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ABSTRACT

Spatio-temporal receptive field (STRF) models are frequently used to approximate the computation implemented by
a sensory neuron. Typically, such STRFs are assumed to be smooth and sparse. Current state-of-the-art approaches for
estimating STRFs based empirical Bayes estimation encode such prior knowledge into a prior covariance matrix, whose
hyperparameters are learned from the data, and thus provide STRF estimates with the desired properties even with little
or noisy data. However, empirical Bayes methods are often not computationally efficient in high-dimensional settings, as
encountered in sensory neuroscience. Here we pursued an alternative approach and encode prior knowledge for estimation
of STRFs by choosing a set of basis function with the desired properties: a natural cubic spline basis. Our method is
computationally efficient, and can be easily applied to Linear-Gaussian and Linear-Nonlinear-Poisson models as well as
more complicated Linear-Nonlinear-Linear-Nonlinear cascade model or spike-triggered clustering methods. We compared
the performance of spline-based methods to no-spline ones on simulated and experimental data, showing that spline-
based methods consistently outperformed the no-spline versions. We provide a Python toolbox for all suggested methods
(https://github.com/berenslab/RFEst/).

1 Introduction
Spatiotemporal receptive fields (STRFs) are frequently used in neuroscience to approximate the computation implemented by a
sensory neuron. Such models consist typically of one or more linear filters summing up sensory inputs across time and space,
followed by a static nonlinearity and a probabilistic output process1. For this, different distributions can be used depending on
the type of recorded neuronal responses.

The simplest way to estimate the STRF is arguably to compute the spike-triggered average (STA), the average over all
stimuli preceding a spike2. However, the results of spike-triggered analysis are often noisy due to limited data and prone to be
corrupted when the neuron is stimulated with correlated noise or natural stimuli3. The maximum likelihood estimate (MLE),
also known as whitened-STA (wSTA), does not suffer from such biases, but it requires even more data to converge, making it a
less preferred option in many experimental settings.

It has been suggested that these shortcomings can be overcome by computing the maximum a posteriori (MAP) estimates
within the framework of Bayesian inference4. Under this framework, prior knowledge about STRFs such as sparsity, smooth-
ness5, or locality6 can be encoded into a prior covariance matrix, whose hyperparameters are learnt separately from the data via
evidence optimization. These algorithms thus provide STRF estimates with the desired properties even with little or noisy data.
Although elegant in theory, the evidence optimization step of this framework is computationally costly: the cubic complexity in
the dimensionality of the parameter space renders it difficult to scale to high-dimensional setting as often encountered in sensory
neuroscience. Also, current popular implementations of MAP estimates work mostly under the Linear-Gaussian encoding
model, which assumes additive Gaussian noise to the neural response, and are restricted to only one filter at a time.

An alternative popular approach to encode prior knowledge for estimating STRFs is to parameterize the STRF with a set of
basis functions with the desired properties. In this way, model fitting becomes much more efficient as the number of parameters
to be optimized is significantly reduced, and some degree of smoothness is automatically enforced. Previous studies used a
raised-cosine basis for 1D retinal ganglion cell STRF in macaque monkey7 and Gaussian spectral or Morlet wavelet basis for
2D auditory STRF in ferrets8. Those basis functions are chosen to capture certain STRF properties in their corresponding
studies, thus they are relatively inflexible to generalize to other settings. Besides, they are typically controlled by multiple
hyperparameters, which creates a burdensome and time-consuming model selection process.

Here, we propose to use an alternative basis for receptive field inference: natural cubic splines. These are known as
the smoothest possible interpolant and can be easily extended to high-dimensional settings with minimal assumptions and
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few hyperparameters9. This spline basis can be incorporated into a wide-range of existing receptive field models (Figure 1),
such as the Linear-Gaussian (LG) and the Linear-Nonlinear-Poisson (LNP) model7, 10 for single STRF estimation as well
as Linear-Nonlinear-Linear-Nonlinear (LNLN) cascade models11, 12 and spike-triggered clustering methods12, 13 for multiple
subunits estimation. When combined with proper regularization, smooth and sparse STRFs can be retrieved with very little data
and in an computationally efficient manner, while their predictive performance reaches state-of-the-art level when compared
with previous methods. We provide all developed methods as part of the RFEST toolbox.

