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Abstract 1 

When encoding new episodic memories, visual and semantic processing are proposed to 2 

make distinct contributions to accurate memory and memory distortions. Here, we used 3 

functional magnetic resonance imaging (fMRI) and representational similarity analysis to 4 

uncover the representations that predict true and false recognition of unfamiliar objects. Two 5 

semantic models captured coarse-grained taxonomic categories and specific object features, 6 

respectively, while two perceptual models embodied low-level visual properties. Twenty-7 

eight female and male participants encoded images of objects during fMRI scanning, and 8 

later had to discriminate studied objects from similar lures and novel objects in a recognition 9 

memory test. Both perceptual and semantic models predicted true memory. When studied 10 

objects were later identified correctly, neural patterns corresponded to low-level visual 11 

representations of these object images in the early visual cortex, lingual, and fusiform gyri. In 12 

a similar fashion, alignment of neural patterns with fine-grained semantic feature 13 

representations in the fusiform gyrus also predicted true recognition. However, emphasis on 14 

coarser taxonomic representations predicted forgetting more anteriorly in ventral anterior 15 

temporal lobe, left perirhinal cortex, and left inferior frontal gyrus. In contrast, false 16 

recognition of similar lure objects was associated with weaker visual analysis posteriorly in 17 

early visual and left occipitotemporal cortex. The results implicate multiple perceptual and 18 

semantic representations in successful memory encoding and suggest that fine-grained 19 

semantic as well as visual analysis contributes to accurate later recognition, while processing 20 

visual image detail is critical for avoiding false recognition errors. 21 

 22 

 23 

 24 

 25 
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Significance Statement 26 

People are able to store detailed memories of many similar objects. We offer new insights 27 

into the encoding of these specific memories by combining fMRI with explicit models of how 28 

image properties and object knowledge are represented in the brain. When people processed 29 

fine-grained visual properties in occipital and inferior temporal cortex, they were more likely 30 

to be recognize the objects later, and less likely to falsely recognize similar objects. In 31 

contrast, while object-specific feature representations in fusiform predicted accurate memory, 32 

coarse-grained categorical representations in frontal and temporal regions predicted 33 

forgetting. The data provide the first direct tests of theoretical assumptions about encoding 34 

true and false memories, suggesting that semantic representations contribute to specific 35 

memories as well as errors. 36 

 37 
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Introduction 51 

Humans are able to remember objects in great detail and discriminate them in memory from 52 

others that are similar in appearance and type (Standing, 1973). To achieve this, highly 53 

specific memories must be encoded. Successful object encoding engages diverse cortical 54 

regions alongside the hippocampus (Kim, 2011). These areas intersect with networks 55 

involved in visual object processing and semantic cognition (Binder et al., 2009; Clarke and 56 

Tyler, 2014). However, little is known about the neural operations these regions support 57 

during encoding. According to fuzzy-trace theory, the specific memory traces that contribute 58 

to true recognition depend on encoding of perceptual features, while semantic gist 59 

representations promote both true and false recognition (Brainerd and Reyna, 1990). 60 

However, recent data suggest that perceptual relations between studied items and lures can 61 

also trigger false recognition (Naspi et al., 2020). Here, we used functional magnetic 62 

resonance imaging (fMRI) and representational similarity analysis (RSA) to investigate the 63 

perceptual and semantic representations engaged that allow people to recognize these same 64 

objects later among perceptually and semantically similar lures. 65 

 66 

In line with fuzzy-trace theory, a few fMRI studies have shown stronger activation in 67 

occipito-temporal regions when people later successfully recognize specific studied objects 68 

than when they misrecognize similar lures (Garoff et al., 2005; Gonsalves et al., 2004; Okado 69 

and Stark, 2005). However, activation of similar posterior areas has also been associated with 70 

later false recognition (Garoff et al., 2005), and activation in left inferior frontal gyrus – a 71 

region typically associated with semantic processing – with later true recognition (Pidgeon 72 

and Morcom, 2016). Such results appear to challenge any simple mapping between 73 

perceptual and semantic processing and true and false recognition (see also Naspi et al., 74 

2020). However, one cannot infer type of processing based on presence or absence of 75 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 31, 2021. ; https://doi.org/10.1101/2021.03.31.437847doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.31.437847
http://creativecommons.org/licenses/by/4.0/


activation alone. Here, we investigated the underlying processes that give rise to such effects, 76 

using RSA to test whether patterns of neural similarity that indicate visual and semantic 77 

processing predict subsequent memory performance. 78 

 79 

Object recognition involves visual analysis and the computation of meaning, proceeding in an 80 

informational gradient along the ventral visual pathway (Clarke and Tyler, 2015). The coarse 81 

semantic identity of an object emerges gradually from vision in posterior cortices including 82 

lingual, fusiform, parahippocampal, and inferior temporal gyri that integrate semantic 83 

features capturing taxonomic relationships (Devereux et al., 2013; Mahon et al., 2009; Tyler 84 

et al., 2013). The lingual and fusiform gyri in particular are also engaged when memories of 85 

objects are encoded (Kim, 2011). At the apex of the ventral pathway, the perirhinal cortex 86 

provides the finer-grained feature integration required to differentiate similar objects (Clarke 87 

and Tyler, 2014; Devlin and Price, 2007; Winters and Bussey, 2005), and activation here 88 

predicts later memory for specific objects (Chen et al., 2019). Other researchers ascribe this 89 

role more broadly to the anterior ventral temporal cortex, considered a semantic hub that 90 

integrates modality-specific features into transmodal conceptual representations (Lambon 91 

Ralph et al., 2017). Beyond the ventral stream, left inferolateral prefrontal regions supporting 92 

controlled, selective semantic processing are also critical for memory encoding (Gabrieli et 93 

al., 1998; Kim, 2011). 94 

 95 

According to theory, the perceptual and semantic representations encoded in memory traces 96 

reflect how items were originally processed (Craik and Lockhart, 1972; Otten and Rugg, 97 

2001). We therefore expected that some of these ventral pathway and inferior frontal 98 

representations would be revealed in distinct distributed activity patterns giving rise to later 99 

true and false recognition. We quantified perceptual representations in terms of low-level 100 
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visual attributes of object images, and semantic representations of the objects’ concepts in 101 

terms of their coarse taxonomic category membership as well as their specific semantic 102 

features. We used these models to identify representational similarity patterns between 103 

objects at encoding using a novel approach that combined RSA and the subsequent memory 104 

paradigm in a single step. This allowed us to test where the strength of perceptual and 105 

semantic object representations predicts subsequent accurate memory and false recognition of 106 

similar lures.   107 

Materials and Methods 108 

Participants 109 

Twenty-eight right-handed adults aged 18-35 years underwent fMRI scanning (M = 23.07 110 

years, SD = 3.54; 18 females, 10 males). Data from a further 4 participants were excluded 111 

due to technical failures. All participants also spoke English fluently (i.e., had spoken English 112 

since the age of 5 or lived in an English-speaking country for at least 10 years) and had 113 

normal or corrected-to-normal vision. Exclusion criteria were a history of a serious systemic 114 

psychiatric, medical or a neurological condition, visual issues precluding good visibility of 115 

the task in the scanner, and standard MRI exclusion criteria (see https://osf.io/ypmdj for 116 

preregistered criteria). Participants were compensated financially. They were contacted by 117 

local advertisement and provided informed consent. The study was approved by the 118 

University of Edinburgh Psychology Research Ethics Committee (Ref. 116-1819/1). All the 119 

following procedures were pre-registered unless otherwise specified. 120 

Stimuli 121 

Stimuli were pictures of objects corresponding to 491 of the 638 basic-level concepts in The 122 

Centre for Speech, Language and the Brain concept property norms (the CSLB norms; 123 

Devereux et al., 2014). These were members of 24 superordinate categories (Appliance, Bird, 124 
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Body Part, Clothing, Container, Drink, Fish, Flower, Food, Fruit, Furniture, Invertebrate, 125 

Kitchenware, Land Animal, Miscellaneous, Music, Sea Creature, Tool, Toy, Tree, Vegetable, 126 

Vehicle, Water Vehicle, Weapon), and 238 were living things and 253 non-living things. We 127 

sourced two images for each basic-level concept. Of the 982 images, 180 were a subset of the 128 

images used by Clarke and Tyler (2014), 180 were compiled from the Bank of Standardized 129 

