9, 10, 11], we find that the
biological code is metabolically more efficient than others. Further, mouse V1 responses support
sample-efficient learning of low frequency orientation discrimination tasks over high frequency ones.
We demonstrate this bias in a simple model of V1 and show how response nonlinearity, sparsity,
and relative proportion of simple and complex cells influence the code’s bias and performance on
learning tasks, including ones that involve invariances. Finally, we extend our theory to temporal
population codes, using codes generated by recurrent neural networks learning a delayed response
task as an example. Overall, our results suggest sample-efficient learning as a novel functional role
for population codes.

Results

We consider a population of N neurons whose responses, {r1(θ), r2(θ), ..., rN (θ)}, vary with the
input stimuli, which is parameterized by a vector variable θ, such as the orientation and the phase
of a grating (Figure 1A). These responses define the population code. A readout neuron learns its
weights w to approximate a stimulus-response map, or a target function y(θ), such as one that
classifies stimuli as apetitive (y = 1) or aversive (y = −1), or a more smooth one that attaches
intermediate values of valence. Our theory is general in its assumptions about the structure of
the population code and the stimulus-response map considered (Methods), and can apply to many
scenarios.

The readout neuron learns from P stimulus-response examples with the goal of generalizing
to previously unseen ones. Example stimuli θµ, (µ = 1, . . . , P ) are sampled from a probability
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Figure 1: Learning tasks through linear readouts exploit representations of the population code
to approximate a target response. A The readout weights from the population to a downstream
neuron, shown in blue, are updated to fit target values y, using the local, biologically plausible delta
rule. B Examples of tuning curves for two different population codes: Smooth tuning curves (Code
1) and rapidly varying tuning curves (Code 2). C (Left) A target function with low frequency
content is approximated through the learning rule shown in A using these two codes. The readout
from Code 1 (turquoise) fits the target function (black) almost perfectly with only P = 12 training
examples, while readout from Code 2 (purple) does not accurately approximate the target function.
(Right) However, when the number of training examples is sufficiently large (P = 120), the target
function is estimated perfectly by both codes, indicating that both codes are equally expressive. D
The same experiment is performed on a task with higher frequency content. (Left) Code 1 fails to
perform well with P = 12 samples indicating mismatch between inductive bias and the task can
prevent sample efficient learning while Code 2 accurately fits the target. (Right) Again, provided
enough data P = 120, both models can accurately estimate the target function. Details of these
simulations are given in Methods.
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distribution describing stimulus statistics p(θ). This distribution can be natural or artificially
created, for example, for a laboratory experiment (Supplementary Information, SI). From the
set of learning examples, D = {θµ, y(θµ)}Pµ=1, the readout weights are learned with the local,
biologically-plausible delta-rule, ∆wj = η

∑
µ rj(θ

µ)(y(θµ)− r(θµ) ·w), where η is a learning rate
(Methods, Figure 1A). This learning process converges to a unique set of weights w∗(D) (Methods).
Generalization error with these weights is given by

Eg(D) =

∫
p(θ) (w∗(D) · r(θ)− y(θ))2dθ, (1)

which quantifies the expected error of the trained readout over the entire stimulus distribution
p(θ). This quantity will depend on the population code r(θ), the target function y(θ) and the
set of training examples D. Our theoretical analysis of this model provides insights into how
populations of neurons encode information and allow sample-efficient learning.

Kernel structure of population codes controls learning

First, we note that the generalization performance of the learned readout on a given task depends
entirely on the inner product kernel, defined by

K(θ,θ′) =
1

N

N∑
i=1

ri(θ)ri(θ
′), (2)

which quantifies the similarity of population responses to two different stimuli θ and θ′. This is
because the learning procedure converges to a unique solution w∗(D) for the training set D [12, 13]
and the readout neuron’s learned output has the form

f(θ) = w∗(D) · r(θ) =
P∑
µ=1

αµK(θµ,θ), (3)

where the coefficient vector α = K+y, where + denotes Moore-Penrose inverse (Methods), and
the matrix K has entries Kµν = K(θµ,θν). Our main observation is that in these expressions the
population code only appears through the kernel K. Therefore, the kernel controls the learned
response pattern.

Biological codes are metabolically more efficient than other codes with identical
kernels

The fact that learning performance depends only on the kernel introduces a large degeneracy in
the set of codes which achieve identical desired performance on learning tasks. This is because the
kernel is invariant with respect to left-rotations of the population code. A population code r(θ)
can be rotated to generate a new code r̃(θ) with identical kernel:

r̃(θ) = Qr(θ), (4)

where Q is an orthogonal matrix. Codes r(θ) and r̃(θ) will have identical readout performance
on all possible learning tasks. We illustrate this degeneracy in Figure 2 using a publicly available
dataset which consists of activity recorded from ∼ 20,000 neurons from the primary visual cortex
of a mouse while shown static gratings [8, 9]. An original code r(θ) is rotated to generate r̃(θ)
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Figure 2: The inner product kernel controls the generalization performance of readouts. A Tuning
curves r(θ) for three example recorded Mouse V1 neurons to varying static grating stimuli oriented
at angle θ [8, 9] (Left) are compared with a randomly rotated version (Middle) r̃(θ) of the same
population code. (Right) These two codes, original (Ori.) and rotated (Rot.) can be visualized as
parametric trajectories in neural space. B The inner product kernel matrix has elements K(θ1, θ2).
The original V1 code and its rotated counterpart have identical kernels. C In a learning task
involving uniformly sampled angles, readouts from the two codes perform identically, resulting in
identical approximations of the target function (shown on the left as blue and red curves) and
consequently identical generalization performance as a function of training set size P (shown on
right with blue and red points). The theory curve will be described in the main text.
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(Figure 2A) which have the same kernels (Figure 2B) and the same performance on a learning task
(Figure 2C).

Although, the performance of linear readouts may be invariant to such rotations, metabolic
efficiency may favor certain codes over others [14, 15, 16, 17, 18], reducing degeneracy in the space
of codes with identical kernels. To formalize this idea, we define δ to be the vector of spontaneous
firing rates of a population of neurons, and sµ = r(θµ)+δ be the spiking rate vector in response to a
stimulus θµ. The modulation with respect to the spontaneous activity, r(θµ), gives the population
code and defines the kernel, K(θµ,θµ) = 1

N r(θµ) · r(θν). To avoid confusion with r(θµ), we
will refer to sµ as total spiking activity. We propose that population codes prefer smaller spiking
activity subject to a fixed kernel. In other words, because the kernel is invariant to any change of
the spontaneous firing rates and left rotations of r(θ), the orientation and shift of the population
code r(θ) should be chosen such that the resulting total spike count

∑N
i=1

∑P
µ=1 s

µ
i is small.

We tested whether biological codes exhibit lower total spiking activity than others exhibiting
the same kernel on mouse V1 recordings, using deconvolved calcium activity as a proxy for spiking
events [8, 9, 19] (Methods; Figure 3). To compare the experimental total spiking activity to
other codes with identical kernels, we computed random rotations of the neural responses around
spontaneous activity, r̃(θµ) = Qr(θµ), and added the δ̃ that minimizes total spiking activity
and maintains its nonnegativity (Methods). In other words, we compare the true code to the
most metabolically efficient realizations of its random rotations. This procedure may result in an
increased or decreased total spike count in the code, and is illustrated in a synthetic dataset in
Figure 3A. We conducted this procedure on subsets of various sizes of mouse V1 neuron populations,
as our proposal should hold for any subset of neurons (Methods), and found that the true V1 code
is much more metabolically efficient than randomly rotated versions of the code (Figure 3B and
C). This finding holds for both responses to static gratings and to natural images as we show in
Figure 3B and C respectively.

To further explore metabolic efficiency, we posed an optimization problem which identifies
the most efficient code with the same kernel as the biological V1 code. This problem searches
over rotation matrices Q and finds the Q matrix and off-set vector δ which gives the lowest cost∑

iµ s
µ
i (Methods)(Figure 3). Though the local optimum identified with the algorithm is lower

in cost than the biological code, both the optimal and biological codes are significantly displaced
from the distribution of random codes with same kernel. Our findings do not change when data
is preprocessed with an alternative strategy, an upper bound on neural responses is imposed on
rotated codes, or subsets of stimuli are considered (SI and Figure SI.1). Overall, the large disparity
in total spiking activity between the true and randomly generated codes with identical kernels
suggests that metabolic constraints may favor the biological code over others that realize the same
kernel.

Code-task alignment governs generalization

We next examine how the population code affects generalization performance of the readout. We
calculated analytical expressions of the average generalization error in a task defined by the target
response y(θ) after observing P stimuli using methods from statistical physics (Methods). Because
the relevant quantity in learning performance is the kernel, we leveraged results from our previous
work studying generalization in kernel regression [20, 21], and calculated the generalization error
averaged over all possible realizations of the training dataset of composed of P stimuli, Eg =
〈Eg(D)〉D. As P increases, the variance in Eg due to the composition of the dataset falls, and
our expressions become descriptive of also the typical case. Our final analytical result is given in
Equation (29) in Methods. We provide details of our calculations in Methods and SI, and focus on
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Synthetic Example

Figure 3: The biological code is more metabolically efficient than random codes with same inductive
biases. A We illustrate our procedure in a synthetic example. A non-negative population code (left)
can be randomly rotated about its spontaneous firing rate (middle), illustrated as a purple dot, and
optimally shifted to a new non-negative population code (right). If the kernel is measured about
the spontaneous firing rate, these transformations leave the inductive bias of the code invariant
but can change the total spiking activity of the neural responses. We refer to such an operation
as random rotation + optimal shift (RROS). We also perform gradient descent over rotations
and shifts, generating an optimized code (opt). B Performing RROS on N neuron subsamples of
experimental Mouse V1 recordings [8, 9], shows that the true code has much lower average cost
1
NP

∑
iµ s

µ
i compared to random rotations of the code. The set of possible RROS transformations

(Methods) generates a distribution over average cost, which has higher mean than the true code.
We also optimize metabolic cost over the space of RROS transformations, which resulted in the red
dashed lines. We plot the distance (in units of standard deviations) between the cost of the true
and optimal codes and the cost of randomly rotated codes for different neuron subsample sizes N .
C The same experiment performed on Mouse V1 responses to ImageNet images from 10 relevant
classes [11, 10].
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their implications here.
One of our main observations is that given a population code r(θ), the singular value de-

composition of the code gives the appropriate basis to analyze the inductive biases of the read-
outs (Figure 4A). The tuning curves for individual neurons ri(θ) form an N -by-M matrix R,
where M , possibly infinite, is the number of all possible stimuli. The left-singular vectors (or
principal axes) and singular values of this matrix have been used in neuroscience for describ-
ing lower dimensional structure in the neural activity and estimating its dimensionality, see e.g.
[22, 23, 24, 25, 26, 27, 11, 8, 28, 29, 30]. We found that the function approximation properties of
the code are controlled by the singular values, or rather their squares {λk} which give variances
along principal axes, indexed in decreasing order, and the corresponding right singular vectors
{ψk(θ)}, which are also the kernel eigenfunctions (Methods and SI). This follows from the fact that
learned response (Eq. (3)) is only a function of the kernel K, and the eigenvalues λk and orthonor-
mal eigenfunctions ψk(θ) collectively define the code’s inner-product kernel K(θ,θ′) through an
eigendecomposition K(θ,θ′) = 1

N

∑N
i=1 ri(θ)ri(θ

′) =
∑

k λkψk(θ)ψk(θ
′) [31] (Methods and SI).