2 Results
We developed the RFEST toolbox for spline-based STRF estimation in various models, including the single-filter LG and LNP
models as well as the multi-filters LNLN cascade model (Figure 1). We measured the performance of the enhanced models and
compared it with their no-spline versions or other previous methods, using simulated data as well as neural recordings from the
retina and the visual cortex. For the simulated benchmark data, we measured the mean squared error (MSE) between the ground
truth STRF and the estimated STRFs using various methods and studied its dependence on the amount of available data. For
the experimental data, we measured the correlation between the predicted and measured responses as a performance measure.

2.1 Estimating receptive fields from simulated LG, LNP and LNLN models
We first simulated the responses of a sensory neuron y with additive Gaussian noise using a STRF with 30 time frames and 40
pixels in space in response to white and a pink noise stimulus over 10 trials with different lengths (see Methods 4.1 for details).
First, we fit LG models (Figure 1A) to these responses using various STRF estimation techniques.

We measured the MSE between the ground truth STRF and the different estimates with respect to the ratio of number of
samples n over the number of parameters d, averaged over 10 different random seeds (Figure 2A).

As expected, the STA and wSTA approached the ground truth only in high data/feature regimes. For limited data (e.g. n/d
ratio=4), the estimated STRF showed substantial background noise (Figure 2B). In the case of pink noise, the STA was in fact
never able to recover the STRF due to the high correlation between pixels in the stimulus3 (Figure 2C-D).

We also applied more advanced techniques to estimate the STRF to the simulated data, such as automatic smoothness
determination (ASD, or MAP with smoothness prior5) and automatic locality determination (ALD, or MAP with locality
prior6). These recovered unbiased estimates with a relatively small amount of data, with ALD outperforming ASD alone
for both white and pink noise (Figure 2). However, their runtime for estimating the optimized prior was long due to high
computational complexity.

We then applied a spline-based version of the wSTA (SPL MLE) with and without L1 regularization on the basis function
coefficients (see Methods). This simple change of basis functions led to an STRF estimator which performed very well, even
better than ASD and ALD, especially when using L1 regularization (Figure 2). At the same time, this estimator was also
computationally very efficient, as the number of coefficients to be estimated was reduced to the number of basis functions used.

The computation time between MAP-derived and spline-based GLMs was not directly comparable, as the most time-
consuming part for MAP was to estimate the prior hyperparameters via evidence optimization, while spline-based GLMs need
to resort to cross-validation for selecting the number of basis functions. Importantly, splines with equally-spaced knots rely
only on one hyperparameter, the number of basis function b, also known as the degrees of freedom, for each dimension. A good
strategy for selecting an optimal b would be to measure the performance of SPL MLE over a grid of possible candidates from
small to large, then fit SPL w/ L1 with gradient descent to retrieve a sparse STRF.

We can still get a impression of the algorithmic efficiency of each method by profiling their most time-consuming step.
Thus, we compared the time taken by the central computation of the STA (see equation 1 in Methods), wSTA (equation 2),
MAP (equation 3) and SPL MLE (equation 12) for different amounts of data (Figure 3). Not suprisingly, STA was the fastest, as
it had a linear time complexity (O(n)) and its computation time depended only on the amount of data (n), while wSTA and MAP
were the slowest, as they were both limited by the calculation of the inverse matrix, and their computation time grew cubicly
with respect to the number of coefficients (w) in a STRF due to the cubic time complexity (O(w3)) of the matrix inversion.
SPL MLE, on the other hand, was less time-consuming than wSTA / MAP, even though the time complexity in general is the
same. The improvement was due to the reduced number of model parameters by parameterizing the STRF coefficients with the
spline bases (b coefficients), which resulted in a much smaller covariance matrix to invert (O(b3)). Thus, spline-based STRF
estimators offer the best available compromise between STRF estimation quality and computation time.

We next simulated responses y from an LNP model (Figure 1B) with Poisson noise similar to before using white and
pink noise for stimulation. For simplicity, we used an exponential nonlinearity and treated it as known during the estimation
procedure.