Stimuli (BOSS; Brodeur et al., 2014) and the remaining 622 were taken from the Internet. 130 

Each study list included single exemplar images of either 328 or 327 concepts. Of these, half 131 

were subsequently tested as old and half were subsequently tested test as lures. Each test list 132 

consisted of 491 items: 164 (or 163) studied images, 164 (or 163) similar lures (i.e., images 133 

of different exemplars of studied basic-level concepts), and 163 (or 164) novel items (i.e., 134 

images of basic-level concepts that had not been studied). Three filler trials prefaced the test 135 

phase. For each participant, living and non-living concepts were randomly allocated to the 136 

conditions with equal probability, i.e., to be studied/lure or novel items. Each study and test 137 

list was presented in a unique random trial order.    138 

Procedure  139 

The experiment comprised a scanned encoding phase followed by a recognition test phase 140 

outside the scanner. Stimuli were presented using MATLAB 2019b (The MathWorks Inc., 141 

2019) and PsychToolbox (Version 2.0.14; Kleiner et al., 2007). In the scanner, stimuli were 142 

viewed on a back-projection screen via a mirror attached to the head coil. Earplugs were 143 

employed to reduce scanner noise, and head motion was minimized using foam pads. During 144 

the study phase participants viewed one image at a time, and they were asked to judge 145 

whether the name of each object started with a consonant or with a vowel, responding with 146 

either index finger via handheld fiber-optic response triggers. By requiring participants to 147 

retrieve the object names, we ensured that they processed the stimuli at both visual and 148 

semantic levels. Participants were not informed of a later memory test. Images were 149 
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presented centrally against a white background for 500 ms. This was followed by a black 150 

fixation cross with duration sampled from integer values of 2 to 10 s with a flat distribution, 151 

and then a red fixation cross of 500 ms prior to the next trial, for a stimulus onset asynchrony 152 

(SOA) of 3-11 s (M = 6). At test, participants viewed one image at a time for 3 s followed by 153 

a black fixation cross for 500 ms, and they judged each picture as “old” or “new” indicating 154 

at the same time whether this judgment was accompanied by high or low confidence using 155 

one of 4 responses on a computer keyboard. Mappings of responses to hands were 156 

counterbalanced at both encoding and retrieval.  157 

fMRI acquisition 158 

Images were acquired with a Siemens Magnetom Skyra 3T scanner at the Queen’s Medical 159 

Research Centre (QMRI) at the Royal Infirmary of Edinburgh. T2*-weighted functional 160 

images were collected by acquiring multiple echo-time sequences for each echo-planar 161 

functional volume (repetition time (TR) = 1700 ms, echo time (TE) = 13 ms (echo-1), 31 162 

(echo-2) ms, and 49 ms (echo-3)). Functional data were collected over 4 scanner runs of 360 163 

volumes, each containing 46 slices (interleaved acquisition; 80 × 80 matrix; 3 mm × 3 mm × 164 

3 mm, flip angle = 73°). Each functional session lasted ~ 10 min. Before functional scanning, 165 

high-resolution T1-weighted structural images were collected with TR = 2620 ms, TE = 4.9 166 

ms, a 24-cm field of view (FOV), and a slice thickness of 0.8-mm. Two field map magnitude 167 

images (TE = 4.92 ms and 7.38 ms) and a phase difference image were collected after the 2nd 168 

functional run. At the end, T2-weighted structural images were also obtained (TR= 6200 ms 169 

and TE = 120 ms). 170 

 171 

Image preprocessing 172 

Except where stated, image processing followed procedures preregistered at 173 

https://osf.io/ypmdj and was conducted in SPM 12 (v7487) in MATLAB 2019b. The raw 174 
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fMRI time series were first checked to detect artefact volumes that were associated with high 175 

motion or were statistical outliers (e.g. due to scanner spikes). We checked head motion per 176 

run using an initial realignment step, classifying volumes as artefacts if their absolute motion 177 

was > 3 mm or 3 deg, or between-scan relative motion > 2 mm or 2 deg. Outlier scans were 178 

then defined as those with normalized mean or standard deviation (of absolute values or 179 

differences between scans) > 7 SD from the mean for the run. Volumes identified as 180 

containing artefacts were replaced with the mean of the neighboring non-outlier volumes, or 181 

removed if at the end of a run. If more than half of the scans in a run had artefacts, that run 182 

was discarded. Artefacts were also modeled as confound regressors in the first level design 183 

matrices. Next, BOLD images acquired at different echo times were realigned and slice time 184 

corrected using SPM12 defaults. The resulting images were then resliced to the space of the 185 

first volume of the first echo-1 BOLD time series. A brain mask was computed based on 186 

preprocessed echo-1 BOLD images using Nilearn 0.5.2 and combined with a grey-and-white 187 

matter mask in functional space for better coverage of anterior and ventral temporal lobes 188 

(Abraham et al., 2014). The three echo time series were then fed into the Tedana workflow 189 

(Kundu et al., 2017), run inside the previously created brain mask. This workflow 190 

decomposed the time series into components and classified each component as BOLD signal 191 

or noise. The three echo series were optimally combined and noise components discarded 192 

from the data. The resulting time series were unwarped to correct for inhomogeneities in the 193 

scanner's magnetic field: the voxel displacement map calculated from the field maps was 194 

coregistered to the first echo-1 image from the first run, and applied to the combined time 195 

series for each run. The preprocessed BOLD time series corresponding to the optimal 196 

denoised combination of echoes outputted by the Tedana workflow were then used for RSA 197 

analysis, where we used unsmoothed functional images in native space to keep the finer-198 

grained structure of activity. For univariate analysis, the preprocessed BOLD time series were 199 
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also spatially normalized to MNI space using SPM's non-linear registration tool, DARTEL; 200 

spatially normalized images were then smoothed with an 8 mm isotropic full-width half 201 

maximum Gaussian kernel. 202 

 203 

Experimental design and statistical analysis 204 

Sample size 205 

The sample size was determined using effect sizes from two previous studies. Staresina et al. 206 

(2012) reported a large encoding-retrieval RSA similarity effect (d = 0.87). However, 207 

subsequent memory effects are typically more subtle, for example d = 0.57 for an activation 208 

measure (Morcom et al., 2003). We calculated that, with N = 28, we would have .8 power to 209 

detect d = 0.55 for a one sample t-test at alpha = 0.05 (G*Power 3.1.9.2). 210 

 211 

Behavioral analysis 212 

To assess whether differences in task engagement during memory encoding predicted later 213 

memory, we modelled the effects of encoding task accuracy (0, 1) on subsequent memory 214 

outcomes using two separate generalized linear mixed effect models (GLMM) for studied 215 

items tested as old (subsequent hits and misses as predictors), and for studied items tested as 216 

lures (subsequent false alarms and correct rejection as predictors). Similarly, to assess any 217 

differences in study phase reaction times (RTs) according to subsequent memory status, we 218 

used two further linear mixed effect models (LMM). At test, to evaluate the effects on 219 

memory of perceptual and semantic similarity between objects, we also applied a generalized 220 

linear mixed model following the methods of Naspi et al. (2020). This had dependent 221 

measures of response at test (“old” or “new”) and confusability predictors calculated for each 222 

image and concept. C1 visual and color confusability were defined as the similarity value of 223 

an image with its most similar picture (i.e., the nearest neighbor) from Pearson correlation 224 
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and earth’s mover distance metrics, respectively. Concept confusability was calculated by a 225 

weighted sum of the cosine similarities between objects in which each weight was the 226 

between-concept similarity itself, i.e., the sum of squared similarities (see Naspi et al., 227 

(2020)). All the analyses described above were carried out data with the lme4 package 228 