Our analysis shows the existence of a bias in the readout towards learning certain target re-
sponses faster than others. The kernel eigenfunctions form a complete basis for square integrable
functions, allowing the expansion of the target response y(θ) =

∑
k vkψk(θ) and the learned readout

response f(θ) =
∑

k v̂k(D)ψk(θ) in this basis. We found that the readout’s generalization is better
if the target function y(θ) is aligned with the top eigenfunctions ψk, equivalent to v2k decaying
rapidly with k (Methods). We formalize this notion by the following metric. Mathematically, gen-
eralization error 〈Eg〉 can be decomposed into normalized estimation errors Ek for the coefficients
of these eigenfunctions ψk, 〈Eg〉D =

∑
k v

2
kEk, where Ek =

〈
(v̂k(D)− vk)2

〉
D/v

2
k. We found that

the ordering of the eigenvalues λk controls the rates at which these mode errors Ek decrease as P
increases (Methods):

λk > λ` =⇒ Ek < E`. (5)

Hence, larger eigenvalues mean lower generalization error for those normalized mode errors Ek,
indicating a spectral bias of the readout.

Based on this observation, we propose code-task alignment as a principle for good generalization.
To quantify code-task alignment, we use a cumulative power distribution C(k) which measures the
total power in of the target function in the top k eigenmodes, normalized by the total power [21]:

C(k) =

∑k
`=1 v

2
`∑∞

`=1 v
2
`

. (6)

Stimulus-response maps that have high alignment with the population code’s kernel will have
quickly rising cumulative power distributions C(k), since a large proportion of power is placed in
the top modes. Target responses with high C(k) can be learned with fewer training samples than
target responses with low C(k) since the mode errors Ek are ordered for all P (Methods).

This theory can be used to probe the learning biases of neural populations. Using publicly
available calcium imaging recordings from mouse primary visual cortex (V1), we analyzed popu-
lation responses to static grating stimuli oriented at an angle θ [8, 9]. We found that the kernel
eigenfunctions have sinusoidal shape with differing frequency. The ordering of the eigenvalues and
eigenfunctions in Figure 4A indicates a frequency bias: lower frequency functions of θ are easier to
estimate at small sample sizes.

We tested this idea by constructing two different orientation discrimination tasks shown in
Figures 4B,C, where we assign static grating orientations to positive or negative valence with
different frequency square wave functions of θ. We trained the readout using a subset of the
experimentally measured neural responses, and measured the readout’s generalization performance.
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Figure 4: The singular value decomposition of the population code reveals the structure and induc-
tive bias of the code. A Singular value decomposition of the response matrix R gives left singular
vectors uk (principal axes), kernel eigenvalues λk, and kernel eigenfunctions ψk(θ). The ordering of
eigenvalues provides an ordering of which modes ψk can be learned by the code from few training
examples. The eigenfunctions were offset by 0.5 for visibility. B (Left) Two different learning tasks
y(θ), a low frequency (blue) and high frequency (red) function, are shown. (Middle) The cumu-
lative power distribution rises more rapidly for the low frequency task than the high frequency,
indicating better alignment with top kernel eigenfunctions and consequently more sample-efficient
learning as shown in the learning curves (right). Dashed lines show theoretical generalization error
while dots and solid vertical lines are experimental average and standard deviation over 30 repeats.
C The feature space representations of the low (left) and high (middle and right) frequeny tasks.
Each point represents the embedding of a stimulus response vector along the k-th principal axis
rµ · uk =

√
λkψk(θ

µ). The binary target value {±1} is indicated with the color of the point. The
easy (left), low frequency task is well separated along the top two dimensions, while the hard,
high frequency task is not linearly separable in two (middle) or even with four feature dimensions
(right). D On an image discrimination task (recognizing birds vs mice, left), V1 has an entangled
representation which does not allow good performance of linear readouts. This is evidenced by the
projection of the responses along the top principal axes (middle) and the slowly rising C(k) curve
(right).
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We found that the cumulative power distribution for the low frequency task has a more rapidly
rising C(k) (Figure 4B). Using our theory of generalization, we predicted learning curves for these
two tasks, which express the generalization error as a function of the number of sampled stimuli P .
The error for the low frequency task is lower at all sample sizes than the hard task. The theoretical
predictions and numerical experiments show perfect agreement (Figure 4B). More intuition can
be gained by visualizing by projection of the neural response along the top principal axes (Figure
4C). For the low frequency task, the two target values are well separated along the top two axes.
However, the high frequency task is not well separated along even the top four axes (Figure 4C).

Using the same ideas, we can use our theory to get insight into tasks which the V1 population
code is ill-suited to learn. For the task of identifying mice and birds [11, 10] the linear rise in cumu-
lative power indicates that there is roughly equal power along all kernel eigenfunctions, indicative
of a representation poorly aligned to this task. (Figure 4D)

Low frequency bias and code-task alignment in a simple model of V1

Next, we study a simple model of V1 to elucidate factors that lead to the low frequency bias.
We model responses of V1 neurons as photoreceptor inputs passed through Gabor filters and a
subsequent nonlinearity, g(z), modeling a population of orientation selective simple cells (Figure
5A) (Methods and SI). In this model, the kernel for static gratings with orientation θ ∈ [0, π] is
of the form K(θ, θ′) = κ(|θ − θ′|), and, as a consequence, the eigenfunctions of the kernel in this
setting are Fourier modes (Methods). The eigenvalues, and hence the strength of the spectral bias,
are determined by the nonlinearity.

Motivated by findings in the primary visual cortex [32, 33, 34, 35], we studied the spectral bias
induced by rectified power-law nonlinearities of the form g(z) = max{0, z − a}q. We fit q and
a to the Mouse V1 kernel and compared to other parameter sets in Figure 5B. Computation of
the kernel and its eigenvalues (Methods) indicates a low frequency bias: the eigenvalues for low
frequency modes are higher than those for high frequency modes, indicating a strong inductive
bias to learn functions of low frequency in the orientation. Decreasing sparsity (lower a) leads to
a faster decrease in the spectrum (but similar asymptotic scaling at the tail, see Methods) and a
stronger bias towards lower frequency functions (Figure 5B; more comparisons in Figure SI.2). The
effect of the power of nonlinearity q is more nuanced: increasing power may increase spectra at
lower frequencies, but may also lead to a faster decay at the tail (Figure 5B; more comparisons in
Figure SI.2). In general, an exponent q implies a power-law asymptotic spectral decay λk ∼ k−2q−2
as k → ∞ (Methods). The behavior at low frequencies may have significant impact for learning
with few samples. We discuss this in more detail in the next section. Overall, our findings show
that the spectral bias of a population code can be determined in non-trivial ways by its biophysical
parameters, including neural thresholds and nonlinearities.

To further illustrate the importance of code-task alignment, we next study how invariances in
the code to stimulus variations may affect the learning performance. We introduce complex cells
in addition to simple cells in our model with proportion s ∈ [0, 1] of simple cells (Methods; Figure
5A), and allow phase, φ, variations in static gratings. We use the energy model [36, 37] to capture
the phase invariant complex cell responses (Methods). We reason that in tasks that do not depend
on phase information, complex cells should improve sample efficiency.

In this model, the kernel for the V1 population is a convex combination of the kernels for the
simple and complex cell populations

KV 1(θ, θ
′, φ, φ′) = sKs(θ, θ

′, φ, φ′) + (1− s)Kc(θ, θ
′), (7)

where Ks is the kernel for a pure simple cell population that depends on both orientation and
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Figure 5: Caption on next page
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Figure 5: A model of V1 as a bank of Gabor filters recapitulates experimental inductive bias. A
Gabor filtered inputs are mapped through nonlinearity. A grating stimulus (left) with orientation
θ and phase φ is mapped through a circuit of simple and complex cells (middle). Some examples
of randomly sampled Gabor filters (right) generate preferred orientation tuning of neurons in the
population. B A threshold-powerlaw nonlinearity gq,a(z) = max{0, z − a}q is fit to the mouse V1
kernel (black dots). Kernels and spectra for alternative choices of q, a are shown (color code defined
in left panel). C We plot eigenfunctions ψk (modes) for mixtures of sN simple cells and (1− s)N
complex cells. A pure complex cell population has all eigenfunctions independent of phase φ. A
pure simple cell population s = 1 or mixture codes 0 < s < 1 depend on both orientation phase in
a nontrivial way. D Three tasks are visualized, where color indicates the binary target value ±1.
The left task only depends on orientation stimulus variable θ, the middle only depends on phase
φ, the hybrid task (right) depends on both. E (top) Generalization error and cumulative power
distributions for the three tasks as a function of the simple-complex cell mixture parameter s. In
Figure SI.2 we provide more comparisons of our theory and numerical experiments.

phase, and Kc is the kernel of a pure complex cell population that is invariant to phase (Methods,
Eqs. (39) and (54)). Figure 5C shows top kernel eigenfunctions for various values of s elucidating
inductive bias of the readout.