We then estimated the linear filter from different amounts of data using the STA, wSTA, ASD and ALD, as well as spline
and no-spline LNP fitted via gradient descent with L1 regularization (referred as LNP w/ SPL and LNP, respectively). Note that
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Figure 1. Overview of the different spatio-temporal receptive field (STRF) models used in this study. A. Linear-Gaussian
(LG) encoding model. y = Xw+ ε,ε ∼ N(0,σ2), where X is the stimulus design matrix, y the response, w the STRF. B.
Linear-Nonlinear-Poisson (LNP) model. y = f (Xw),y∼ Poisson, where f (x) is the filter nonlinearity. C.
Linear-Nonlinear-Linear-Nonlinear-Poisson (LNLN) model. y = g(∑ f (Xw)),y∼ Poisson, where g is the output nonlinearity.
Optionally, an autoregressive term convolving previous response with a response-history filter can be added before the
nonlinearity to improve the model predictive performance.
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Figure 2. Linear-Gaussian (LG) Model. 2D simulated RF stimulated by white and pink noise in various lengths. A and C:
Similarity (mean squared error, MSE) between ground Truth and estimated RFs with different length of simulated data,
averaged over 10 trials with different random seeds. B and D: Example estimated RFs by different methods at n/d=4, indicated
by vertical grey dash line in A and C.

0.5 2.0 8.0 32.0
Data (minutes)

0.00

0.01

0.02

0.03

0.04

C
om

pu
ta

ti
on

 T
im

e 
(s

ec
on

ds
)

# STRF coefficients=225

0.5 2.0 8.0 32.0
Data (minutes)

0.00

0.02

0.04

0.06

0.08

0.10

# STRF coefficients=400

0.5 2.0 8.0 32.0
Data (minutes)

0.0

0.2

0.4

0.6

0.8

# STRF coefficients=900
STA
wSTA
MAP
SPL(b=25)
SPL(b=100)

Figure 3. Comparison of computation time between different methods.
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Figure 4. Linear-Nonlinear-Poisson (LNP) Model. 2D simulated RF stimulated by white noise and pink noise in various
lengths. A and C: Details are the same as Figure 2. B and D: Example estimated RFs by different methods at data=4 minutes,
indicated by vertical grey dash line in A and C.

the original ASD and ALD were not designed for the LNP but the LG model, nevertheless, they can still be applied to spike
data as described above (with a model mismatch).

Again, we found that different methods resulted in estimates of different quality depending on the available amount of data
(Figure 4). For both stimulus conditions, we found that the spline-based LNP yielded extremely data-efficient estimates of the
linear filter compared to all other methods, and did so rapidly as only the coefficients for the spline basis functions needed to
be optimized. In contrast, gradient-based optimization of an LNP model without spline basis, even with L1 regularization,
performed only slightly better than the STA and wSTA computed under the mismatched LG model assumptions. The MAP
estimators of ASD and ALD performed worse here compared to the LG case, likely because the MAP methods are optimized
with respect to the mismatched cost function of the LG model. LNP w/ SPL achieved similar performance as SPL w/ L1
previously, as it is optimizing to the correct cost function, the negative log-likelihood of the LNP model.

We finally show how recently proposed subunit models (Figure 1C) can be made more efficient using a spline basis. We
show this for a LNLN cascade model11, 14 and spike-triggered clustering or non-negative matrix factorization methods12, 13 and
compare them without and with spline augmentation (see Methods 4.5). The assumption behind spike-triggered clustering
methods is that each spike can be contributed by different subunits of a STRF, so that each subunit can be viewed as a mini-STA
of a cluster of spikes. If this assumption holds, then a spline-approximated mini-STA should be able to serve as a better centroid
for clustering, as the smoothed STA is closer to the ground truth subunit STRF. We used k-means clustering as a proof of
concept in place of the previous published soft-clustering method13 and used a multiplicative update rule15 for semi-nonnegative
matrix factorization (semi-NMF)12. Moreover, we modified the previous published semi-NMF12 and imposed the nonnegative
constraint to the weight matrix instead of the subunit matrix, which allowed us to retrieve antagonistic STRFs.