(Version 1.1-23) in R (Version 4.0.0). Models included random intercepts to account for 229 

variation over items and participants. 230 

 231 

Multivariate fMRI analysis 232 

Overview 233 

The goal of our study was to investigate how perceptual and semantic representations 234 

processed at encoding predict successful and unsuccessful mnemonic discrimination. To test 235 

this, we used RSA to assess whether the fit of perceptual and semantic representational 236 

models to activity patterns at encoding predicted subsequent memory. In two main sets of 237 

analyses we examined representations predicting later true recognition of studied items, and 238 

representations predicting false recognition of similar lures. We implemented a novel 239 

approach that models the interaction of representation similarity with subsequent memory in 240 

a single step. Each memory encoding model contrasts the strength of visual and semantic 241 

representations of items later remembered versus forgotten (or falsely recognized versus 242 

correctly rejected) within the same representational dissimilarity matrix (RDM). In a third set 243 

of analyses we also aimed to replicate Clarke and Tyler (2014) key findings regarding 244 

perceptual and semantic representations irrespective of memory. All RSA analyses were 245 

performed separately for each participant on trial-specific parameter estimates from a general 246 

linear model (GLM). We then followed three standard steps: 1) For each theoretical 247 

perceptual and semantic model, we created model RDMs embodying the predicted pairwise 248 

dissimilarity over items; 2) For each ROI (or searchlight sphere), we created fMRI data 249 
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RDMs embodying the actual dissimilarity of multivoxel activity patterns over items; 3) We 250 

determined the fits between the model RDMs and the fMRI data RDM for each ROI (or 251 

searchlight sphere). The implementation of these steps is outlined in the following sections. 252 

 253 

RSA first level general linear model 254 

Statistical analysis of fMRI data was performed in SPM12 using the first-level GLM and a 255 

Least-Squares-All (LSA) method (Mumford et al., 2012). For each participant, the design 256 

matrix included one regressor for each trial of interest, for a total of 327 or 328 regressors 257 

(depending on counterbalancing), computed by convolving the 0.5 s duration stimulus 258 

function with a canonical hemodynamic response function (HRF). For each run, we also 259 

included twelve motion regressors comprising the three translations and three rotations 260 

estimated during spatial realignment, and their scan-to-scan differences, as well as individual 261 

scan regressors for any excluded scans, and session constants for each of the 4 scanner runs. 262 

The model was fit to native space pre-processed functional images using Variational Bayes 263 

estimation with an AR(3) autocorrelation model (Penny et al., 2005). A high-pass filter with a 264 

cutoff of 128 s was applied and data were scaled to a grand mean of 100 across all voxels and 265 

scans within sessions. Rather than using the default SPM whole-brain mask (which requires a 266 

voxel intensity of 0.8 of the global mean and can lead to exclusion of ventral anterior 267 

temporal lobe voxels), we set the implicit mask threshold to 0 and instead included only 268 

voxels which had at least a 0.2 probability of being in grey or white matter, as indicated by 269 

the tissue segmentation of the participant’s T1 scan.  270 

 271 

Regions of interest 272 

All regions of interests (ROIs) are shown in Figure 1. We defined six ROIs including areas 273 

spanning the ventral visual stream, which have been implicated in visual and semantic 274 

feature-based object recognition processes (Clarke and Tyler, 2014; Clarke and Tyler, 2015). 275 
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We also included the left inferior frontal gyrus, strongly implicated in semantic contributions 276 

to episodic encoding (Kim, 2011), and bilateral anterior ventral temporal cortex, which is 277 

implicated in semantic representation (Lambon Ralph et al., 2017) and is hypothesized to 278 

contribute to false memory encoding, albeit mainly in associative false memory tasks 279 

(Chadwick et al., 2016; Zhu et al., 2019). Except where explicitly stated, ROIs were bilateral 280 

and defined in MNI space using the Harvard-Oxford structural atlas: 1) the early visual cortex 281 

(EVC; BA17/18) ROI was defined using the Julich probabilistic cytoarchitectonic maps 282 

(Amunts et al., 2000) from the SPM Anatomy toolbox (Eickhoff et al., 2005); 2) the posterior 283 

ventral temporal cortex (pVTC) ROI consisted of the inferior temporal gyrus (occipito-284 

temporal division; ITG), fusiform gyrus (FG), lingual gyrus (LG), and parahippocampal 285 

cortex (posterior division; PHC); 3) the perirhinal cortex (PrC) ROI was defined using the 286 

probabilistic perirhinal map including voxels with a > 10% probability to be in that region 287 

(Devlin and Price, 2007; Holdstock et al., 2009); 4) the anterior ventral temporal cortex 288 

(aVTC) ROI included voxels with >30% probability of being in the anterior division of the 289 

inferior temporal gyrus and >30% probability of being in the anterior division of the fusiform 290 

gyrus; 5) the left inferior frontal gyrus (LIFG; BA44/45) consisted of the pars triangularis and 291 

pars opercularis. Lastly, we used univariate analysis as a preregistered method to define 292 

additional ROIs for RSA around any regions not already in the analysis that showed 293 

significant subsequent memory effects. Based on this analysis, we also included 6) the left 294 

inferior temporal gyrus (occipito-temporal division; LITG) as defined using the Harvard-295 

Oxford atlas (see Results, Univariate fMRI analysis). The LITG has been previously 296 

implicated in true and false memory encoding (Dennis et al., 2007; Kim and Cabeza, 2007). 297 

The ROIs in Figure 1 are mapped on a pial representation of cortex using the Connectome 298 

Workbench (https://www.humanconnectome.org/software/connectome-workbench). 299 

 300 
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 301 

Figure 1. Binary ROIs overlaid on a pial cortical surface based on the normalized structural 302 

image averaged over participants. Colored ROIs represent regions known to be important in 303 

episodic encoding and in visual or semantic cognition. Circled numbers specify different 304 

subregions within pVTC (see Region of Interest for details).  305 

 306 

RSA region of interest analysis 307 

Model RDMs. We created four theoretical RDMs using low-level visual, color, binary-308 

categorical, and specific object semantic feature measures. Figure 2 illustrates the 309 

multidimensional scale (MDS) plots for the perceptual and semantic relations expressed by 310 

these models, and Figure 3 shows the model RDMs. Memory encoding RDMs are displayed 311 

in Figure 3A and 3B, and overall RDMs irrespective of memory in Figure 3C. 312 
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 313 

 314 

Figure 2. MDS plots for perceptual and semantic similarities for the four models. Pair-wise 315 

similarities were calculated to create representational dissimilarity matrices (RDMs). A, C1 316 

visual similarity codes for a combination of orientation and shape (e.g., round objects towards 317 

the top, horizontal shapes on the right, vertical shapes at the bottom). B, Color similarity 318 

represents color saturation and size information (i.e., from bright on the left to dark at the 319 

bottom, and white towards the top). C, Binary categorical semantic similarity codes for 320 

domain-level representations distinguishing animals, plants and nonbiological objects 321 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 31, 2021. ; https://doi.org/10.1101/2021.03.31.437847doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.31.437847
http://creativecommons.org/licenses/by/4.0/


(bottom-left, top, bottom-right, respectively). D, Semantic feature similarity codes for finer-322 

grained distinctions based on features of each concept (e.g., differences within living things at 323 

the bottom, non-living things on the left, and many categories of animal on the top-right). The 324 

objects shown are taken from a single subject at encoding. 325 

 326 

1) The early visual RDM was derived from the HMax computational model of vision 327 

(Riesenhuber and Poggio, 1999; Serre et al., 2007) and captured the low-level (V1) visual 328 

attributes of each picture in the C1 layer. Pairwise dissimilarity values were computed as 1 - 329 

Pearson’s correlations between response vectors for gray-scale versions of each image. 330 

2) The color RDM was calculated using the color distance package (Version 1.1.0; Weller 331 

and Westneat, 2019) in R. After converting the RGB channels into CIELab space we 332 

calculated the earth mover’s distance between each pair of images (Rubner et al., 2000). We 333 

then normalized the distance so that the dissimilarity values ranged from 0 (lowest) to 1 334 

(highest). 335 

3) The animal-nonbiological-plant RDM combined the 24 object categories together 336 

according to 3 domains: animal, nonbiological, and plants (Clarke and Tyler, 2014). Pairwise 337 

dissimilarity values in this RDM were either 0 (same domain) or 1 (different domain). 338 