Figures 5D and 5E show generalization performance on tasks with varying levels of dependence
on phase and orientation. On pure orientation discrimination tasks, increasing the proportion of
complex cells by decreasing s improves generalization. Increasing the sensitivity to the nuisance
phase variable, φ, only degrades performance. The cumulative power distribution is also maximized
at s = 0. However, on a task which only depends on the phase, a pure complex cell population
cannot generalize, since variation in the target function due to changes in phase cannot be explained
in the codes’ responses. In this setting, a pure simple cell population attains optimal performance.
The cumulative power distribution is maximized at s = 1. Lastly, in a nontrivial hybrid task
which requires utilization of both variables θ, φ, an optimal mixture s exists for each sample budget
P which minimizes the generalization error. The cumulative power distribution is maximized at
different s values depending on k, the component of the target function. This is consistent with an
optimal heterogenous mix, because components of the target are learned successively with increasing
sample size. In reality, V1 must code for a variety of possible tasks and we can expect a nontrivial
optimal simple cell fraction s. We conclude that the degree of invariance required for the set of
natural tasks, and the number of samples determine the optimal simple cell, complex cell mix.

Small and large sample size behaviors of generalization

Our results imply that generalization with low sample sizes crucially depend on the top eigenvalues
and eigenfunctions of the code’s kernel. This is to be contrasted with a recent proposal about the
effect of asymptotic decay rate of the kernel eigenvalues on generalization. Stringer et al. [11]
argued that the input-output differentiability of the code may be necessary for better generaliza-
tion, which is in turn governed by the asymptotic rate of spectral decay. Here, we provide an
example to illustrate that asymptotic conditions on the kernel spectrum are insufficient to provide
generalization guarantees when the sample size is small.

Our first example demonstrates how a code allowing good generalization for large sample sizes
can be disadvantageous for small sizes. In Figure 6A, we plot three different populations of neurons
with smooth (infinitely differentiable) tuning curves that tile a periodic stimulus variable, such as
the direction of a moving grating. The tuning width, σ, of the tuning curves strongly influences
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the structure of these codes: narrower widths have more high frequency content as we illustrate
in a random 3D projection of the population code for θ ∈ [0, 2π] (Figure 6A). Visualization of
the corresponding (von Mises) kernels and their spectra are provided in Figure 6B. The width
of the tuning curves control bandwidths of the kernel spectra Figure 6B, with narrower curves
having an later decay in the spectrum and higher high frequency eigenvalues. These codes can
have dramatically different generalization performance, which we illustrate with a simple “bump”
target response (Figure 6C). In this example, for illustration purposes, we let the network learn
with a delta-rule with a weight decay, leading to a regularized kernel regression solution (Methods).
For a sample size of P = 10, we observe that codes with too wide or too narrow tuning curves
(and kernels) do not perform well, and there is a well-performing code with an optimal tuning
curve width σ, which is compatible with the width of the target bump, σT . We found that optimal
σ is different for each P (Figure 6C). In the large-P regime, the ordering of the performance of
the three codes are reversed (Figure 6C). In this regime generalization error scales in a power law

Eg ∼ P−min(2,
lnσT
lnσ

) (Methods) and the narrow code, which performed worst for P ∼ 10, performs
the best. This example demonstrates that asymptotic conditions on the tail of the spectra are
insufficient to understand generalization in the small sample size limit. The bulk of the kernel’s
spectrum needs to match the spectral structure of the task to generalize efficiently in the low-
sample size regime. However, for large sample sizes, the tail of the eigenvalue spectrum becomes
important. We repeat the same exercise and draw the same conclusions for Laplace kernels (SI
and Figure SI.3) showing that these results are not an artifact of the infinite differentiability of von
Mises kernels.

Time-Dependent Neural Codes

Our framework can directly be extended to learning of arbitrary time-varying functions of time-
varying inputs from an arbitrary spatiotemporal population code (Methods). In this setting, the
population code r({θ(t)}, t) is a function of an input stimulus sequence θ(t) and possibly its entire
history, and time t. A downstream linear readout f({θ}, t) = w · r({θ}, t) learns a target sequence
y({θ}, t) from a total of P examples that can come at any time during any sequence. Learning
is again achieved through the delta-rule and the learned function can be expressed as a linear
combination of the kernel evaluated at the P examples. The kernel in this case is a more complicated
object that computes inner products of neural population vectors at different times t, t′ for different
input sequences {θ}, {θ′}: K({θ}, {θ′}, t, t′) = 1

N r({θ}, t) · r({θ}, t′) [38, 39, 40]. Our theory
carries over from the static case with appropriate modifications (Methods). Kernels whose top
eigenfunctions have high alignment with the target time-varying response y({θ}, t) will achieve the
best average case generalization performance.

As a concrete example, we focus on readout from a temporal population code generated by
a recurrent neural network in a task motivated by a delayed reach task [41] (Figure 7A,B). We
consider a randomly connected recurrent network of neurons whose current dynamics obeys

τ ż(t) = −z(t) + Wrr(t) + Wθθ(t), (8)

where the rates are related to input currents through a tanh nonlinearity r(t) = tanh(z(t)). The
recurrent weights are drawn from a normal distribution W r

ij ∼ N (0, g2/N) and the input encoding

weights from W θ
ij ∼ N (0, 1) (Methods). The gain parameter g was set to 1.5 to generate rich

dynamics [42]. In this task, the network is presented for a short time an input cue sequence
coding an angular variable which is drawn randomly from a distribution (Figure 7C). The recurrent
neural network must remember this angle and reproduce an output sequence which is a simple step
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Random
Projections

Tuning 
Curves

Figure 6: The top eigensystem of a code determines its low-P generalization error. A A periodic
variable is coded by a population of neurons with tuning curves of different widths (top). Narrow,
wide and optimal refers to the example in C. These codes are all smooth (infinitely differentiable) but
have very different feature space representations of the stimulus variable θ, as random projections
reveal (below). B (left) The population codes in the above figure induce von Mises kernels K(θ) ∝
ecos(θ)/σ

2
with different bandwidths σ. (right) Eigenvalues of the three kernels. C (left) As an

example learning task, we consider estimating a “bump” target function. The optimal kernel (red,
chosen as optimal bandwidth for P = 10) achieves a better generalization error than either the wide
(green) or narrow (blue) kernels. (middle) A contour plot shows generalization error for varying
bandwidth σ and sample size P . (right) The large P generalization error scales in a power law.
Solid lines are theory, dots are simulations averaged over 15 repeats, dashed lines are asymptotic
power law scalings described in main text. Same color code as B and C-left.
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Sampled Cue Presented Delay for Time d Cursor to Cue Direction Cursor Moved Back A

Figure 7: The performance of time-dependent codes when learning dynamical systems can be
understood through spectral bias. A We study the performance of time dependent codes on a
delayed response task which requires memory retrieval. A cue (black dot) is presented at an angle
γµ. After a delay time d, the cursor position (blue triangle) must be moved to the remembered cue
position and then subsequently moved back to the origin after a short time. B The readout weights
(blue) of a time dependent code can be learned through a modified delta rule. C Input is presented
to the network as a time series which terminates at t = 1. The sequences are generated by drawing
an angle γµ ∼ Uniform[0, 2π] and using two step functions as input time-series that code for the
cosine and the sine of the angle (Methods). We show an example of the one of the variables in a
input sequence. D The target functions for the memory retrieval task are step functions delayed by
a time d. E The kernel Kµ,µ′,t,t′ compares the code for two sequences at two distinct time points.
We show the time dependent kernel for identical sequences (left) and the stimulus dependent kernel
for equal time points (middle left) as well as for non-equal stimuli (middle right) and non-equal
time (right). F The kernel can be diagonalized, and the eigenvalues λk determine the spectral
bias of the reservoir computer (left). We see that higher gain g networks have higher dimensional
representations. The “eigensystems” ψk(θ

µ, t) are functions of time and cue angle. We plot only
µ = 0 components of top systems k = 1, 2, 3, 4 (right). G The readout is trained to approximate
a target function yµ(t), which requires memory of the presented cue angle. (left) The theoretical
(solid) and experimental (vertical errorbar, 100 trials) generalization error Eg are plotted for the
three delays d against training sample size P. (right) The ordering of Eg matches the ordering of
the C(k) curves as expected.
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function whose height depends on the angle which begins after a time delay from the cessation of
input stimulus and lasts for a short time (Figure 7D).

The kernel induced by the spatiotemporal code is shown in Figure 7E. The high dimen-
sional nature of the activity in the recurrent network introduces complex and rich spatiotem-
poral similarity structure. Figure 7F shows the kernel’s eigensystem, which consists of stimu-
lus dependent time-series ψk({θ}; t) for each eigenvalue λk. An interesting link can be made
with this eigensystem and linear low-dimensional manifold dynamics observed in several corti-
cal areas [22, 23, 25, 43, 27, 44, 30, 26, 45, 24]. The kernel eigenfunctions also define the la-
tent variables obtained through a singular value decomposition of the neural activity r({θ}; t) =∑

k

√
λkukψk({θ}; t) [25].

With enough samples, the readout neuron can learn to output the desired angle with high
fidelity (Figure 7G). Unsurprisingly, tasks involving long time delays are more difficult and exhibit
lower cumulative power curves. Consequently, the generalization error for small delay tasks drops
much more quickly with increasing P.

Discussion

Elucidating inductive biases of the brain is fundamentally important for understanding natural
intelligence, however, how to do this using neural data is unknown. In this work, we attempted to
fill this gap by examining how the structure of neural population codes shape inductive biases for
learning.

We showed that under the biologically-plausible delta rule, the generalization performance is
entirely dependent on the code’s inner product kernel, and proposed the kernel as a determinant
of inductive bias. In its finite dimensional form, the kernel is an example of a representational
similarity matrix and is a commonly used tool to study neural representations [46, 47, 48, 49, 50, 51].
Our work elucidates a concrete link between this experimentally measurable mathematical object,
and sample-efficient learning.

We derived an analytical expression for the generalization error as a function of sample-size
under very general conditions, for an arbitrary stimulus distribution, arbitrary population code
and an arbitrary target stimulus-response map. We used our findings in both theoretical and
experimental analysis of primary visual cortex, and temporal codes in a delayed reach task. This
generality of our theory is a particular strength.

Our analysis elucidated two principles that define the inductive bias. The first one is spectral
bias: kernel eigenfunctions with large eigenvalues can be estimated using a smaller number of
samples. The second principle is the code-task alignment: Target functions with most of their
power in top kernel eigenfunctions can be estimated efficiently and are compatible with a code.
The cumulative power distribution, C(k) [21], provides a measure of this alignment. These findings
define a notion of “simplicity” bias in learning from examples, and provides a solution to the
question of what stimulus-response maps are easier to learn.