We simulated responses y with Poisson noise from the model by stimulating two 20x20 pixels antagonistic center-surround
subunits with different lengths of white noise stimuli. Both filter outputs first went through a exponential nonlinearity before
summing together, then finally went through a softplus output nonlinearity.

We estimated subunit STRFs using k-means clustering or semi-NMF of the spike triggered ensemble, and maximum-
likelihood estimation of the LNLN model directly, with or without a spline basis (Figure 5). Similar to the results from previous
simulations, retrieved subunit STRFs from spline-based models were generally much more similar to the ground truth than
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Figure 5. Subunit models. Two antagonistic Difference-of-Gaussian 2D RF stimulated by white noise. The subunits STRFs
were estimated by k-means clustering, semi-NMF and LNLN, without and with spline. Example shown are estimated subunits
by different methods at data = 4 and 32 minutes, indicated by vertical light and dark grey dash line in the bottom panel,
respectively.

models without spline, and required smaller amount of data to achieve similar level of performance. For example, when using a
spline basis, we were able to retrieve the two subunit filters at high quality using only 4 minutes of data. With this amount of
data, all other methods still essentially showed only noise with a hint of signal in the estimate of the linear filter.

It is worth noting that also the computational efficiency of LNLN estimation was improved a lot by using a spline basis,
as the number of coefficients to be estimated was significantly reduced, while the computation time for both spike-triggered
clustering methods were actually decreased by incorporating splines, as computational steps were added to the original
algorithms in those modified versions (see Methods 4.5).

2.2 Application to experimental data
We used gradient-based estimation for the parameters of spline-based LNP and LNLN models in three previously published
experimental data sets: (1) extracellularly recorded spikes from tiger salamander retinal ganglion cells, stimulated by white
noise flickering bars14 (Figure 6A); (2) extracellular recorded spikes from V1 neurons of macaque monkeys, stimulated by
binary flicker bars16 (Figure 6B); (3) extracellular recorded spikes from tiger salamander retinal ganglion cells, stimulated by
3D non-repeat checkerboard white noise12 (Figure 6C).

For all three data sets, only the first 10 minutes of the whole recording were used for fitting the models, another 2 minutes
were used for model validation and another 4 sets of 2 minutes for testing. The predictive performance was measured by the
averaged correlation coefficients of the predicted and measured responses. We compared the results of spline-based models
with non-spline versions.

For visualization purposes, STRFs were first normalized to a unit vector by dividing the norm of themselves. For 3D STRFs
from data set (3), we performed singular value decomposition (SVD) to separate the spatial and temporal components. The
coordinates of the extremum pixel in the spatial component were selected, and the temporal filter of the original normalized
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Methods Stimuli Type Noise Distribution Data needed Complexity Multiple Filters
STA White Noise only Gaussian a lot O(n) No
wSTA Any Gaussian a lot O(w3) No
MAP Any Gaussian little O(w3) No
LNLN Any Poisson a lot O((wk)3) Yes
SPL LG Any Gaussian little O(b3) No
SPL LNP Any Poisson little O(b3) No
SPL LNLN Any Poisson little O((bk)3) Yes

Table 1. Model comparison. Here, n is the number of samples, w the number of STRF coefficients, b the number of spline
basis coefficients and k the number of subunits. In most cases, b� w.

STRF is shown for those coordinates. For the spatial filter, we showed the frame of the original STRF at the extremum point of
the temporal filter (indicated by a vertical dotted line). A contour was drawn on the spatial filter to illustrate the spatial extent of
the STRF.

For all three example neurons shown, the spline-based LNP and LNLN consistently outperformed their no-spline versions
(Figure 6). STRFs estimated by spline-based LNP and LNLN in general were smooth and sparse with a severely limited amount
of data. In contrast, STRFs estimated by no-spline models were noisy and performed comparatively worse on prediction. This
is especially prominent for LNLN estimates of data set (3), as here the number of parameters to estimate exceeded the amount
of available data to fit the models. Interestingly, for the complex cell in V1 (Figure 6B), the LNLN model performed in general
much better than the LNP model. This is expected, as the subunits of V1 complex cells tend to cancel each other and result in a
flat STA16. The spline-LNLN only improved the performance very little, possibly because the number of subunits (k=4) we set
throughout in all examples might be an under-estimate for this data set, just as for data set (3).