4) Construction of the semantic feature RDM followed Clarke and Tyler (2014), but used 339 

updated property norms (Devereux et al., 2014). We first computed pairwise feature 340 

similarity between concepts from a semantic feature matrix in which each concept is 341 

represented by a binary vector indicating whether a given feature is associated with the 342 

concept or not. Pairwise dissimilarity between concepts was computed as 1 – S where S is 343 

equal to the cosine angle between feature vectors. This RDM captures both categorical 344 

similarity between objects (as objects from similar categories have similar features) and 345 

within-category object individuation (as objects are composed of a unique set of features). 346 
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For the analyses of memory encoding, model RDMs were split into two, giving one RDM for 347 

each subsequent memory analysis. The true subsequent memory RDMs included only items 348 

that were subsequently tested as old; these were coded as subsequent hits or subsequent 349 

misses (Fig. 3A). The false subsequent memory RDMs included only items that were 350 

subsequently tested as lures; these were coded as subsequent false alarms or subsequent 351 

correct rejections (Fig. 3B). For true subsequent memory, we computed dissimilarity between 352 

all pairs of subsequently remembered items, and all pairs of subsequently forgotten items, 353 

omitting pairings of subsequently remembered and subsequently forgotten items. Then, to 354 

assess how dissimilarity depended on subsequent memory we weighted the model RDMs so 355 

that the sum of the cells corresponding to remembered items equaled 1 and the sum of the 356 

cells corresponding to forgotten items equaled -1, so the dissimilarity values for all included 357 

trials summed to 0 (i.e., subsequent hits – subsequent misses). Thus, positive correlations of 358 

the model RDMs with the fMRI data RDMs indicate that the representations are aligned more 359 

strongly with neural patterns for items that are later remembered than forgotten. Conversely, 360 

negative correlations indicate greater alignment for items that are later forgotten than 361 

remembered items. For false subsequent memory, we followed the same procedure, but 362 

subsequent false alarms were substituted for subsequent hits, and subsequent correct 363 

rejections for subsequent misses. Analyses were implemented using custom MATLAB 2019b 364 

(The MathWorks Inc., 2019) and R (Version 4.0.0; R Core Team, 2017) functions 365 

(https://osf.io/ypmdj). For the RSA analyses irrespective of memory, we modeled 366 

dissimilarities between all item pairs, treating all trials in the same way (see Fig. 3C). 367 

 368 
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 369 

Figure 3. Representational dissimilarity matrices. A, Dissimilarity predictions of the four true 370 

subsequent memory models which included items that were later tested as old, coding 371 

subsequent hits positively (upper-left quadrants) and subsequent misses negatively (bottom-372 

right quadrants). B, Dissimilarity predictions of the four false subsequent memory models 373 

which included items that were later tested as lures, coding subsequent false alarms positively 374 

(upper-left quadrants) and subsequent correct rejections negatively (bottom-right quadrants). 375 

C, Dissimilarity models of object processing including all the items. D, Similarity between 376 

theoretical models. The specific models are unique for each participant. For visualization 377 

purposes, similarity values within true and false subsequent memory RDMs have not been 378 

scaled. 379 

 380 

 381 
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fMRI data RDMs. Parameter estimates were extracted from gray matter voxels in each ROI 382 

for all trials of interest. For each voxel, these betas were then normalized by dividing them by 383 

the standard deviation of its residuals (Walther et al., 2016). As for the model RDMs, we 384 

constructed separate fMRI data RDMs for the true and false subsequent memory and overall 385 

object processing analyses. For the true subsequent memory analysis, the fMRI data RDM 386 

represented activity patterns for concepts subsequently tested as old, and for the false 387 

subsequent memory analysis, the fMRI data RDM represented activity patterns for concepts 388 

subsequently tested as lures. For the overall analysis, the RDM represented activity patterns 389 

for all study trials. For the fMRI data RDMs for the subsequent memory analysis, as for the 390 

model RDMs, we computed dissimilarity between all pairings of subsequently remembered 391 

(or falsely recognized) items, and between all pairings of subsequently forgotten (or correctly 392 

rejected) items, omitting pairings between different trial types. Distance between each item 393 

pair was computed as 1 - Pearson’s correlation, creating a dissimilarity matrix.  394 

 395 
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Fitting model to data RDMs. Each fMRI data RDM was compared with each theoretical 396 

model RDM using Spearman’s rank correlation, and the resulting dissimilarity values were 397 

Fisher-transformed. For the subsequent memory analysis, we tested for significant positive 398 

and negative similarities between model RDM and fMRI data RDMs at the group level using 399 

a two-sided Fisher’s one-sample randomization (10,000 permutation) test for location with a 400 

Bonferroni correction over 6 ROIs. The permutation distribution of the test statistic T 401 

enumerates all the possible ways of permuting the correlation signs, positive or negative, of 402 

the observed values and computes the resulting sum. Thus, for a two-sided hypothesis, the p-403 

value is computed from the permutation distribution of the absolute value of T, calculating 404 

the proportion of values in this permutation distribution that are greater or equal to the 405 

observed value of T (Millard and Neerchal, 2001). For the overall analysis we only tested for 406 

significant positive similarities between model RDM and fMRI data RDMs (Clarke and 407 

Tyler, 2014), using a one-sided test, in which the p-value is evaluated as the proportion of 408 

sums in the permutation distribution that are greater than or equal to the observed sum T 409 

(Millard and Neerchal, 2001). To find the unique effect of model RDMs, each fMRI data 410 

RDM showing a significant effect was also compared with each theoretical model RDM 411 

while controlling for effects of all other significant model RDMs (using partial Spearman’s 412 

rank correlations). 413 

 414 

RSA searchlight analysis 415 

In addition to the targeted ROI analysis, we ran a whole-brain searchlight analysis. This 416 

followed the same 3 main steps as the ROI analysis (see RSA region of interest analysis). For 417 

each voxel, the fMRI data RDM was computed from parameter estimates for gray matter 418 

voxels within a spherical searchlight of radius 7 mm, corresponding to maximum dimensions 419 

5 × 5 × 5 voxels. Dissimilarity was again estimated using 1 - Pearson’s correlation. As in the 420 
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ROI analysis, this fMRI data RDM was compared with the model RDMs, and the resulting 421 

dissimilarity values were Fisher transformed and mapped back to the voxel at the center of 422 

the searchlight. The similarity map for each model RDM and participant was then normalized 423 

to the MNI template space (see Image preprocessing). For each model RDM, the similarity 424 

maps were entered into a group-level random-effects analysis and thresholded using 425 

permutation-based statistical nonparametric mapping (SnPM; 426 

http://www.nisox.org/Software/SnPM13/). This corrected for multiple comparisons across 427 

voxels and the number of theoretical model RDMs. As for the ROIs we performed two-tailed 428 

tests in the subsequent memory analyses and one-tailed tests for the overall analysis. 429 

Variance smoothing of 6 mm FWHM and 10,000 permutations were used in all analyses. We 430 

used cluster-level inferences with FWE-correction at α = 0.025 in each direction for the two-431 

tailed tests and α = 0.05 for the one-tailed test, in both cases with a cluster forming threshold 432 

of 0.005 uncorrected. All results are presented on an inflated representation of the cortex 433 

using the BrainNet Viewer (Xia et al., 2013, http://www.nitrc.org/projects/bnv/) based on a 434 

standard ICBM152 template. 435 

 436 

Univariate fMRI analysis 437 

In addition to RSA, we used univariate analysis to test whether activation in PrC was related 438 

to the conceptual confusability of an object, in a replication of Clarke and Tyler (2014), and 439 

whether this activation predicted memory. We also used activations to define additional ROIs 440 

(see Regions of interest). The first level GLM for each participant included one regressor of 441 

interest for each of the 4 experimental conditions (subsequent hits, misses, false alarms, and 442 

correct rejections). For each condition, we also included 4 linear parametric modulator 443 

regressors representing concept confusability values for each concept with other concepts in 444 

the CSLB property norms (Devereux et al., 2014). We first computed a semantic similarity 445 
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score between each pair of concepts (see RSA region of interest analysis, Model RDMs). The 446 

concept confusability score of each concept was then equal to the sum of squared similarities 447 

between it and the other concepts in the set. This was equivalent to a weighted sum of pair-448 

wise similarities in which each weight was the between-concept similarity itself, a measure 449 

used in our recent behavioral study (Naspi et al., 2020). As also specified in the 450 

preregistration, since the results of the concept confusability analysis diverged from those of 451 

Clarke and Tyler (2014), we ran an additional analysis using a measure of concept 452 

confusability with a stronger weighting scheme equivalent to theirs. They defined concept 453 

confusability as the exponential of the ranked similarities of all the paired concepts, which is 454 

very close to a nearest neighbor scheme in which each concept’s similarity is equal to its 455 

similarity to the most similar concept in the set. Due to our larger number of items the 456 

exponential weighting produced extremely large weights, so we substituted the simpler 457 

nearest neighbor scheme (the two measures were correlated at r = 0.98). We used an explicit 458 

mask including only voxels which had at least a 0.2 probability of being in grey matter as 459 

defined using the MNI template. To permit inferences about encoding condition effects 460 

across participants, contrast images were submitted to a second-level group analysis (one 461 

sample t-test) to obtain t-statistic maps. The maps were thresholded at p < 0.05, FWE-462 

corrected for multiple comparisons at the voxel level using SPM (the preregistration specified 463 