A recent proposal considered the possibility that the brain acts as an overparameterized inter-
polator [52]. Suitable inductive biases are crucial to escape overfitting and generalize well in such
a regime [53]. Our theory could explain these inductive biases since, when the kernel is full-rank,
the delta rule converges to an interpolator of the learning examples. Modern deep learning archi-
tectures also operate in an overparameterized regime, but generalize well [54, 53], and an inductive
bias towards simple functions has been proposed as an explanation [20, 21, 55, 56].

Our work suggests sample efficiency as a general coding principle for neural populations, relating
neural representations to the kinds of problems they are well suited to solve. These codes may be

16

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 18, 2021. ; https://doi.org/10.1101/2021.03.30.437743doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.30.437743
http://creativecommons.org/licenses/by/4.0/


shaped through evolution or themselves be learned through experience [57]. Prior related work
demonstrated the dependence of sample-efficient learning of a two-angle estimation task on the
width of the individual neural tuning curves [58] and additive function approximation properties
of sparsely connected random networks [59].

A sample efficiency approach to population coding differs from the classical efficient coding
theories [16, 14, 15, 60, 61, 62, 17, 63], which postulate that populations of neurons optimize
information content of their code subject to metabolic constraints or noise. While these theories
emphasize different aspect of the code’s information content (such as reduced redundancy, predictive
power, or sparsity), they do not address sample efficiency demands on learning. Further, recent
studies demonstrated hallmarks of redundancy and correlation in population responses [45, 24,
64, 30, 65, 66, 11], violating a generic prediction of efficient coding theories that responses of
different neurons should be uncorrelated across input stimuli in high signal-to-noise regimes to
reduce redundancy in the code and maximize information content [14, 15, 60, 61, 67, 68]. In our
theory, the structured correlations of neural responses correspond to the decay in the spectrum of
the kernel, and play a key role in biasing learned readouts towards simple functions.

In recent related studies , the asymptotic decay rate of the kernel’s eigenspectrum was argued
to be important for generalization [11] and robustness [69]. Decay rate in the mouse visual cortex
was found to be consistent with a high dimensional (power law) but smooth (differentiable) code,
and smoothness was argued to be an enabler of generalization [11]. We show that sample-efficient
learning requires more than smoothness conditions in the form of asymptotic decay rates on the
kernel’s spectrum. The interplay between the stimulus distribution, target response and the code
gives rise to sample efficient learning. Because of spectral bias, the top eigenvalues govern the small
sample size behavior. The tail of the spectrum becomes important for large sample sizes.

Though the kernel is degenerate with respect to rotations of the code in the neural activity
space, we demonstrated that the true V1 code has much lower metabolic cost than random codes
with the same kernel, sugggesting that evolution and learning may be selecting neural codes with
low average spike rates which preserve sample-efficiency demands for downstream learning tasks.
We predict that metabolic efficiency may be a determinant in the orientation and placement of
the ubiquitously observed low-dimensional coding manifolds [44, 66] in neural activity space in
other parts of the brain. The demand of metabolic efficiency is consistent with prior sparse coding
theories [70, 17, 18, 71], however, our theory emphasizes sample-efficient learning as a normative
objective for the code.

Our work focused on the effect of signal correlations to coding and inductive bias [72, 73].
Future analysis could study how signal and noise correlations interact to shape inductive bias and
determine generalization.
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Methods

Generating example codes (Figure 1)

The two codes in Figure 1 were constructed to produce two different kernels for θ ∈ S1:

K1(θ, θ
′) = exp(0.25 cos(θ − θ′)) , K2(θ, θ

′) =

20∑
k=1

cos(k(θ − θ′)). (9)

An infinite number of codes could generate either of these kernels. After diagonalizing the kernel
into its eigenfunctions on a grid of 120 points, K1 = Ψ1Λ1Ψ

>
1 ,K2 = Ψ2Λ2Ψ

>
2 , we used a random

rotation matrix Q ∈ O(120) to generate a valid code

R1 = QΛ
1/2
1 Ψ1 , R2 = QΛ

1/2
2 Ψ2. (10)

This construction guarantees that R>1 R1 = K1 and R>2 R2 = K2. We plot the tuning curves for
the first three neurons. The target function in the first experiment is y = cos(θ)−0.6 cos(4θ), while
the second experiment used y = cos(6θ)− cos(8θ).

Learning task and convergence of the delta-rule

Gradient descent training of readout weights w on a finite sample of size P converges to the kernel
regression solution [74, 75, 76]. Let D = {θµ, yµ}Pµ=1 be the dataset with samples xµ and target
values yµ. We introduce a shorthand rµ = r(θµ) for convenience. The empirical loss we aim to
minimize is a sum of the squared losses of each data point in the training set

L(w) =
1

2

P∑
µ=1

(rµ ·w − yµ)2. (11)

Performing gradient descent updates generates the following weight update

wt+1 = wt − η
∂L
∂w

= wt − η
P∑
µ=1

rµ(rµ ·wt − yµ), (12)

which is merely the delta rule that we discussed in the main text [77, 78]. The dynamics for this
rule can be analyzed efficiently through the singular value decomposition of the P -sample response

matrix R = [r1, r2, ..., rP ] ∈ RN×p. The singular value decomposition of R =
∑P

k=1

√
λ̂kûkψ̂k

allows us to simplify the dynamics and identify the unique fixed point of the delta-rule. The
singular value decomposition of this random sub-sample matrix R is different from the population
singular value decomposition which is the solution to an integral eigenvalue problem (discussed in
the next section). To clarify this, we use the “hat” λ̂k, ûk, ψ̂k to denote the singular components
of the empirical matrix R. We can expand w and y in the basis defined by ûk and ψ̂k respectively
so that wt =

∑
k a

t
kûk and y =

∑
k bkψ̂k. In this basis, the delta rule dynamics decouple

at+1
k = (1− ηλ̂k)atk + η

√
λ̂kbk , k = 1, ..., p. (13)

If we initialize the weights at the origin w = 0, then we can solve these dynamics in closed form

atk = η

√
λ̂kbk

t−1∑
t′=0

(1− ηλk)t
′

(14)
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which has the limit

lim
t→∞

atk = η

√
λ̂kbk

∞∑
t′=0

(1− ηλ̂k)t
′

=
η

√
λ̂kbk

1− (1− ηλk)
=

bk√
λk
, (15)

where we used the fact of convergence of a geometric series
∑∞

k=0 z
k = 1

1−z provided that |z| < 1.

The equivalent condition for convergence in this case is that |1− ηλ̂k| < 1 which implies η < 2/λ̂k
for all k. These dynamics converge to a unique fixed point w∗

w∗ =
∑

k:λ̂k>0

bk√
λ̂k

ûk, (16)

where the sum runs over the modes k with nonzero eigenvalues λ̂k > 0. This solution is the
minimum norm solution to the linear system RR>w = Ry which can be written as w∗ = RK+y
where K+ is the Moore-Penrose pseudo-inverse of the kernel gram matrix K = R>R ∈ RP×P
which is explicitly given by

K+ =
∑

k:λ̂k>0

ψ̂kψ̂
>
k

λ̂k
. (17)

Using these weights w∗, we can calculate the learned function at a test point, we find

f(θ) = r(θ) ·w∗ = k(θ) ·K+y, (18)

where kµ(θ) = K(θ,θµ). This solution is known as the kernel regression solution for dataset D
and kernel K(θ,θ′) = r(θ) ·r(θ′)/N [79]. The fact that the optimal solution can always be written
as a linear combination of {K(θ,θµ)}Pµ=1 is known as the representer theorem [80, 79].

Weight Decay and Ridge Regression

We can introduce a regularization term in our learning problem which penalizes the size of the
readout weights. This leads to a modified learning objective of the form

L(w) =
∑
µ

(rµ ·w − yµ)2 + λ||w||2. (19)

Inclusion of this regularization alters the learning rule through weight decay

wt+1 = (1− ηλ)wt + η
∑
µ

rµ(rµ ·wt − yµ) (20)

which multiplies the existing weight value by a factor of 1− ηλ before adding the data dependent
update. This learning problem and gradient descent dynamics have a closed form solution

f(θ) = r(θ) ·w∗ =
P∑
µ=1

αµK(θ,θµ) , α = (K + λI)−1y (21)

The generalization benefits of explicit regularization through weight decay is known to be related
to the noise statistics in the learning problem [21]. We simulate weight decay only in Figure 6C,
where we use λ = 0.01

∑
k λk to improve stability of the solution at large P .
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Theory of Generalization

Recent work has established analytic results that predict the average case generalization error for
kernel regression

Eg = 〈Eg(D)〉D =
〈
(f(θ,D)− y(θ))2

〉
θ,D (22)

where Eg(D) =
〈
(f(θ,D)− y(θ))2

〉
θ

is the generalization error for a certain sample D of size P
and f(θ,D) is the kernel regression solution for D, given in (18) [20, 21]. The typical or average
case error Eg is obtained by averaging over all possible datasets of size P . This average case
generalization error is determined solely by the decomposition of the target function y(x) along the
eigenbasis of the kernel and the eigenspectrum of the kernel. This continuous diagonalization again
takes the form [79] ∫

p(θ)K(θ,θ′)ψk(θ)dθ = λkψk(θ
′). (23)

Our theory is also applicable to discrete stimuli if p(θ) is a Dirac measure (Methods). Since the
eigenfunctions form a complete set of square integrable functions [79], we expand both the target
function y(θ) and the learned function f(θ) in this basis

y(θ) =
∑
k

vkψk(θ) , f(θ) =
∑
k

wkψk(θ). (24)

Due to the orthonormality of the kernel eigenfunctions {ψk}, the generalization error for any set of
coefficients w is

Eg(w) =
〈
(y(θ)− f(θ))2

〉
θ

=
∑
k

(wk − vk)2 = ||w − v||2 (25)

We now introduce training error, or empirical loss, which depends on the disorder in the dataset
D = {(θµ, yµ)}Pµ=1

H(w,D) =
∑
µ

(w ·ψ(θµ)− v ·ψ(θµ))2 + λ
∑
k

w2
k

λk
(26)

It is straightforward to verify that the optimal w∗ which minimizes H(w,D) is the kernel regression
solution for kernel with eigenvalues {λk} when λ→ 0. Nonzero λ is equivalent to the weight decay
discussed in the previous section. The optimal weights w can be identified through the first order
condition ∇H(w,D) = 0 which gives

w∗ = (ΨΨ> + λΛ−1)−1ΨΨ>v = v − λ(ΨΨ> + λΛ−1)−1Λ−1v, (27)

where Ψk,µ = ψk(x
µ) are the eigenfunctions evaluated on the training data and Λk,` = δk,`λk is

a a diagonal matrix containing the kernel eigenvalues. The generalization error for this optimal
solution is

Eg(D) = ||w∗ − v||2 = v>Λ−1G(D)2Λ−1v , G(D) =

(
1

λ
ΨΨ> + Λ−1

)−1
. (28)

We note that the dependence on the randomly sampled dataset D only appears through the
matrix G(D). Thus to compute the typical generalization error we need to average over this matrix
〈G(D)〉D. There are multiple strategies to perform such an average and we will study one here
based on a partial differential equation which was introduced in [81, 82] and studied further in [20].
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We describe in detail how such an average can be performed in the SI. After this computation, we
find that the generalization error can be written as

Eg =
κ2

1− γ
∑
k

v2k
(λkP + κ)2

, κ = λ+ κ
∑
k

λk
λkP + κ

, (29)

where γ = P
∑

k
λ2k

(λkp+κ)2
, giving the desired result. Taking λ → 0 gives the generalization error

of the minimum norm interpolant, which desribes the generalization error of the solution in (18).
This result was recently reproduced using the replica method from statistical mechanics [20, 21].