3 Discussion
Here, we showed that natural cubic splines form a good basis for STRF estimation by solving one of the main challenges
in sensory neuroscience: to efficiently estimate high-dimensional STRFs with limited data. Using this basis function set,
we showed that inference for single filter LN-models with different noise models as well as LNLN cascade models can be
efficiently performed from both spiking as well as two-photon imaging data, even if the signal-to-noise ratio is low (and see also
how spline-based methods compare to previous methods in Table 1). We provide an implementation of the proposed methods
in the RFEST-package for Python.

3.1 Choice of basis functions
We chose the natural cubic spline basis to represent the linear filters as default in our toolbox, because among many other
spline bases such as cyclic cubic splines, B-splines, or thin-plate splines, natural cubic splines have been shown to be the
smoothest possible interpolant through any set of data and theoretically near-optimal to approximate any true underlying
functions closely9. Conveniently, assuming all knots are spaced equally in each dimension, natural cubic splines only require
setting one hyperparameter: the degree of freedom, or the number of basis functions. This is unlike the raised cosine basis
used previously7, which is governed by multiple hyperparameters. Also, natural cubic splines can be easily extended to
high-dimensional setting, also known as tensor product bases, by simply taking the row-wise Kronecker product of the basis
matrix along each dimensions (see Method 4.3), making them uniquely suitable for estimating spatio-temporal receptive fields.

Through extensive validation with simulated and real experimental data sets, we showed that STRFs estimated with this
basis can not only be more accurate than previous state-of-the art methods but the estimation procedure was also computationally
much more efficient in terms of both time and memory. The estimated STRFs were smoothed automatically, as they were the
linear combination of a set of smooth basis functions. Further, sparsity and localization could often be achieved by adding a L1
regularization term to the loss function, which pushed the coefficient for the less relevant basis functions to zeros. Moreover, by
parameterzing STRFs with basis functions, the number of coefficient could be significantly reduced, hence model fitting became
much more computationally efficient, and the amount of data needed for the optimization to converge was also significantly
less.

3.2 Other approaches to efficient estimation of receptive fields
Similar to our approach, fast automatic smoothness determination (fASD)17 has been suggested to speed up the process of
evidence optimization in ASD. Because the smoothness prior covariance can be represented in frequency coordinates and many
high frequency coefficients of the Fourier-transformed filter tend to be small, the size of the prior covariance matrix can be
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Figure 6. Spline-based LNP and LNLN consistently outperformed their no-spline versions on three example neurons from
different data sets (see Methods 4.1 Experimental data for details). A1-C1: STRFs estimated from LNP with or without spline;
A2-C2 Subunit STRFs estimated from LNLN with or without spline, where number of subunits k=4 for all cases; A3-C3:
predictive performance comparison of LNP and LNLN with or without spline, measured by the averaged correlation
coefficients of the test set response and the predictive ones.
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reduced, leading to a speed up in the optimization process. However, as the efficiency of fASD is controlled completely by
the initial frequency truncation, and the level of frequency to be truncated have to be fixed before the evidence optimization
starts, one needs to resort back to grid search and cross-validation for choosing an good starting point, making the automatic
hyperparameters selection via evidence optimization less automatic and comparable to the need to find the optimal degrees of
freedom for the spline basis. Importantly, fASD is so far only applicable within the framework of linear model with Gaussian
additive noise, while our approach is ready to use in nonlinear model with non-Gaussian noise, as shown for an LNLN model.

Regarding the inference for multiple STRFs in LNLN-cascade models, previous work has attempted to provide efficient
algorithms by first retrieving subunit STRFS through spike-triggered clustering methods such as soft-clustering13 or semi-
NMF12. These were subsequently used to estimate other model parameters via gradient descent while holding the subunit
STRFs fixed. Utilising only the collection of stimuli that elicit a spike, these approaches have advantages in terms of the
computational cost in time and memory compared to the direct fitting of the complete model using gradient descent11, 14.