3dClustSim in AFNI, but this function had since been updated (Cox et al., 2017) so for 464 

simplicity we used the SPM default). Only regions whose activations involved contiguous 465 

clusters of at least 5 voxels were retained as ROIs for subsequent RSA analysis. 466 

 467 
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Code accessibility 468 

All analyses were performed using custom code and implemented either in MATLAB or R. 469 

All code and the data for the behavioral and the fMRI analyses are available through 470 

https://osf.io/z4c62/. 471 

Results 472 

Memory task performance 473 

In the study phase, participants correctly identified most of the time whether concepts began 474 

with a consonant or vowel on the incidental encoding task (M proportion = 0.78). Analysis on 475 

task engagement (see Materials and Methods, Behavioral data) using a GLMM showed that 476 

accuracy at encoding did not differ according to whether items that were tested as studied 477 

were later remembered relative to forgotten (β = 0.110, SEM = 0.242, z = 0.456, p = 0.649), 478 

or whether items that were tested as lures were later falsely recognized relative to correctly 479 

rejected (β = 0.051, SEM = 0.202, z = 0.251, p = 0.802). Similarly, a linear mixed model did 480 

not reveal any difference in RTs related to subsequent old items that were later remembered 481 

relative to forgotten (β = 0.002, SEM = 0.017, t = 0.123, p = 0.902), or subsequent lures that 482 

were later falsely recognized relative to correctly rejected (β = -0.013, SEM = 0.015, t = -483 

0.873, p = 0.383). Thus, the fMRI subsequent memory effects are not attributable to 484 

differences in accuracy or time on task at encoding.  485 

 486 

At test, as a simple check on the overall level of performance we used the discrimination 487 

index Pr, i.e., the difference between the probability of a hit to studied items and the 488 

probability of a false alarm to novel items. All participants passed the preregistered inclusion 489 

criterion of Pr > 0.1. Overall, discrimination collapsed across confidence was very good (M = 490 

0.649, SD = 0.131, t(27) = 26.259, p < 0.001). Discrimination was also above chance for high 491 
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confidence (M = 0.771, SD = 0.152, t(27) = 26.868, p < 0.001) and low confidence judgments 492 

(M = 0.330, SD = 0.145, t(27) = 12.014, p < 0.001). This suggests that low confidence 493 

responses at test carried veridical memory, so we followed our preregistered plan to include 494 

trials attracting both high and low confidence responses in the subsequent memory analysis. 495 

Following an analogous procedure for false recognition of similar lures corrected by 496 

subtracting the proportion of false alarms to novel items, we also found that this was 497 

significantly above chance for judgments collapsed across confidence (M = 0.271, SD = 498 

0.090, t(27) = 15.996, p < 0.001), and for both high confidence (M = 0.293, SD = 0.133, t(27) = 499 

11.618, p < 0.001) and low confidence (M = 0.157, SD = 0.160, t(27) = 5.187, p < 0.001) 500 

considered separately. 501 

 502 

We then used a GLMM to quantify the influence of perceptual and semantic variables on 503 

memory performance according to item status. Our variables of interest were condition 504 

(studied, lure, or novel), concept confusability, C1 visual confusability, and color 505 

confusability (see Behavioral data for details). Results revealed modulations of memory by 506 

perceptual and semantic variables in line with our recent behavioral study (Naspi et al., 507 

2020). People were less likely to recognize studied items for which the low-level visual 508 

representations (C1) were more similar to those of their nearest neighbor (β = -0.166, SEM = 509 

0.064, z = -2.584, p = 0.015), and also less likely to recognize studied items with high 510 

concept confusability relative to novel items (β = -0.533, SEM = 0.067, z = -7.963, p < 511 

0.001). As expected, concept confusability also had a substantial effect on false recognition 512 

of similar lures relative to novel items, whereby images whose concepts were more confusable 513 

with other concepts in the set were less likely to be falsely recognized (β = -0.273, SEM = 514 

0.064, z = -4.292, p < 0.001). 515 

 516 
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Preregistered RSA analysis in regions of interest 517 

Perceptual and semantic representations predict true recognition  518 

To examine representations engaged during successful encoding we compared the fit of early 519 

visual, color, animal-nonbiological-plant, and semantic feature models for studied items 520 

tested as old that were subsequently remembered (number of trials, M = 61.41; range = 60-521 

146) versus forgotten (number of trials, M = 19.93; range = 17-104) (Fig. 4A). These 522 

comparisons were bidirectional, since engagement of perceptual and/or semantic processing 523 

in a region might either support or be detrimental to later memory. Thus, we used a two-sided 524 

Fisher’s randomization test T. In posterior ROIs, engagement of both perceptual and finer-525 

grained semantic representations tended to predict successful later recognition. In EVC, the 526 

early visual model strongly predicted later true recognition of studied items (M = 0.07, 95% 527 

CI [0.05, 0.09], T = 1.86, p < 0.001). Thus, when the neural patterns at study were 528 

representing visual information, items were more likely to be correctly recognized. Both the 529 

early visual and semantic feature models also predicted true recognition in pVTC (M = 0.03, 530 

95% CI [0.02, 0.04], T = 0.82, p < 0.001, and M = 0.02, 95% [CI: 0.01, 0.04], T = 0.67, p = 531 

0.007, respectively). In contrast, taxonomic semantic representations coded more anteriorly 532 

were associated with later forgetting. In aVTC and in the LIFG, model fit for categorical 533 

semantic information represented by the animal-nonbiological-plant domain was less for 534 

remembered than forgotten studied items (M = -0.01, 95% CI [-0.02, -0.01], T = 0.35, p = 535 

0.001, and M = -0.02, 95% CI [-0.04. -0.01], T = 0.65, p = 0.004, respectively). Thus, when 536 

neural patterns in these regions were aligned with items’ taxonomic categories, participants 537 

were less likely to successfully recognize them. No other results were significant. 538 

 539 

We also checked which representations showed unique effects that predicted memory after 540 

controlling for effects of other significant models using partial correlation. In pVTC, only the 541 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 31, 2021. ; https://doi.org/10.1101/2021.03.31.437847doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.31.437847
http://creativecommons.org/licenses/by/4.0/


early visual model uniquely predicted successful recognition memory for studied items (M = 542 

0.02, 95% CI [0.01, 0.03], T = 0.64, p = 0.004) (but see Exploratory ROI analysis). 543 

 544 

 545 
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Figure 4. Perceptual and semantic representations predicting subsequent memory for a priori 546 

ROIs and models. Plots show the group mean Fisher-transformed Spearman correlation 547 

coefficient reflecting perceptual and semantic representations associated with: A, true 548 

subsequent memory; B, false subsequent memory. Error bars represent the standard error of 549 

the mean (SEM) across participants. Asterisks indicate models for which Spearman’s rho 550 

differed significantly from zero at the group level (two-sided Fisher’s randomization test for 551 

location; Bonferroni correction calculated multiplying the uncorrected p-value by the number 552 

of comparisons made). * p < 0.05, ** p < 0.01, *** p < 0.001 553 

 554 

Weak perceptual representations predict false recognition  555 

To examine how the perceptual and semantic representations embodied in our theoretical 556 

models contributed to subsequent memory for lures, we compared RSA model fit for items 557 

that were later falsely recognized (number of trials, M = 30.71; range = 26-107) versus 558 

correctly rejected (number of trials, M = 50.61; range = 54-131) (Figure 4B). In posterior 559 

regions, weaker low-level visual representations of pictures predicted subsequent false 560 

recognition of lures. We observed this pattern in both the EVC and the LITG (M = -0.02, 561 

95% CI [-0.04, -0.01], T = 0.66, p = 0.047, and M = -0.02, 95% CI [-0.04, -0.01], T = 0.69, p 562 