Spectral bias

Through implicit differentiation it is straightforward to verify that the ordering of the mode errors
Ek = κ2

1−γ (λkP + κ)−2 matches the ordering of the eigenvalues [21]. Let λk > λ`, then we have

d

dP
log

(
Ek
E`

)
= 2

[
λ`

λ`P + κ
− λk
λkP + κ

]
+ 2κ′(P )

[
1

λ`P + κ
− 1

λkP + κ

]
. (30)

Since λ` < λk, the first bracket must be negative and the second bracket must be positive. Further,
it is straightforward to compute that κ′(P ) = − κγ

P (1+γ) < 0. Therefore

λk > λ` =⇒ d

dP
log

(
Ek
E`

)
< 0 (31)

for all P . Since log
(
Ek
E`

)
= 0 at P = 0 we therefore have that log(Ek/E`) < 0 for all P and

consequently Ek < E`. Modes with larger eigenvalues λk have lower normalized mode errors Ek.

Asymptotic power law scaling of learning curves

Exponential Spectral Decays: First, we will study the setting relevant to the von-Mises kernel
where λk ∼ βk and v2k ∼ αk where α, β < 1. This exponential behavior accounts for differences in
bandwidth between kernels which modulates the base β of the exponential scaling of λk with k.
We will approximate the sum over all mode errors with an integral

Eg =
κ2

1− γ

∞∑
k=0

v2k
(λkP + κ)2

∼ κ2
∫ ∞
0

αk

(βkP + κ)2
dk. (32)

If we include a regularization parameter λ, then κ ∼ λ as P →∞. With this fact, we can therefore
approximate the integral at large P by splitting it up into all k < k∗ = ln(P/λ)/ ln(1/β) and
k > k∗.

Eg ∼
λ2

P 2

∫ k∗

0

αk

β2k
[
1 + λ

Pβk

]2dk +

∫ ∞
k∗

αk[
1 + βkP

λ

]2dk = AP
− log(1/α)

log(1/β) +
∞∑
n=0

AnP
−n−2 (33)

for P -independent constants A and An. Thus, we obtain a power law scaling of the learning curve

Eg which is dominated at large P by Eg ∼ P
−min

(
2,

ln(1/α)
ln(1/β)

)
. For the von-Mises kernel we can

approximate the spectra with λk ∼ σ−2k and v2k ∼ σ−2kT giving rise to a generalization scaling

scaling Eg ∼ P
−min

(
2,

lnσT
lnσ

)
.
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Power Law Spectral Decays: The same arguments can be applied for power law kernels λk ∼ k−b
and power law targets v2k ∼ k−a, which is of interest due to its connection to nonlinear rectified
neural populations. In this setting, the generalization error is

Eg ≈
∫ ∞
1

k−a

(k−bP + κ)2
dk ≈ κ2

P 2

∫ P 1/b

1
k−a+2bdk +

∫ ∞
P 1/b

k−adk

=
1

P 2(1− a+ 2b)

[
P (1−a)/b+2 − 1

]
+

1

a− 1
P (1−a)/b. (34)

We see that there are two possible power law scalings for Eg with the exponents (a − 1)/b and
2. At large P this formula will be dominated by the term with minimum exponent so Eg ∼
P−min(a−1,2b)/b.

V1 Model

A Simple Feedforward Model of V1

We consider a simplified but instructive model of the V1 population code as a linear-nonlinear
map from photoreceptor responses through Gabor filters and then nonlinearity [36, 83, 84]. Let
x ∈ R2 represent the two-dimensional retinotopic position of photoreceptors. The firing rates of
the photoreceptor at position x to a static grating stimulus oriented at angle θ is

h(x, θ) = cos(k(θ) · x) , k =

[
cos(θ)
sin(θ)

]
∈ R2 , θ ∈ [0, 2π]. (35)

We model each V1 neuron’s receptive field as a Gabor filter of the receptor responses h(x, θ).
The i-th V1 neuron has preferred wavevector ki, generating the following set of weights between
photoreceptors and the i-th V1 neuron

w(x, θi) =
σ2

2π
e−

σ2

2
|x|2 cos(k(θi) · x). (36)

The V1 population code is obtained by filtering the photoreceptor responses. By approximating
the resulting sum over all retinal photoreceptors with an integral, we find the response of neuron i
to grating stimulus with wavenumber k is

w(θi) · h(θ) =

∫
w(x, θi)h(x, θ)dx =

1

2
e−

1
2σ2
|k+ki|2 +

1

2
e−

1
2σ2
|k−ki|2 . (37)

The response of neuron i is computed through nonlinear rectification of this input current ri(θ) =
g(w(θi) · h(θ)). For a linear neuron g(z) = z, the kernel has the following form

K(θ, θ′) =
cosh(β cos(θ − θ′))

cosh(β)
, (38)

where β = 1
σ2 and the kernel is normalized to have maximum value of 1. Note that this normal-

ization of the kernel is completely legitimate since it merely rescales each eigenvalue by a constant
and does not change the learning curves.

Since the kernel only depends on the difference between angles θ − θ′, it is said to posess
translation invariance. Such translation invariant kernels admit a Mercer decomposition in terms
of Fourier modes K(θ) =

∑
n λn cos(nθ) since the Fourier modes diagonalize shift invariant integral

operators on S1. For the linear neuron, the kernel eigenvalues scale like λn ∼ βn

2nn! , indicating
infinite differentiability of the tuning curves. Since λn decays rapidly with n, we find that this
Gabor code has an inductive bias that favors low frequency functions of orientation θ.
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Nonlinear Simple Cells

Introducing nonlinear functions g(z) that map input currents z into the V1 population into firing
rates, we can obtain a non-linear kernel Kg(θ) which has the following definition

Kg(k,k
′) =

∫
p(ki)g(wi · h(k))g(wi · h(k′))dki. (39)

In this setting, it is convenient to restrict ki,k,k
′ ∈ S1 and assume that the preferred wavevectors

ki are uniformly distributed over the circle. In this case, it suffices to identify a decomposition
of the composed function g(wi · h(θ)) in the basis of Chebyshev polynomials Tn(z) which satisfy
Tn(cos(θ)) = cos(nθ)

an =
1

2π

∫ 2π

0
g

(
e−

1
σ2 cosh

(
1

σ2
cos(θ)

))
cos(nθ)dθ (40)

=
1

2π

∫ 1

−1

1√
1− z2

g
(
e−

1
σ2 cosh

(
z/σ2

))
Tn(z)dz, (41)

which can be computed efficiently with an appropriate quadrature scheme. Once the coefficients
an are determined, we can compute the kernel by first letting θi to be the angle between k and ki
and letting θ be the angle between k and k′

Kg(θ) =

∫ 2π

0

dθi
2π

∑
n,n′

anan′Tn(cos(θi))Tn′(cos(θi + θ))dθi (42)

=
∑
n,n′

anan′
1

2π

∫ 2π

0
cos(nθi)

[
cos(n′θi) cos(n′θ) + sin(n′θi) sin(n′θ)

]
dθi (43)

=
1

2

∑
n

a2n cos(nθ). (44)

Thus the kernel eigenvalues are λn = 1
2a

2
n(ψ).

Asymptotic scaling of spectra: Activation functions that encourage sparsity have slower eigen-
value decays. If the nonlinear f-I activation function has the form gq,t(z) = max{0, z − a}q, then
the spectrum decays like λn ∼ n−2q−2. A simple argument justifies this scaling: if the function
g(e−σ

2
cosh(σ2z)) is only q − 1 times differentiable then ann

q ∼ n−1 since
∑

n ann
q must diverge.

Therefore λn = a2n ∼ n−2q−2. Note that this scaling is independent of the threshold.

Phase Variation, Complex Cells and Invariance

We can consider a slightly more complicated model where Gabors and stimuli have phase shifts

h(x, θ, φ) = cos(k(θ) · x− φ) , w(x, θi, φi) =
σ2

2π
e−

σ2

2
|x|2 cos(ki · x− φi). (45)

The simple cells are generated by nonlinearity

ri(θ, φ) = g(w(θi, φi) · h(θ, φ)). (46)

The input currents into the simple V1 cells can be computed exactly

w(θi, φi) · h(θ, φ) = 〈cos(ki · x− φi) cos(k · x− φ)〉x∼N (0,σ2I) . (47)

=
1

2
cos(φ+ φi)e

− 1
2σ2
|k+ki|2 +

1

2
cos(φ− φi)e−

1
2σ2
|k−ki|2 . (48)
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When |k| = |ki| = 1, the simple cell tuning curves ri = g(wi ·h) only depend on cos(θ− θi) and
φ, allowing a Fourier decomposition

ri(θ, φ) =
∑
n

an(φ, φi) cos(n(θ − θi))). (49)

The simple cell kernel Ks, therefore decomposes into Fourier modes over θ

Ks(θ, θ
′, φ, φ′) =

∑
n

bn(φ, φ′) cos(n(θ − θ′)), (50)

where bn(φ, φ′) = 〈an(φ, φi)an(φ′, φi)〉φi . It therefore suffices to solve the infinite sequence of integral
eigenvalue problems over φ

1

2π

∫ 2π

0
bn(φ, φ′)vn,k(φ)dφ = λn,kvn,k(φ

′) =⇒ Ks(θ, θ
′, φ, φ′) =

∑
n,k

λn,k cos(n(θ−θ′))vn,k(φ)vn,k(φ
′).

