1	Microfluidic delivery of cutting enzymes for fragmentation of surface-adsorbed
2	DNA molecules
3	
4	
5	
6	Julia Budassi ¹ , NaHyun Cho ¹ , Anthony Del Valle ² , Jonathan Sokolov ^{1*}
7	
8	
9	
10	¹ Department of Materials Science and Chemical Engineering, Stony Brook University, Stony
11	Brook, New York, United States of America
12	
13	² Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York,
14	United States of America
15	
16	
17	*Corresponding author
18	E-mail: jonathan.sokolov@stonybrook.edu
19	E mun. jonunun.sokolov(@stonyorook.edu
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	

47 Abstract

48	We describe a method for fragmenting, in-situ, surface-adsorbed and immobilized DNAs on
49	polymethylmethacrylate(PMMA)-coated silicon substrates using microfluidic delivery of the
50	cutting enzyme DNase I. Soft lithography is used to produce polydimethylsiloxane (PDMS)
51	gratings which form microfluidic channels for delivery of the enzyme. Bovine serum albumin
52	(BSA) is used to reduce DNase I adsorption to the walls of the microchannels and enable
53	diffusion of the cutting enzyme to a distance of 10mm. Due to the DNAs being immobilized, the
54	fragment order is maintained on the surface. Possible methods of preserving the order for
55	application to sequencing are discussed.
56	
57	
58	Introduction
59	
60 61	Significant progress in DNA sequencing has occurred over the last fifteen years, with
61 62	dramatic improvement in throughput, in particular, as well as in haplotype phasing, read

63 lengths and contig size [1-3]. Despite this, highly accurate and complete genome analysis at a

64 reasonable cost and with rapid turnaround time such as would be desirable for personalized

65 medicine has not yet been achieved. Short-read technologies (up to several hundreds of bases)

are capable of generating Terabases of data but have difficulty in mapping structural variations

and regions with long repeats. The 'repeatome,' comprising roughly half of the genome, has a

role in gene expression and in disease and exhibits a relatively high rate of mutation [4].

69 Synthetic long-read techniques grafted onto the short-read platforms have provided improvement

70 over the original methods [5-10] and some longer-read platforms have also appeared [11-16].

71 Nonetheless, no currently available technique is able to generate reads of a single DNA molecule

greater than a few tens of kilobases. Since the range of human chromosome sizes is 47-249
Mbp, there is still a need to assemble relatively small sequenced fragments into contigs and any
simplification of the process can have a significant impact.

75 All current sequencing requires the fragmentation of long DNA molecules into kilobase-sized 76 pieces or smaller for analysis. Long-range positional order is lost for the currently-used methods. 77 The most widely-used techniques are fragmentation by mechanical means or enzymatic mean 78 [17]. The mechanical techniques include sonicaton, hydrodynamic shearing through orifices 79 (driven by centrifugation or use of a syringe pump), focused acoustic shearing (commercialized 80 by Covaris, Woburn, MA) and nebulization (DNA suspended in a shearing buffer which is 81 forced through an orifice by compressed air or nitrogen gas). The enzymatic fragmentation 82 methods are based on nicking enzymes, restriction enzymes or various transposons (such as 83 Illumina's Nextera system, which fragments and adds adapters in the same step, referred to as 84 'tagmentation'). NEB has developed a product using a mixture of enzymes called 'Fragmentase' 85 (New England Biolabs, Ipswich, MA). For all methods, to greater or lesser degree, there are 86 issues of damage to the fragments and sequence bias of breaks in GC-rich vs. AT-rich regions 87 [18].

It is clear that a method which preserves the sequential ordering of the fragments would be highly beneficial in simplifying the assembly problem. Two groups have published papers using localized cutting on surface-immobilized DNAs, one using atomic force microscopy to mechanically cut the molecules [19-21] while the second group used an electrochemical method to locally activate (with Mg⁺² ions) enzymatic cutting [22]. This work, while highly interesting, involves cutting single (or very few) molecules at a time and is difficult to scale up. Our group has developed a method to use soft lithography stamps to allow cutting of significantly larger