= 0.026, respectively). Thus, when neural patterns in these regions were not aligned with the 563 

early visual model, items were more likely to be falsely recognized. No other results were 564 

significant.  565 

 566 

Perceptual and semantic object processing irrespective of memory 567 

Replicating Clarke and Tyler (2014), we also examined the perceptual and semantic 568 

representations of objects that were reflected in fMRI activity patterns regardless of memory 569 

encoding. The results (Fig. 5) showed that while visual information is broadly represented 570 
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posteriorly, activity patterns in the aVTC, PrC, and LIFG reflect finer-grained semantic 571 

information. Posteriorly, EVC showed a strong relationship with the low-level visual model 572 

(M = 0.08, 95% CI [0.06, 0.10], T = 2.21, p < 0.001), and a weaker but significant relation 573 

with the semantic feature model (M = 0.01, 95% CI [0.00, 0.01], T = 0.20, p = 0.032). More 574 

anteriorly, the low-level visual and semantic feature models were both significantly related to 575 

activity patterns in pVTC (M = 0.04, 95% CI [0.03, 0.04], T = 1.00, p < 0.001, and M = 0.02, 576 

95% CI [0.02, 0.03], T = 0.60, p < 0.001, respectively) and in LITG (M = 0.01, 95% CI [0.00, 577 

0.02], T = 0.26, p < 0.038, and M = 0.02, 95% CI [0.01, 0.02], T = 0.45, p < 0.001, 578 

respectively). At the apex of the ventral visual pathway, semantic feature information was 579 

coded in both the bilateral aVTC (M = 0.01, 95% CI [0.00, 0.01], T = 0.17, p = 0.006) and in 580 

bilateral PrC (M = 0.01, 95% CI [0.00, 0.01], T = 0.19, p < 0.001). These findings replicated 581 

those of Clarke and Tyler (2014). The specific semantic properties of objects were also 582 

represented in the LIFG (M = 0.01, 95% CI [0.01, 0.02], T = 0.30, p = 0.001).  583 

 584 
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 585 

Figure 5. Semantic and perceptual representations represented in ROIs regardless of memory 586 

encoding. Region of Interest (ROI) results comparing four model RDMs to patterns of 587 

activity along the ventral stream and frontal regions. Error-bars are standard error of the mean 588 

(SEM) across subjects. Asterisks above and below the bars depict p-values for tests of 589 

whether each individual Spearman’s correlation is greater than zero (one-sided Fisher’s 590 

randomization test for location; Bonferroni correction calculated multiplying the uncorrected 591 

p-value by the number of comparisons made). * p < 0.05, ** p < 0.01, *** p < 0.001 592 

 593 

We then ran a partial correlation on those ROIs showing significant effects for different 594 

models. As expected, patterns of activity in the EVC were uniquely related to the early visual 595 

model (M = 0.08, 95% CI [0.06, 0.10], T = 2.20, p < 0.001), replicating Clarke and Tyler's 596 

(2014) results. Thus, the semantic feature model was no longer significant when the early 597 

visual model was controlled for. More anteriorly, both low-level visual and semantic feature 598 
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information were uniquely related to the pattern of activity in the pVTC (M = 0.03, 95% CI 599 

[0.03, 0.04], T = 0.96, p < 0.001, and M = 0.02, 95% CI [0.01, 0.02], T = 0.54, p < 0.001, 600 

respectively). However, after controlling for the low-level visual model, activity patterns in 601 

the LITG were only uniquely associated with semantic feature representations (M = 0.02, 602 

95% CI [0.01, 0.02], T = 0.44, p < 0.001). Thus, like Clarke and Tyler (2014), we found that 603 

visual information is represented in early visual regions. We also replicated their finding that 604 

semantic feature similarity information was coded more anteriorly in the PrC, and found 605 

further, also anterior, regions that showed a similar pattern, in the aVTC and the LIFG (see 606 

also RSA searchlight fMRI analysis). 607 

 608 

Exploratory RSA analysis in regions of interest 609 

Perceptual and semantic representations in pVTC subdivisions predict true recognition 610 

In the preregistered analyses reported above, our large pVTC ROI showed evidence of both 611 

visual and semantic feature representations predicting memory success. We therefore 612 

explored whether four subdivisions of this large bilateral region showed distinct effects: the 613 

LG, ITG, FG, and PHC (see Regions of interest). Moreover, given our strong a priori 614 

prediction of involvement of PrC in subsequent memory, we ran exploratory analyses in left 615 

and right PrC separately. The results are shown below in Figure 6. Posteriorly, in bilateral 616 

LG, perceptual information related to the early visual model predicted later recognition of 617 

studied items (M = 0.03, 95% CI [0.01, 0.04], T = 0.74, p = 0.002), as it did in the EVC ROI. 618 

In contrast, more anteriorly, activity patterns in the FG related to both the low-level visual 619 

and semantic feature models predicted subsequent true recognition (M = 0.03, 95% CI [0.02, 620 

0.05], T = 0.87, p = 0.002, and M = 0.04, 95% CI [0.02, 0.05], T = 1.01, p < 0.001, 621 

respectively), as did categorical semantic information represented by the animal-622 

nonbiological-plants model in the PHC (M = 0.02, 95% CI [0.01, 0.03], T = 0.55, p = 0.019). 623 
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Lastly, activity related to the categorical semantic model in the left PrC predicted subsequent 624 

forgetting (M = -0.01, 95% CI [-0.02, 0.00], T = 0.28, p = 0.023). 625 

 626 

 627 

Figure 6. Perceptual and semantic representations predicting true subsequent memory in 628 

exploratory ROIs. Plots show the group mean Fisher-transformed Spearman correlation 629 

coefficient reflecting perceptual and semantic representations associated with true subsequent 630 

memory. Error bars represent the standard error of the mean (SEM) across participants. 631 

Asterisks indicate significance of tests of group level differences of Spearman’s rho from 632 

zero (two-sided Fisher’s randomization test for location; Bonferroni correction calculated 633 

multiplying the uncorrected p-value by the number of comparisons made). * p < 0.05, ** p < 634 

0.01, *** p < 0.001 635 

 636 

A partial correlation analysis for the FG (which showed effects of multiple models) 637 

confirmed that both the early visual and semantic feature models were uniquely associated 638 
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with later true recognition (M = 0.02, 95% CI [0.01, 0.03], T = 0.58, p = 0.034, and M = 0.03, 639 

95% CI [0.01, 0.04], T = 0.71, p = 0.002, respectively). Thus, both simple visual and object-640 

specific semantic information contributed to memory after controlling for each other.  641 

 642 

Lastly, following our main analyses of true and false memory encoding, we wanted to check 643 

for evidence that some of the key results differed according to encoding type. Thus, we 644 

compared the fit of our theoretical models for studied items tested as old that were 645 

subsequently remembered versus lures that were subsequently falsely recognized. Results 646 

showed that low-level visual information mapped in EVC was stronger for items that were 647 

subsequently remembered than falsely recognized (M = 0.04, 95% CI [0.02, 0.06], T = 1.16, 648 

p < 0.001). No other results were significant at the Bonferroni-corrected threshold, but 649 

without a correction the theoretically important object-specific semantic representations in 650 

FG were also stronger for true than false recognition (M = 0.02, 95% CI [0.00, 0.04], T = 651 

0.61, p = 0.030). 652 

 653 

Preregistered RSA searchlight analysis 654 

Perceptual and semantic representations associated with memory encoding 655 

The RSA searchlight analysis tested for any further brain regions coding for perceptual and 656 

semantic information associated with memory encoding (Figure 7 and Table 1). The true 657 

subsequent memory models showed significant fit to activity patterns in several areas beyond 658 

the a priori ROIs. The color similarity model was related to patterns in the right parietal 659 

opercular cortex, superior frontal gyrus, and precentral gyrus, and this representation at 660 

encoding predicted later successful recognition of studied items. Fine-grained semantic 661 

features represented in the right lateral occipital cortex (LOC) also predicted true recognition. 662 

Coarse categorical semantic representations in right inferior frontal gyrus (RIFG; 663 
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BA44/45/47) and frontal pole (FP) were associated with later forgetting, paralleling the 664 

findings for the a priori ROI in LIFG (BA44/45). 665 

 666 

Figure 7. RSA searchlight results for perceptual and semantic models. The figure shows 667 

regions in which multivoxel activity pattern predicted successful subsequent true recognition 668 