(51)
With this choice it is straightforward to verify that the kernel eigenfunctions are vn,k(θ, φ) =
einθvn,k(φ) with corresponding eigenvalue λn,k. Since bn is not translation invariant in φ − φ′,
the eigenfunctions vn,k are not necessarily Fourier modes. These eigenvalue problems for bn must
be solved numerically when using arbitrary nonlinearity ψ. The top eigenfunctions of the simple
cell kernel depend heavily on the phase of the two grating stimuli φ. Thus, a pure orientation
discrimination task which is independent of phase requires a large number of samples to learn with
the simple cell population.

Complex Cells Populations are Phase Invariant

V1 also contains complex cells which possess invariance to the phase φ of the stimulus. Again using
Gabor filters

w(x, θi, φi) =
σ2

2π
e−

σ2

2
|x|2 cos(k(θi) · x− φi), (52)

we model the complex cell responses with a quadratic nonlinearity and sum over two squared filters
which are phase shifted by π/2

ri(θ, φ) = (w(θi, φi)·h(θ, φ))2+(w(θi, φi−π/2)·h(θ, φ))2 =
1

4
e−

1
σ2
|k+ki|2+

1

4
e−

1
σ2
|k−ki|2+

1

2
e−σ

2
cos(2φi),

(53)
which we see is independent of the phase φ of the grating stimulus. Integrating over the set of
possible Gabor filters (ki, φi) again gives the following kernel for the complex cells

Kc(θ) =
1

cosh(2β)
cosh(2β cos(θ)). (54)

Remarkably, this kernel is independent of the phase φ of the grating stimulus. Thus, complex cell
populations possess good inductive bias for vision tasks where the target function only depends on
the orientation of the stimulus rather than it’s phase. In reality, V1 is a mixture of simple and
complex cells. Let s ∈ [0, 1] represent the relative proportion of neurons which are simple cells and
(1 − s) the relative proportion of complex cells. The kernel for the mixed V1 population is given
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by a simple convex combination of the simple and complex cell kernels

KV 1(θ, θ
′, φ, φ′) =

1

N

N∑
i=1

ri(θ, φ)ri(θ
′, φ′)→

〈
r(θ, φ, c)r(θ′, φ′, n)

〉
n∼pV 1(n)

= s
〈
r(θ, φ, n)r(θ′, φ′, n)

〉
n∼ps(n) + (1− s)

〈
r(θ, φ, n)r(θ′, φ′, n)

〉
n∼pc(n)

= sKs(θ, θ
′, φ, φ′) + (1− s)Kc(θ, θ

′), (55)

where n denotes neuron type (simple vs complex, tuning etc) and PV 1(n), ps(n), pc(n) are prob-
ability distributions over the V1 neuron identities, the simple cell identities and the complex cell
identities respectively. Increasing s increases the phase dependence of the code by giving greater
weight to the simple cell population. Decreasing s gives weight to the complex cell population,
encouraging phase invariance of readouts.

Time-Dependent Neural Codes

In this setting, the population code r({θ(t)}, t) is a function of an input stimulus sequence θ(t)
and time t. In general the neural code r at time t can depend on the entire history of the stimulus
input θ(t′) for t′ ≤ t, as is the case for recurrent neural networks. We denote dependence of a
function f on θ(t) in this causal manner with the notation f({θ}, t). In a learning task, a set
of readout weights w are chosen so that a downstream linear readout f({θ}, t) = w · r({θ}, t)
approximates a target sequence y({θ}, t) which maps input stimulus sequences to output scalar
sequences. The quantity of interest is the generalization Eg, which in this case is an average over
both input sequences and time, Eg =

〈
(y({θ}, t)− f({θ}, t))2

〉
θ(t),t

. The average is computed over

a distribution of input stimulus sequences p(θ(t)). To train the readout, w, the network is given a
sample of P stimulus sequences θµ(t), µ = 1, ..., P . For the µ-th training input sequence, the target
system y is evaluated at a set of discrete time points Tµ = {t1, t2, ..., t|Tµ|} giving a collection of

target values {yµt }t∈Tµ and a total dataset of size P =
∑P

µ=1 |Tµ|. The average case generalization
computes a further average of the generalization error Eg over randomly sampled datasets of size
P.

Learning is again achieved through iterated weight updates with delta-rule form, but now have
contributions from both sequence index and time ∆w = η

∑
µ

∑
t∈Tµ r

µ
t (yµt − fµt ). As before,

optimization of the readout weights is equivalent to kernel regression with a kernel that computes
inner products of neural population vectors at different times t, t′ for different input sequences
{θ}, {θ′}: K({θ}, {θ′}, t, t′) = 1

N r({θ}, t) · r({θ}, t′) . This kernel depends on details of the time
varying population code including its recurrent intrinsic dynamics as well as its encoding of the time-
varying input stimuli. The optimization problem and delta rule described above converge to the

kernel regression solution for kernel gram matrix Kµ,µ′

t,t′ = 1
N r

µ
t ·r

µ′

t′ [38, 39, 40]. The learned function

has the form f({θ}, t) =
∑

µ,t′∈Tµ α
µ
tK({θ}, {θ}µ, t, t′), where α = K+y for kernel gram matrix

K ∈ RP×P which is computed for the entire set of training sequences, and the vector y ∈ RP is the
vector containing the desired target outputs for each sequence. Assuming a probability distribution
over sequences θ(t), the kernel can be diagonalized with orthonormal eigenfunctions ψk({θ}, t). Our
theory carries over from the static case: kernels whose top eigenfunctions have high alignment with
the target dynamical system y({θ}, t) will achieve the best average case generalization performance.

RNN Experiment

For the simulations in Figure 7 we integrated a rate based recurrent network model with N = 6000
neurons, time constant τ = 0.05 and gain g = 1.5. Each of the P = 80 randomly chosen angles γµ
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generates a trajectory over T = 100 equally spaced points in t ∈ [0, 3]. The two dimensional input
sequence is simply θ(t) = H(t)H(1 − t) [cos(γµ), sin(γµ)]> ∈ R2. Target function for a delay d is
y(θµ, t) = H(1.5+d− t)H(t−d−1)[cos(γµ), sin(γµ)]> which is nonzero for times t ∈ [1+d, 1.5+d].
In each simulation, the activity in the network is initialized to u(0) = 0. The kernel gram matrix
K ∈ RPT×PT is computed by taking inner products of the time varying code at for different inputs
γµ and at different times. Learning curves represent the generalization error obtained by randomly
sampling P time points from the PT total time points generated in the simulation process and
training readout weights w to convergence with gradient descent.

Data Analysis

Data source and processing

Mouse V1 neuron responses to orientation gratings were obtained from a publicly available dataset
[8, 9]. Two-photon calcium microscopy fluorescence traces were deconvolved into spike trains and
spikes were counted for each stimulus, as described in [8]. The presented grating angles were dis-
tributed uniformly over [0, 2π] radians. Data pre-processing, which included z-scoring against the
mean and standard deviation of null stimulus responses, utilized the provided code for this exper-
iment, which also publicly available at https://github.com/MouseLand/stringer-et-al-2019.
This preprocessing technique was used in all Figures in the paper. To reduce corruption of the es-
timated kernel from neural noise (trial-to-trial variability), we first trial average responses, binning
the grating stimuli oriented at different angles θ into a collection of 100 bins over the interval from
[0, 2π] and averaging over all of the available responses from each bin. Since grating angles were
sampled uniformly, there is a roughly even distribution of about 45 responses in each bin. After
trial averaging, SVD was performed on the response matrix R, generating the eigenspectrum and
kernel eigenfunctions as illustrated in Figure 4. Figures 2, 3, 4, all used this data anytime responses
to grating stimuli were mentioned.

In Figures 3C and 4D, the responses of mouse V1 neurons to ImageNet images were obtained
from a different publicly available dataset [10, 11]. Again, spike counts were obtained from de-
convolved and z-scored calcium fluorescence traces. Each of the images presented belongs to one
of 15 relevant Imagenet categories, including the mice and bird categories displayed in 4D. The
preprocessing code and image category information were obtained from the publicly available code
base at https://github.com/MouseLand/stringer-pachitariu-et-al-2018b.

Generating alternative codes

In Figure 3, the randomly rotated codes are generated by sampling a matrix Q from the Haar
measure on the set of N -by-N orthogonal matrices, and chosing a δ by solving the following
optimization problem:

min
δ∈RN

N∑
i=1

P∑
µ=1

sµi , s.t. sµ = Qr(θµ) + δ, sµi ≥ 0, i = 1, . . . , N, µ = 1, . . . , P, (56)

which minimizes the total spike count subject to the kernel and nonnegativity of firing rates. The
solution to this problem is given by δ∗i = −minµ=1,...,P [Qr(θµ)]i.

Comparing Sparsity of Population Codes

To explore the metabolic cost among the set of codes with the same inductive biases, we estimate
the distribution of average spike counts of codes with the same inner product kernel as the biological
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code. These codes are generated in the form sµ = Qrµ+δ where δ solves the optimization problem

min
δ∈RN

∑
i,µ

sµi , s.t. s
µ = Qrµ + δ , sµi ≥ 0 (57)

To quantify the distribution of such codes, we randomly sample Q from the Haar-measure on O(N)
and compute the optimal δ as described above. This generates the aqua colored distribution in
Figure 3 B and C.

We also attempt to characterize the most efficient code with the same inner product kernel

min
Q∈O(N),δ

∑
i,µ

sµi , s.t. s
µ = Qrµ + δ , sµi ≥ 0. (58)

Since this optimization problem is non-convex in Q, there is no theoretical guarantee that
minima are unique. Nonetheless, we attempt to optimize the code by starting Q at the identity
matrix and conduct gradient descent in the tangent space so(N). Such updates take the form

Qt+1 = exp(−η∇L)Qt , ∇L =
∂L
∂Q

Q> −Q
∂L
∂Q

>
(59)

where exp(·) is the matrix exponential. To make the loss function differentiable, we incorporate
the non-negativity constraint with a soft-minimum:

L =
∑
iµ

(
q>i r

µ − softminν(q>i r
ν , β)

)
, softmin(a1, a2, ..., aP ;β) =

1

Z

P∑
µ=1

aν exp(−βaν), (60)

where Z =
∑

ν exp(−βaν) is a normalizing constant and Q = [q1, ...qN ]. In the β → ∞ limit,
this cost function converges to the exact optimization problem with non-negativity constraint.
Finite β, however, allows learning with gradient descent. Gradients are computed with automatic
differentiation in JAX [85]. This optimization routine is run until convergence and the optimal
value is plotted as dashed red lines labeled “optimal” in Figure 3.