The ease of using these algorithms relying on the spike-triggered ensemble under white noise stimulation is also the
disadvantage of these approaches – they can only be applied to spike data under white noise stimulation. In many cases,
experiments today record more diverse measurements from neurons, such as two-photon calcium imaging18, 19 or synaptic
current recording20 under more diverse types of stimulation, such as correlated noise and natural stimuli21. In those cases,
spike-triggered analysis can not be used directly without modification, as the spike-triggered average is no longer the maximum
likelihood estimate3. In contrast, our method does not rely on the Gaussianity of the stimulus or the discreteness of the response,
and in principle can be generalized to other stimuli distribution and other response types.

In addition, current spike-triggered clustering methods rely on temporally collapsing the 3D stimuli to further reduce the
model complexity, assuming all subunits share the same temporal response kernel. This limits the usability of these methods to
some very specific cell types, and will not account for the spatio-temporal inseparable computation implemented by neurons
receiving inputs from multiple sources, such as bi-stratified On-Off direction selective cell in the retina22. In this case, a more
general approach such as our method is preferred.

3.3 Further extensions
Here, we only showcased how to estimate STRFs using natural cubic spline in a set of popular models with standard gradient
descent with L1 regularization. This simple spline add-on can be directly incorporated into other previous models11, 14 with
different constraints, regularization and optimization techniques, as it only changed the linear step of the models without
modifying other parts.

To further improve model prediction performance, a response-history filter (as shown in Figure 1) and flexible nonlinearity
can be added to the model, both of which can also be parameterized by a 1D spline basis. With such extra flexibility, a model
can better adapt to the cell-specific firing threshold and adaptation to the stimulus ensemble. Still, even with the response-history
filter, a STRF model can only account partially for the total variability of the neuronal responses, meaning such variability might
be contributed from other sources. Future extension of the current GLM for STRFs can consider incorporating more diverse
sources of behavioral data23 of the experimental animal under experimental or naturalistic settings as 1D time-dependent filters.

4 Methods
4.1 Data sets
Simulated data For the simulated data shown in Figure 2 and 4, we used a STRF with 30 time frames and 40 pixels in space
(as shown in both Figure as ”ground truth”) and generated responses with two types of flicker bar stimuli: Gaussian white noise
and pink noise. We used a fixed exponential nonlinearity for LNP models. For Figure 5, we used two 20x20 pixels antagonistic
center-surround STRF and only 2D Gaussian white noise was used as stimulus. We used a fixed exponential function for the
filter nonlinearity and a softplus function for the output nonlinearity.

For all simulations, we measured the similarity of the ground truth STRF and the model estimators by computing the MSE
between the two, after dividing by the norm of themselves.

For Figure 2, the similarity is measured at various length of stimulus (nsamples), which were scaled by different factors
(factor ∈ 0.5,1,2,4,8,16,32,64) respect to the number of coefficients of the STRF. For Figure 4 and 5, the similarity is
measured at various length of time (time ∈ 0.5,1,2,4,8,16,32,64 minutes)), which is equal to time = nsamples×∆, where ∆ is
the time bin size and took the value of 0.033 s.

Error bars in Figure 2-5 were obtained by averaging 10 trials of simulations with different random seeds.

Experimental data We used the following previously published data sets for Figure 6A-C:

1. Extracellularly recorded spikes from tiger salamander retinal ganglion cells14, available to download at https://
github.com/baccuslab/inferring-hidden-structure-retinal-circuits;
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2. Extracellular recorded spikes from V1 neurons of macaque monkeys16, available on request from the authors;

3. Extracellular recorded spikes from tiger salamander retinal ganglion cells12, available to download at https://gin.
g-node.org/gollischlab/Liu_etal_2017_RGC_spiketrains_for_STNMF

4.2 Previous methods
Spike-triggered Average (STA) The STA was computed as the average of all stimuli that proceeded a spike1:

wSTA =
1
n

XT y (1)

where X is the stimulus design matrix, y the response, n can be the number of spikes or the number of samples (rows) in X
and y for non-spike data.