(hot map) and unsuccessful true recognition (i.e., subsequent forgetting, cool map). All 669 

significant clusters are shown at the FWE-corrected threshold used for analysis (see Materials 670 

and Methods: RSA searchlight analysis). No suprathreshold voxels survived for the subsequent 671 

false recognition models. Similarity maps are presented on an inflated representation of the 672 

cortex based on the normalized structural image averaged over participants. 673 
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 674 

 675 

Table 1. RSA searchlight results showing perceptual and semantic effects on successful 676 

true memory encoding  677 

 678 

Regions Cluster 

extent 

Cluster-level 

p(FWE) 

Pseudo-t x y z 

Early visual       

     R occipital pole 2493 0.005 10.04 18 -93 9 

     R lingual gyrus   8.91 15 -78 -6 

     L occipital pole   7.20 -12 -96 6 

Color       

     R parietal operculum cortex 1756 0.010 4.77 48 -21 24 

     R superior frontal gyrus 

     R precentral gyrus 

 

 

 

 

3.91 

3.58 

9 

18 

3 

-18 

66 

69 

Animal-nonbiological-plant       

     R inferior frontal gyrus (BA44) 1405 0.012 6.05 54 15 27 

     R inferior frontal gyrus (BA45) 

     R frontal pole 

 

 

 

 

5.27 

4.35 

52 

51 

24 

39 

18 

3 

     R inferior frontal gyrus (BA47)   3.34 33 30 -18 

Semantic feature       

     R lingual gyrus 1230 0.018 4.44 12 78 -12 

     R lateral occipital cortex   4.32 42 -75 -12 

     R occipital fusiform gyrus 

     R inferior temporal gyrus (OT) 

 

 

 

 

4.29 

3.43 

39 

45 

-72 

-60 

-12 

-15 
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MNI coordinates and significance levels are shown for the peak voxel in each cluster. 679 

Anatomical labels are provided for peak locations in each cluster. Effects in clusters smaller 680 

than 20 voxels not shown. OT = Occipito-temporal division. 681 

 682 

Perceptual and semantic object processing irrespective of memory 683 

Searchlight analysis was also conducted for the perceptual and semantic model RDMs across 684 

all trials regardless of memory encoding (Fig. 5 and Table 2). The models showed significant 685 

fit to multivoxel activity patterns in several areas beyond the a priori ROIs. In particular, the 686 

effects for the color model were largely restricted to the right lateral occipital cortex, right 687 

middle temporal gyrus, and intracalcarine cortex, but also extended into the left lateral 688 

occipital cortex and supramarginal gyrus. Categorical semantic representations represented 689 

by the animal-nonbiological-plant domain were largely restricted to posterior parts of the 690 

ventral stream, highlighting the coarse nature of object information represented in the 691 

posterior ventral temporal cortex. This included the right temporal fusiform cortex, the right 692 

lingual gyrus, and the posterior division of parahippocampal cortex, but also extended into 693 

the middle temporal lobe. In contrast, representation of finer-grained semantic properties of 694 

objects extended more anteriorly in the ventral pathway beyond the preregistered ROIs, into 695 

bilateral hippocampus, temporal pole and ventromedial frontal regions. 696 

 697 
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 698 

Figure 8. RSA searchlight results for perceptual and semantic models. The figure shows 699 

regions in which multivoxel activity pattern was associated with object processing (i.e., 700 

irrespective of memory encoding). All significant clusters are shown at the FWE-corrected 701 

threshold used for analysis (see Materials and Methods: RSA searchlight analysis). Similarity 702 

maps are presented on an inflated representation of the cortex based on the normalized 703 

structural image averaged over participants. 704 

 705 

 706 

Table 2. RSA results showing perceptual and semantic effect of object processing 707 
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Regions Cluster 

extent 

Cluster-level 

p(FWE) 

Pseudo-t x y z 

Early visual       

     R occipital pole 4844 0.002 13.10 18 -96 12 

     L occipital pole   13.02 -15 -99 6 

     R occipital fusiform gyrus   11.53 18 -78 -12 

Color       

     R lateral occipital cortex 1121 0.019 5.97 45 -75 -3 

     R middle temporal gyrus    3.45 36 -57 15 

     R intracalcarine cortex   3.45 21 -72 3 

     L lateral occipital cortex 714 0.044 5.67 -42 -81 -3 

     L supramarginal gyrus   3.66 -60 -48 15 

Animal-nonbiological-plant       

     R lateral occipital cortex 2110 0.005 6.05 45 -78 6 

     R lingual gyrus   5.98 30 -39 -6 

     R temporal fusiform cortex   4.18 39 -54 -18 

     L parahippocampal cortex 3865 0.002 5.14 -18 -39 -21 

     L middle temporal gyrus   4.58 -63 -42 0 

     L supramarginal gyrus   4.43 -60 -42 30 

Semantic feature       

     L lateral occipital cortex 

     R lateral occipital cortex 

28111 

 

0.000 

 

10.08 

9.69 

-48 

51 

-75 

-72 

9 

6 

     R temporal fusiform cortex 

     L temporal fusiform cortex 

  

 

8.12 

7.10 

42 

-45 

-51 

-60 

-15 

-15 

     L middle temporal gyrus   6.46 -60 0 -18 
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 708 

 MNI coordinates and significance levels shown for the peak voxel in each cluster. 709 

Anatomical labels are provided for locations in each cluster. Effects in clusters smaller than 710 

20 voxels not shown. 711 

 712 

Preregistered univariate fMRI analysis 713 

Encoding activity predicting true and false recognition  714 

Univariate analysis was run to derive ROIs for RSA based on subsequent memory effects in 715 

regions where prior literature is suggestive, but not clear, regarding their involvement. This 716 

showed significant activation for subsequently remembered > subsequently forgotten items in 717 

the LITG (cluster size: k = 13, p < 0.05 FWE). No significant activation was revealed for 718 

subsequently falsely recognized > subsequently corrected rejected items after FWE 719 

correction.  720 

 721 

     L hippocampus 

     L perirhinal cortex 

     R inferior frontal gyrus (BA45) 

     R inferior frontal gyrus (BA44) 

     R ventromedial prefrontal cortex 

     L ventromedial prefrontal cortex 

     L inferior frontal gyrus (BA44) 

     L ventral anterior temporal lobe 

     L inferior frontal gyrus (BA45) 

     L temporal pole 

     R hippocampus 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.50 

4.58 

4.20 

4.10 

4.08 

4.03 

4.02 

3.84 

3.62 

3.60 

3.34 

-33 

-27 

51 

51 

9 

-6 

-51 

-45 

-51 

-36 

33 

-27 

-12 

27 

18 

51 

51 

18 

-9 

27 

3 

-12 

-12 

-36 

0 

9 

-12 

-12 

12 

-39 

0 

-36 

-18 
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Parametric effect of concept confusability 722 

Finally, we were interested in the specific role of the PrC, and possibly aVTC, in processing 723 

conceptually confusable objects. These regions were not related to parametric changes in 724 

concept confusability regardless of memory encoding. Therefore, we did not replicate Clarke 725 

and Tyler (2014)’s finding of increased activation for more conceptually confusable objects 726 

(uncorrected p = 0.139 and p = 0.05 for PrC and aVTC, respectively). Subsequent memory 727 

effects were also not significant at the preregistered FWE-corrected threshold. However, at an 728 

uncorrected threshold, activity associated with concept confusability was greater for 729 

subsequently forgotten than remembered items in right PrC (cluster size: k = 12, p < 0.005) 730 

and bilateral aVTC (right cluster size: k = 19, p < 0.001; left cluster size: k = 6, p < 0.001). 731 

Activity associated with concept confusability was also greater for subsequently falsely 732 

recognized than correctly rejected items in bilateral PrC (right cluster size: k = 35, p < 0.005; 733 

left cluster size: k = 11, p < 0.005), and right aVTC (cluster size: k = 22, p < 0.005), and for 734 

subsequently falsely recognized than remembered items in bilateral PrC (right cluster size: k 735 

= 25, p < 0.005; left cluster size: k = 12, p < 0.005), and righy aVTC (cluster size: k = 16, p < 736 