We show that our result is robust to different pre-processing techniques and to imposing bounds
on neural firing rates in Figure SI.1. To demonstrate that our result is not an artifact of z-scoring
the deconvolved signals against the spontaneous baseline activity level, we also conduct the random
rotation experiment on the raw deconvolved signals. In addition, we show that imposing realistic
constraints on the upper bound of the each neuron’s responses does not change our findings. We
used a subset of N = 100 neurons and computed random rotations. However, we only accepted
a code as valid if it’s maximum value was less than some upper bound ub. Subsets of N = 100
neurons in the biological code achieve maxima in the range between 3.2 and 4.7. We performed
this experiment for ub ∈ {3, 4, 5} so that the artificial codes would have maxima that lie in the
same range as the biological code.

Fitting a Gabor model to mouse V1 kernel

Under the assumption of translation symmetry in the kernel K(θ, θ′), we averaged the elements of
the over rows of the empirical mouse V1 kernel [9]

K(∆) =
1

P

P∑
µ=1

K(θµ, θµ + ∆) (61)
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where angular addition is taken mod π. This generates the black dots in Figure 5 B. We aimed to
fit a threshold-power law nonlinearity of the form gq,a(z) = max{0, z− a}q to the kernel. Based on
the Gabor model discussed above, we parameterized tuning curves as

rs,q,a(θ, θi) = gq,a

(
cosh(s cos(θ − θi))

cosh(s)

)
, (62)

where θi is the preferred angle of the i-th neuron’s tuning curve. Rather than attempting to perform
a fit of s, a, q, {θi}Ni=1 of this form to the responses of each of the ∼ 20-k neurons, we instead simply
attempt to fit to the population kernel by optimizing over (s, a, q). However, we noticed that two
of these variables s, a are constrained by the sparsity level of the code. If each neuron, on average,
fires for only a fraction f of the uniformly sampled angles θ, then the following relationship holds
between s and a

a =
cosh

(
s cos

(
π
2 f
))

cosh(s)
. (63)

Calculation of the coding level f for the recorded responses allowed us to infer a from s during
optimization. This reduced the free parameter set to (s, q). We then solve the following optimization
problem

min
s,q

〈(
K̂s,q(θ)−K(θ)

)2〉
θ

, K̂s,q(θ) =
1

π

∫ π/2

−π/2
rs,q(θ, θi)rs,q(0, θi)dθi, (64)

where integration over θi is performed numerically. Using the Scipy Trust-Region constrained
optimization routine, we found (q, s, a) = (1.7, 5.0, 0.2) which we use as the fit parameters in Figure
5.
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Supplementary Information

Singular Value Decomposition of Continuous Population Responses

SVD of population responses is usually evaluated with respect to a discrete and finite set of stimuli.
In the main paper, we implicitly assumed that a generalization of SVD to a continuum of stimuli.
In this section we provide an explicit construction of this generalized SVD using techniques from
functional analysis. Our construction is an example of the quasimatrix SVD defined in [86] and
justifies our use of SVD in Figure 4.

For our construction, we note that Mercer’s theorem guarantees the existence of an eigendecom-
position of any inner product kernel K(θ,θ′) in terms of a complete orthonormal set of functions
{ψk}∞k=1 [79]. In particular, there exist a non-negative (but possibly zero) summable eigenvalues
{λk}∞k=1 and a corresponding set of orthonormal eigenfunctions such that

K(θ,θ′) =
∞∑
k=1

λkψk(θ)ψk(θ
′). (SI.1)

For a stimulus distribution p(θ), the set of functions {ψk}∞k=1 are orthonormal and form a complete
basis for square integrable functions L2 which means

〈ψk(θ)ψ`(θ)〉θ =

∫
p(θ)ψk(θ)ψ`(θ)dθ = δk`,

f(θ) =
∑
k

〈
f(θ′)ψk(θ

′)
〉
θ′
ψk(θ) , ∀f ∈ L2. (SI.2)

Next, we use this basis to construct the SVD. Each of the tuning curves ri can be expressed in
this basis with the top N of the functions in the set {ψk}∞k=1

ri(θ) =
N∑
k=1

Aikψk(θ), (SI.3)

where we introduced a matrix A ∈ RN×N of expansion coefficients. Note that rank(A) ≤ N . We
compute the singular value decomposition of the finite matrix A

A =
√
N

rank(A)∑
k=1

√
λkukv

>
k . (SI.4)

We note that the signal correlation matrix for this population code can be computed in closed form

Σs =
1

N
A
〈
ψ(θ)ψ(θ)>

〉
θ

A> =
1

N
AA> =

rank(A)∑
k=1

λkuku
>
k , (SI.5)

due to the orthonormality of {ψk}. Thus the principal axes uk of the neural correlations are the
left singular vectors of A.

We may similarly express the inner product kernel in terms of the eigenfunctions

K(θ,θ′) =
1

N
r(θ) · r(θ′) =

1

N
ψ(θ)>A>Aψ(θ′). (SI.6)
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The kernel eigenvalue problem demands [79]∫
p(θ)K(θ,θ′)ψ(θ)dθ =

1

N
A>Aψ(θ′) = Λψ(θ′) =⇒ 1

N
A>A = Λ

=⇒
rank(A)∑
k=1

λkvkv
>
k =

rank(A)∑
k=1

λkeke
>
k . (SI.7)

The vk vectors must be identical to ±ek, the Cartesian unit vectors, if the eigenvalues are non-

degenerate. From this exercise, we find that the SVD for A has the form A =
√
N
∑rank(A)

k=1

√
λkuke

>
k .

With this choice, the population code admits a singular value decomposition

r(θ) = Aψ(θ) =
√
N

rank(A)∑
k=1

√
λkukψk(θ). (SI.8)

This singular value decomposition demonstrates the connection between neural manifold structure
(principal axes uk) and function approximation (kernel eigenfunctions ψk). This singular value
decomposition can be verified by computing the inner product kernel and the correlation matrix,
utilizing the orthonormality of {uk} and {ψk}.

This exercise has important consequences for the space of learnable functions, which is at most
rank(A) dimensional since linear readouts lie in span{ri(θ)}Ni=1.

Discrete Stimulus Spaces: Finding Eigenfunctions with Matrix Eigendecomposition

In our discussion so far, our notation suggested that θ take a continuum of values. Here we want
to point that our theory still applies if θ take a discrete set of values. In this case, we can think of

a Dirac measure p(θ) =
∑P̃

i=1 piδ(θ − θi), where i indexes all the P̃ values θ can take. With this
choice ∫

p(θ)K(θ,θ′)ψk(θ)dθ =
P̃∑
i=1

piK(θi,θ′)ψk(θ
i) = λkψk(θ

′). (SI.9)

Demanding this equality for θ′ = θi, i = 1, ..., P̃ generates a matrix eigenvalue problem

KBΨ = ΨΛ, (SI.10)

where Bij = δijpi. The eigenfunctions over the stimuli are identified as the columns of Ψ while the
eigenvalues are the diagonal elements of Λk` = λkδk`.

Experimental considerations: In an experimental setting, a finite number of stimuli are presented
and the SVD is calculated over this finite set regardless of the support of p(θ). This raises the
question of the interpretation of this SVD and its relation to the inductive bias theory we presented.
Here we provide two interpretations.

In the first interpretation, we think of the empirical SVD as providing an estimate of the SVD
over the full distribution p(θ). To formalize this notion, we can introduce a Monte-Carlo estimate
of the integral eigenvalue problem∫

p(θ)K(θ,θ′)ψk(θ)dθ ≈ 1

P̃

P̃∑
µ=1

K(θµ,θ′)ψk(θ
µ) = λkψk(θ

′). (SI.11)

For this interpretation to work, the experimenter must sample the stimuli from p(θ), which could be
the natural stimulus distribution. Measuring responses to a larger number of stimuli gives a more
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accurate approximation of the integral above, which will provide a better estimate of generalization
performance on the true distribution p(θ).

In the second interpretation, we construct an empirical measure on P̃ experimental stimulus

values p̂(θ) = 1
P̃

∑P̃
µ=1 δ(θ − θµ), and consider learning and generalization over this distribution.

This allows the application of our theory to an experimental setting where p̂(θ) is designed by
an experimenter. For example, the experimenter could procure a complicated set of P̃ videos, to
which an associated function y(θ) must be learned. After showing these videos to the animal and
measuring neural responses, the experimenter could compute, with our theory, generalization error
for a uniform distribution over this full set of P̃ videos. Our theory would predict generalization
over this distribution after providing supervisory feedback for only a strict subset of P < P̃ videos.
Under this interpretation, the relationship between the integral eigenvalue problem and matrix
eigenvalue problem is exact rather than approximate∫

p̂(θ)K(θ,θ′)ψk(θ)dθ =
1

P̃

P̃∑
µ=1

K(θµ,θ′)ψk(θ
µ) = λkψk(θ

′). (SI.12)

Demanding either of (SI.11) or (SI.12) equalities for θ′ = θν , ν = 1, ..., P generates a matrix
eigenvalue problem

KΨ = PΨΛ. (SI.13)

The eigenfunctions restricted to {θµ} are identified as the columns of Ψ while the eigenvalues are
the diagonal elements of Λk` = λkδk`. For the case where N and P are finite, the spectrum obtained
through eigendecomposition of the kernel K is the same as would be obtained through the finite N
signal correlation matrix Σs, since they are inner and outer products of trial averaged population
response matrices R.