Whitened spike-triggered average (wStA) The maximum-likelihood estimator under a Gaussian noise model, or whitened-
STA (wSTA), was computed by multiplying the STA with the inverse of the stimulus auto-correlation matrix:

wMLE = (XT X)−1XT y (2)

But in practice and in our code base, we did not compute the matrix inverse explicitly but compute the least squared solution
instead.

Maximum-a-posteriori estimator (MAP) Similar, the MAP under a Gaussian noise model was computed by adding the
inverse of the prior covariance to the stimulus auto-correlation matrix:

wMAP = (XT X +C−1)−1XT y (3)

where C is a prior covariance matrix of choice, e.g. corresponding to a smoothness or sparseness assumption5, 6. Its
hyperparameters can be optimized by minimizing the negative log-evidence5, 6:

CostMAP =
n
2

log|2πσ
2|+ 1

n
log|CΛ

−1|− 1
n

µ
T

Λµ +
1

2σ2 Y TY (4)

where σ is variance of the additive Gaussian noise, µ and Λ are posterior mean and covariance, respectively:

µ =
1
σ

ΛXT y (5)

and

Λ = (
1

σ2 XT X +C−1)−1 (6)

Smoothness prior covariance matrix for ASD The 1D ASD prior covariance matrix is formulated as following5:

Ci j = exp(−ρ−
∆i j

2δ 2 ) (7)

where ∆i j is the squared distance between STRF coefficients wi and w j, ρ controls the scale and δ controls the smoothness.
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h j = x j+1− x j
a−j (x) = (x j+1− x)/h j c−j (x) = [(x j+1− x)3/h j−h j(x j+1− x)]/6
a+j (x) = (x− x j)/h j c+j (x) = [(x− x j)

3/h j−h j(x− x j)]/6
Di,i = 1/hi Di,i+1 =−1/hi−1/hi+1 Di,i+2 = 1/hi+1
Bi,i = (hi +hi+1)/3 i=1...k-2
Bi,i+1 = hi+1/6 Bi+1,i = hi+1/6 i=1...k-3

Table 2. Basis functions for natural cubic spline.

Locality prior covariance matrix for ALD The 1D ALD prior covariance matrix is formulated as following6:

C =C
1
2
s (BTC f B)C

1
2
s (8)

where B is an orthogonal basis matrix for the 1D discrete Fourier transform, Cs and C f are the diagonal ALD prior
covariance in space and frequency, respectively, which can be constructed as:

Cs,ii = exp(− 1
2τ2

s
(χi−νs)

2)) (9)

where τs is scalar values control the shape and extent of the local region, χ is the STRF coefficient coordinates in spacetime
and νs is center coordinate of the STRF. And

C f ,ii = exp(−1
2
(|τ f ωi|−ν f )

2)) (10)

where τs is scalar values control the scale of smoothness in frequency, ω is of STRF coefficient coordinates in frequency
and ν f is center coordinate of the STRF in Fourier domain.

High-dimensional prior covariance matrix can be approximated by taking the Kronnecker product (⊗) of the 1D covariance
matrix in each dimension.

4.3 Estimating STRFs with Natural Cubic Regression Splines
To generate a natural cubic spline matrix (S), we used the implementation from PATSY24, which is a Python equivalent of the
original implementation in R package MCGV9. The only hyperparameter needed to generate a 1D spline basis matrix is the
number of basis functions, or the degrees of freedom (d f ), as we assume that all knots are equally-spaced.

S = a−j (x)+a+j (x)+ c−j (x)Fj + c+j (x)Fj+1 if x j < x≤ x < x j+1 (11)

where S is the spline basis matrix, x is knot locations, F−1 = B−1D, F = (0,F−1,0) and a−j , a+j , c−j , c+j , B, D are defined
in Table 2.