0.005). 737 

Discussion 738 

Our results show that semantic and perceptual representations play distinct roles in true and 739 

false memory encoding. By combining explicit models of prior conceptual knowledge and 740 

image properties with a subsequent memory paradigm, we were able to probe their separate 741 

contributions to encoding of objects. Fine-grained perceptual and semantic processing in the 742 

ventral visual pathway both predicted later recognition of studied objects, while coarser-743 

grained categorical semantic information processed more anteriorly predicted forgetting. In 744 

contrast, only weak low-level visual representations in posterior regions predicted false 745 
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recognition of similar objects. The data provide the first direct tests of fuzzy-trace theory’s 746 

assumptions about how memories are encoded, and suggest that semantic representations 747 

may contribute to specific as well as gist memory phenomena (Brainerd and Reyna, 2002).  748 

 749 

Our results for the early visual model converge with studies showing univariate subsequent 750 

memory effects in the same regions (Kim and Cabeza, 2007; Kirchhoff et al., 2000; Pidgeon 751 

and Morcom, 2016; Wagner et al., 1998). Distributed low-level visual representations in early 752 

visual cortices predicted successful later recognition of specific studied objects. The C1 753 

HMax representations embody known properties of primary visual cortex relating to local 754 

edge-orientations in images (Kamitani and Tong, 2005), and this model clustered our object 755 

images by overall shape and orientation (Fig. 2). These results converge with Davis et al. 756 

(2020)’s recent finding that RSA model fit for an early layer of a deep convolutional neural 757 

network (DNN) in early visual cortex predicted later memory for pictures. Our models are 758 

directly interpretable, allowing us to show unambiguously that representing lower-level 759 

properties available in the presented images contributes to memory. 760 

 761 

In late visual regions, such as LG and FG, activity patterns fitting the early visual model also 762 

predicted true recognition (Fig. 5 and 7), as hypothesized based on activation studies (Garoff 763 

et al., 2005; Kim, 2011; Kirchhoff et al., 2000; Stern et al., 1996; Vaidya et al., 2002). We 764 

also found that specific object features coded in FG predicted true recognition. These pVTC 765 

regions receive low-level properties as input to compute complex shape information 766 

(Kanwisher, 2001). Emerging data suggest that the FG supports visuo-semantic processing of 767 

modality-specific semantic features. Devereux et al. (2018) combined deep visual and 768 

semantic attractor networks to model the transformation of vision to semantics, revealing a 769 

confluence of late visual representations and early semantic feature representations in FG (see 770 
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also Tyler et al., 2013). This converges with Martin et al.'s (2018) finding that FG activity 771 

reflected representations of explicitly rated visual object features. Davis et al. (2020) reported 772 

that in FG the mid-layer of a visual DNN predicted memory for object names when the 773 

objects were forgotten, while semantic features of the object images predicted memory for 774 

the images when the names were forgotten. Our findings clarify that both image-based visual 775 

codes and non-image-based semantic feature codes are represented during successful 776 

encoding. Together, the data further suggest that this initial extraction of semantic features 777 

from vision is important for the effective encoding of memories of specific objects, more than 778 

false recognition of similar objects.  779 

 780 

More anteriorly, taxonomic categorical representations in aVTC and left PrC predicted 781 

forgetting of studied items. Similar findings in LIFG support the idea that coarse-grained 782 

domain-level semantic processing is detrimental to memory for specific objects. LIFG 783 

typically shows strong univariate subsequent memory effects for verbal or nameable object 784 

stimuli (Kim, 2011). It is thought to support selection and control processes involved in 785 

elaborative semantic encoding (Jackson et al., 2015; Prince et al., 2007). Our overall analysis 786 

showed that object-specific semantic information was represented in this region, but did not 787 

predict recognition. One possibility is that domain-level taxonomic processing impeded 788 

selection of specific semantic information. Another possibility, in line with the levels of 789 

processing principle, is that the object naming encoding task did not strongly engage 790 

semantic control operations that promote subsequent memory (Craik and Lockhart, 1972; 791 

Otten and Rugg, 2001). Object naming depends on basic-level object-specific processing in 792 

the FG, consistent with the current findings (Taylor et al., 2012). Future studies can test this 793 

by manipulating cognitive operations at encoding to determine whether the representations 794 

promoting later memory are also task-dependent. 795 
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 796 

The absence of any association between object-specific representations in PrC and encoding 797 

was unexpected, although we replicated Clarke and Tyler (2014)’s central finding that PrC 798 

represents object-specific semantic features. The PrC encodes complex conjunctions of visual 799 

(Barense et al., 2012; Bussey et al., 2002) and semantic features (Bruffaerts et al., 2013; 800 

Clarke and Tyler, 2014) that enable fine-grained object discrimination and may contribute to 801 

later item memory (Brown and Aggleton, 2001; Yonelinas et al., 2005). As the object-802 

specific semantic model fit embodied both shared and distinctive feature information, we ran 803 

a further, univariate analysis to examine the directional effect of shared features (concept 804 

confusability). We did not replicate Clarke & Tyler's (2014) finding that PrC activation was 805 

higher overall for more confusable objects, interpreted in terms of feature disambiguation. 806 

However, we found preliminary evidence that in both PrC and vATL, activity correlating 807 

with concept confusability predicted forgetting of studied objects. This is consistent with our 808 

finding that concept confusability strongly impairs true recognition, as well as discrimination 809 

between studied objects and lures (Naspi et al., 2020), results replicated here. The RSA data 810 

also suggest an interpretation of Davis et al.'s (2020) report that semantic feature model fit in 811 

PrC predicted later true recognition of object concepts when their pictures were forgotten, 812 

which may correspond to nonspecific encoding.  813 

 814 

An important and novel feature of our study is the investigation of the representational 815 

content associated with encoding of false memories. Our results revealed that weak visual 816 

representations coded in EVC and extending to LITG predicted later false recognition (Fig. 817 

5), and model fit differed significantly from true recognition. This supports fuzzy-trace 818 

theory’s proposal that visual detail is encoded in specific memory traces that confer 819 

robustness to later true recognition (Brainerd and Reyna, 2002). Several univariate fMRI 820 
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studies of memory retrieval have shown greater early and late visual cortex activation for true 821 

than false memories of objects (Dennis et al., 2012; Karanian and Slotnick, 2017, 2018; 822 

Schacter and Slotnick, 2004). Of the few encoding studies, two have found occipital 823 

activation predicting true but not false recognition (Dennis et al., 2008; Kirchhoff et al., 2000; 824 

Pidgeon and Morcom, 2016; but see Garoff et al., 2005). Here, we not only show that 825 

visually specialized regions are engaged more when encoding true than false memories, but 826 

also characterize the visual features involved. Thus, insufficient early visual analysis at 827 

encoding leads to poor mnemonic discrimination of similar lures. This may prevent later 828 

recollection of details of the studied item that would allow people to reject the similar lures 829 

(recollection rejection; Brainerd et al., 2003). The RSA result is also consistent with the 830 

behavioral increase in false recognition for more visually confusable objects (see also Naspi 831 

et al., 2020). 832 

 833 

We did not find any evidence here that semantic processing contributes to false memory 834 

encoding, and in FG, feature semantic representations impacted true memory encoding more 835 

strongly. Clearly, we cannot place weight on the null result, and our models did not 836 

comprehensively address all potential semantic processes but focused on concept-level 837 

processes we have shown to contribute behaviorally in this task (Naspi et al., 2020). Lateral 838 

and ventral temporal regions previously implicated in false memory encoding in verbal tasks 839 

did not show significant effects here (Dennis et al., 2007; Chadwick et al., 2016). These areas 840 

may support higher-level verbal semantics linking studied items to lures. Nonetheless, both in 841 

the current task and following deep semantic judgments at encoding (Naspi et al., 2020), 842 

concept confusability reduced lure false recognition relative to novel objects as well as true 843 

recognition. An intriguing possibility is that the semantic processes reducing lure false 844 
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recognition operate at retrieval rather than at encoding. This hypothesis will be tested using 845 

RSA analysis of retrieval phase brain activity in this task. 846 

 847 

In conclusion, we have revealed some of the visual and semantic representations that allow 848 

people to form memories of specific objects and later reject similar novel objects. This is the 849 

first – to our knowledge – preregistered study of neural representations in memory encoding, 850 

and the first probe of representations predicting false recognition. Using previously validated 851 

representational models, we were able to disentangle low-level image properties from 852 

semantic feature processing. The data provide novel support for theoretical assumptions 853 

implicating visual detail in specific memory encoding, but suggest that semantic information 854 

may contribute to specific as well as gist memory. Our approach offers a path by which 855 

future studies can evaluate the respective roles of encoding and retrieval representations in 856 

true and false memory. 857 
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