Generalization in Kernel Regression

Recent work has established analytic results that predict the average case generalization error for
kernel regression

Eg = 〈Eg(D)〉D =
〈
(f(θ,D)− y(θ))2

〉
θ,D (SI.14)

where Eg(D) =
〈
(f(θ,D)− y(θ))2

〉
θ

is the generalization error for a certain sample D of size P
and f(θ,D) is the kernel regression solution for D [20, 21]. The typical or average case error Eg is
obtained by averaging over all possible datasets of size P . This average case generalization error
is determined solely by the decomposition of the target function y(x) along the eigenbasis of the
kernel and the eigenspectrum of the kernel. This diagonalization takes the form∫

p(θ)K(θ,θ′)ψk(θ)dθ = λkψk(θ
′) (SI.15)

Since the eigenfunctions form a complete set of square integrable functions, we expand both the
target function y(θ) and the learned function f(θ) in this basis

y(θ) =
∑
k

vkψk(θ) , f(θ) =
∑
k

wkψk(θ) (SI.16)

Due to the orthonormality of the kernel eigenfunctions {ψk}, the generalization error for any set of
coefficients w is

Eg(w) =
〈
(y(θ)− f(θ))2

〉
θ

=
∑
k

(wk − vk)2 = ||w − v||2 (SI.17)
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We now introduce training error, or empirical loss, which depends on the disorder in the dataset
D = {(θµ, yµ)}Pµ=1

H(w,D) =
∑
µ

(w ·ψ(θµ)− v ·ψ(θµ))2 + λ
∑
k

w2
k

λk
(SI.18)

It is straightforward to verify that the optimal w∗ which minimizes H(w,D) is the kernel regression
solution for kernel with eigenvalues {λk} when λ → 0. The optimal weights w can be identified
through the first order condition ∇H(w,D) = 0 which gives

w∗ = (ΨΨ> + λΛ−1)−1ΨΨ>v = v − λ(ΨΨ> + λΛ−1)−1Λ−1v (SI.19)

where Ψk,µ = ψk(x
µ) are the eigenfunctions evaluated on the training data and Λk,` = δk,`λk is

a a diagonal matrix containing the kernel eigenvalues. The generalization error for this optimal
solution is

Eg(D) = ||w∗ − v||2 = v>Λ−1G(D)2Λ−1v , G(D) =

(
1

λ
ΨΨ> + Λ−1

)−1
(SI.20)

We note that the dependence on the randomly sampled dataset D only appears through the
matrix G(D). Thus to compute the typical generalization error we need to average over this matrix
〈G(D)〉D. There are multiple strategies to perform such an average and we will study one here
based on a partial differential equation which was introduced in [81, 82] and studied further in
[20, 21]. In this setting, we denote the average matrix G(P ) = 〈G(D)〉|D|=P for a dataset of size
P . We first will derive a recursion relationship using the Sherman Morrison formula for a rank-1
update to an inverse matrix. We imagine adding a new sampled feature vector φ to a dataset ψ
with size P . The average matrix G(P + 1) at P + 1 samples can be related to G(P ) through the
Sherman Morrison rule

G(P + 1) =

〈(
1

λ
ΨΨ> +

1

λ
ψψ> + Λ−1

)−1〉
ψ,D

= G(P )−
〈

G(D)ψψ>G(D)

λ+ ψ>G(D)ψ

〉
φ,D

≈ G(P )−

〈
G(D)

〈
ψψ>

〉
ψ

G(D)
〉
D

λ+ 〈ψ>G(D)ψ〉ψ,D
(SI.21)

where in the last step we approximated the average of the ratio with the ratio of averages. This
operation, is of course, unjustified theoretically, but has been shown to produce accurate learning
curves [20, 82]. Since the chosen basis of kernel eigenfunctions are orthonormal, the average over
the new sample is trivial

〈
ψψ>

〉
φ

= I. We thus arrive at the following recursion relationship for G

G(P + 1) = G(P )−
〈
G(D)2

〉
D

λ+ Tr G(P )
(SI.22)

By introducing an additional source J so that G(D, J)−1 = 1
λΨΨ> + Λ−1 + JI, we can relate

G(D, J)’s first and second moments through differentiation

∂

∂J
G(P, J) =

∂

∂J

〈(
1

λ
ΨΨ> + JI + Λ−1

)−1〉
D

= −
〈
G(D, J)2

〉
D . (SI.23)

Thus the recursion relation simplifies to

G(P + 1, J)−G(P, J) ≈ ∂

∂p
G(p, J) =

1

λ+ TrG(P, J)

∂

∂J
G(P, J), (SI.24)
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where we approximated the finite difference in P as a derivative, treating P as a continuous variable.
Taking the trace of both sides and defining κ(P, J) = λ + TrG(P, J) we arrive at the following
quasilinear PDE

∂

∂P
κ(P, J) =

1

κ(P, J)

∂

∂J
κ(P, J) (SI.25)

with the initial condition κ(0, J) = λ + Tr(Λ−1 + JI)−1. Using the method of characteristics, we

arrive at the solution κ(P, J) = λ + Tr
(
Λ−1 + (v + P

κ(P,J))I
)−1

. Using this solution to κ, we can

identify the solution to G

G(P, J)k,` =

(
P

κ
+ J + λ−1k

)−1
δk,` =

κλk
λkP + κ+ Jκλk

δk,`. (SI.26)

The generalization error, therefore can be written as

Eg = v>Λ−1
〈
G(D)2

〉
DΛ−1v = − ∂

∂J
v>Λ−1G(P, J)Λ−1v (SI.27)

= −
∑
k

v2k
λ2k

∂

∂J

(
P

κ
+ J + λ−1k

)−1
=

κ2

1− γ
∑
k

v2k
(λkP + κ)2

, (SI.28)

where γ = P
∑

k
λ2k

(λkP+κ)2
, giving the desired result. Note that κ depends on J implicitly, which is

the source of the 1
1−γ factor. This result was recently reproduced using techniques from statistical

mechanics [20, 21].

Translation Invariant Kernels

For the special case where the data distribution p(θ) = 1
V is uniform over volume V and the kernel

is translation invariant K(θ,θ′) = κ(θ − θ′), the kernel can be diagonalized in the basis of plane
waves ∫

p(θ)K(θ,θ′)ψk(θ)dθ =
1

V

∫
κ(θ − θ′)eik·θdθ =

1

V
κ̂(k)eik·θ

′
(SI.29)

The eigenvalues are the Fourier components of the Kernel λk = 1
V κ̂(k) = 1

V

∫
dθeik·θκ(θ) while the

eigenfunctions are plane waves ψk(θ) = eik·θ. The set of admissible momenta Sk = {k0,±k1,±k2, ...}
are determined by the boundary conditions. The diagonalized representation of the kernel is there-
fore

K(θ,θ′) =
∑
k∈Sk

λke
ik·(θ−θ′) (SI.30)

For example, if the space is the torus Tn = S1 × S1 × ... × S1, then the space of admissable
momenta are the points on the integer lattice Sk = Zn = {k ∈ Rn|ki ∈ Z ∀i = 1, ..., n}. Reality and
symmetry of the kernel demand that Im(λk) = 0 and λ−k = λk ≥ 0. Most of the models in this
paper consider θ ∼ Unif

(
S1
)
, where the kernel has the following Fourier/Mercer decomposition

K(θ − θ′) =
∞∑

k=−∞
λke

ik(θ−θ′) = 2
∞∑
k=0

λk cos(k(θ − θ′))

=
∞∑
k=0

λk

[√
2 cos(kθ)

√
2 cos(kθ′) +

√
2 sin(kθ)

√
2 sin(kθ′)

]
(SI.31)

where we invoked the simple trigonometric identity cos(a − b) = cos(a) cos(b) + sin(a) sin(b). By
recognizing that {

√
2 cos(kθ),

√
2 sin(kθ)}∞k=0 form a complete orthonormal set of functions with

respect to Unif
(
S1
)
, we have identified this as the collection of kernel eigenfunctions.
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Visualization of Feedforward Gabor V1 Model and Induced Kernels

Examples of the induced kernels for the Gabor-bank V1 model are provided in Figure SI.2. We
show how choice of rectifying nonlinearity g(z) and sparsifying threshold a influence the kernel and
their spectra. Learning curves for simple orientation tasks are provided.

Laplace Kernel Generalization

We repeat the same exercise in Figure 6 with Laplace kernels to show that our results is not an
artifact of the infinite differentiability of the Von Mises kernel. Each of these Laplace kernels has
the same asymptotic power law spectrum λk ∼ o(k−2), exhibiting a discontinuous first derivative
(Figure SI.3 A). Despite having the same spectral scaling at large k, these kernels can give dramat-
ically different performance in learning tasks, again indicating the influence of the top eigenvalues
on generalization at small P (Figure SI.3). Again, the trend for which kernels perform best at low
P can be reversed at large P . In this case, all generalization errors scale with Eg ∼ P−2 (Figure
SI.3B). More generally, our theory shows that if the task power spectrum and kernel eigenspec-
trum are both falling as power laws with exponents a and b respectively, then the generalization
error asymptotically falls with a power law, Eg ∼ P−min(a−1,2b)/b (Methods) [20]. This decay is
fastest when b ≥ a−1

2 for which Eg ∼ P−2. Therefore, the tail of the kernel’s eigenvalue spectrum
determines the large sample size behavior of the generalization error for power law kernels. Small
sample size limit is still governed by the bulk of the spectrum.
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Supplementary Figures
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A

B

C

Figure SI.1: Our metabolic efficiency finding is robust to different pre-processing techniques and
upper bounds on neural firing. A We show the same result as in Figure 3 except we use raw (non
z-scored) estimate of responses for each stimulus. B Our result is robust to imposition of firing rate
upper bounds ub on each neuron. This result uses the z-scored responses to be consistent with the
rest of the paper. The biological code achieves a maximum z-score values in the range [3.2, 4.7],
which motivated the range of our tested upper bound values {3, 4, 5}. C Our finding is robust
to the number of sampled stimuli P as we show in an experiment where rotations in N = 500
dimensional subspace.
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C

D

B

A

Figure SI.2: Nonlinear Rectification and proportion of simple and complex cells influences the
inductive bias of the population code. A The choice of nonlinearity has influence on the kernel and
its spectrum. If the nonlinearity is g(z) = max(0, zq), then λk ∼ k−2n−2. B The sparsity can be
increased by shifting the nonlinearity g(z) → g(z − a). Sparser codes have higher dimensionality.
Note that a = 0 is a special case where the neurons behave in the linear regime for all inputs θ
since the currents w · h are positive. Thus, for a = 0, the spectrum decays like a Bessel Function
λk = Ik(β). C-D Easy and hard orientation discrimination tasks with varying nonlinear polynomial
order q. At low sample sizes, large q performs better, whereas at large P , the step function
nonlinearity q = 0 achieves the best performance.
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A

B

Figure SI.3: A, B Kernel regression experiments are performed with Laplace kernels of varying
bandwidth on a non-differentiable target function. The top eigenvalues are modified by changing
the bandwidth, but the asymptotic power law scaling is preserved. Generalization at low P is
shown in the contour plot while the large P scaling is provided in the generalization. In A-right
and B-right, color code is the same as Figure 6C.
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