An illustration of natural cubic splines can be seen in Figure 7. A spline-based STRF under a Gaussian noise model can be
fitted in the similar manner as the wSTA:

bSPL,MLE = (ST XT XS)−1ST XT y (12)

where b is the spline coefficients, and the corresponding RF is wSPL,MLE = SbSPL,MLE = S(ST XT XS)−1ST XT y.
The spline matrix can be extended to high-dimensions, which is also called tensor product smooth9, by simply taking the

Kronnecker product (⊗) of the basis functions in each dimension:

S = St ⊗Sx⊗Sy (13)
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4th basis Weighted 4th Basis
Ground Truth
Fitted STRF

fitted STRF
17th Basis
24th Basis

Weighted 17th Basis
Weighted 24th Basis

Ground Truth

Fitted STRF

A.

B.

Figure 7. Illustration of the Natural cubic spline basis. A. 1D natural cubic spline. Left: a set of cubic spline basis, with the
4rd basis highlighted. Right: how basis functions are combined and fitted to a simulated 1D RF as a smooth curve. B. 2D
natural cubic spline. Left: Two selected bases of 2D natural cubic spline. Middle: Weighted bases after fitted to a simulated 2D
RF. Right: An example of a fitted 2D STRF overlaid on the Ground Truth.

4.4 Spline-based GLMs with gradient descent
The spline coefficients can also be fitted by gradient descent with respect to the cost function defined in each model with added
regularization through L1 and L2 penalties.

For the LG model, the cost function is the mean square error:

CostLG = ∑(y−XSb)2/n+β [(1−α)‖b‖2 +α‖b‖1] (14)

where α is the balancing weight for L1 and L2 regularizers, β is the overall weight of regularization.
For LNP and LNLN model, the cost function is the negative log-likelihood:

λ = f (XSb),

CostLNP/LNLN =−ylog(λ )+∑∆λ +β [(1−α)‖b‖2 +α‖b‖1]
(15)

where λ is the conditional intensity or the instantaneous firing rate, ∆ is the size of time bin, and f (.) is a nonlinearity
applied to the filter output, which can be fixed as a softplus or exponential nonlinearity or be parameterized by a set of spline
basis (φ ):

f (x) =
nφ

∑
i=1

αiφi(x) (16)

where α is basis weight.
We used JAX25 for automatic differentiation and parameters optimization.

4.5 Spline-based spike-triggered clustering methods
Both k-means clustering and semi-NMF can be formulated as a matrix factorization problem:

min‖V±−W±HT
+‖2 (17)

where V is the spike-triggered ensemble, W is clustering centroids matrix (or subunit matrix), and H is the clustering label
(or subunit weight matrix). A spline basis can be easily incorporated into k-Means clustering by assuming that each centroid can
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be approximated by the same spline basis matrix: WSPL,centroid = SB, where B is the spline coefficient matrix for each subunit,
and can be computed as the least-squares solution to the linear matrix equation B = S†Wcentroid , where † is pseudo-inverse. For
semi-NMF, splines can also be combined with the update rules15:

W = SS†V H(HT H)−1 (18a)

H = H ∗

√
(V TW )++[H(W TW )−]

(V TW )−+[H(W TW )+]
(18b)

where ∗ is point-wise multiplication, A+ = (| A |+A)/2 and A− = (| A | −A)/2.

4.6 Comparison of Computation Time
For comparison of computation time in Figure 3, we used simulated 2D RFs of different sizes (15x15, 20x20 and 30x30 pixels,
respectively) and white noise stimuli. Simulations were carried out at different length of time in the same manner as Figure 4
and 5. The number of basis for SPL MLE were fixed as 5 and 10 along each dimension in all three cases. Measurements of
computation time were averaged over 10 repetitions and performed on a 2019 16-inch MacBook Pro with a 2.3 GHz 8-core
Intel Core i9 and 16 GB of RAM.

4.7 Data availability
All data used, except the data set (2) shown in Figure 6B, are available in Github (https://github.com/huangziwei/
data_RFEst). Data set (2) is available on request from the authors of16.

4.8 Code availability
All methods (spline-based GLMs, evidence optimization and spike-clustering methods) were implemented in Python3 and
available in GitHub (https://github.com/berenslab/RFEst). And Jupyter notebooks for all figures are available
also in Github (https://github.com/huangziwei/notebooks_RFEst)
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