95	numbers of surface-immobilized DNAs in parallel [23]. In that work, DNAs are deposited onto
96	a substrate by withdrawing a polymethylmethacrylate (PMMA)-coated silicon wafer out of a
97	DNA solution, a technique that has been termed 'molecular combing [24-26]. This method and a
98	technique developed for optical mapping on surfaces [27], have been used to deposit DNAs of up
99	to megabase pair length on flat substrates [28]. The DNAs are stretched, aligned and
100	immobilized along the direction of sample withdrawal at densities that depend on solution
101	concentration, buffer pH [29-30] and surface type. A soft lithography stamp [31], in the form of
102	a polydimethylsiloxane (PDMS) grating produced from a silicon master (see Fig 1), is 'inked'
103	
104 105 106 107	Fig 1. Schematic of stamping method for fragmenting surface-adsorbed . A PDMS stamp in the form of a grating is 'inked' with DNase I cuttting enzyme and is brought into contact with a surface on which DNA molecules have been deposited.
108	with a DNase 1 solution and placed in contact with the surface containing the stretched and
109	immobilized DNA molecules. The DNAs are cut at the contact points of the stamp, maintaining
110	(on the surface) positional order. In that work [23], the DNAs were removed, en masse, by
111	desorbing the DNA into buffer (NEBuffer 3.1, B7203S) at 75°C for 20 minutes or dissolving
112	the substrate PMMA and purifying by phenol extraction. The fragments were end-repaired and
113	sequenced using the PacBio platform (without amplification of the fragments in the case of
114	desorption). Though the positional order was lost in those experiments, the cutting method was
115	successfully demonstrated and some ideas for maintaining the order of the fragments were
116	suggested.
117	However, the inking method for delivering the DNase 1 enzymes is rather difficult to
118	implement and we have sought to develop a more controllable technique. In this paper, we report

119	on microfluidic delivery of the enzyme through micron-sized channels using soft lithography
120	stamps. This technique is more reproducible and also lends itself to a variety of applications
121	such as ordered removal of fragments or in-situ sequencing on the surface [32-33]. Another
122	advantage of the method is that the application of the cutting enzyme is done from solution and
123	so should have less steric hindrance than when applying by stamping.
124	
125	Materials and methods
126	Sample preparation
127	Polished silicon wafers (Si(100), thickness 100-200µm thick, purchased from Wafer World,

128 W. Palm Beach, FL) coated with PMMA layers, were used as

129 substrates for DNA adsorption. The wafers were scribed and cleaved to make 1cm x 2cm

130 samples. The wafers were cleaned using a modified Shiraki technique [34] as follows: (1) 10

131 minutes sonication in ethanol, (2) rinse in deionized (DI) water, (3) 15 minutes in boiling

132 solution of 3:1:1 ratio (by volume) of water: ammonium hydroxide (28-30%) : hydrogen

peroxide (30%), (3) DI rinse, (4) 15 minutes in boiling solution of 3:1:1 ratio of water : sulfuric

134 acid (98%) : hydrogen peroxide (30%), (5) DI rinse, (6) one minute in 9:1 solution of water :

135 hydrofluoric acid (49%), (7) DI rinse. The resulting surfaces were hydrophobic.

136 A 15 mg/ml solution of PMMA (molecular weight 70K, Polymer Source, Inc., Canada) in

137 toluene was spun-cast (PWM32 spinner, Headway Research, Inc., Garland, Texas) onto the

138 silicon wafers at 2500 RPM for 30 seconds. The thickness of the resulting films was measured

using an ellipsometer (Auto El, Rudolph Research, Hackettstown, NJ) and was typically 70±8

140 nm. Following spin-coating, the samples were annealed for 1-4 hours at 130°C in an ion-pumped

141	vacuum chamber (pressure \leq 5 x 10 ⁻⁷ Torr) to remove adsorbed ambient and any remaining
142	solvent.

143	DNA solutions for adsorption were produced in two steps. First, 200 μ l of a 50ng/ μ l solution
144	(using Lambda DNA, New England Biolabs (NEB) N3011S), containing 1.5µl of the fluorescent
145	dye SyBr Gold (Invitrogen, S11494, Thermo Fisher Scientific, Waltham, MA) was prepared in a
146	buffer. The buffer was either a 6-12:50 mixture (by volume) of 0.1M sodium hydroxide : 0.02M
147	2-(n-morpholino) ethanesulfonic acid (MES) or 1X NEB DNase I reaction buffer (NEB B0303S,
148	1X is 10mM Tris-HCl, 2.5mM MgCl ₂ , 0.5mM CaCl ₂). This solution was heated for one hour at
149	45°C to promote dye binding to the DNA. A further dilution in buffer by a factor of ten produced
150	2000µl of working solution at a DNA concentration of 5µl/mg.
151	DNA was adsorbed to the substrates by the technique called dynamic molecular combing
152	[26]. The DNA solution is placed in a teflon well and the sample, held vertically with teflon
153	tweezers, was lowered into the well and incubated for 30 seconds. The sample was then
154	withdrawn at a rate of 1-2mm/s using a computer-controlled stepping motor attached to a linear
155	drive stage (see Fig 2). The DNA molecules, preferentially attached by their ends, are stretched
156	linearly and immobilized on the surface as they are removed from the solution (see Fig 2).
157	
158 159 160	Fig 2. Apparatus for dip-coating ('combing') DNA molecules onto a substrate by withdrawal from solution.

160 161

162 **Production of PDMS microfluidic channels**

The technique of soft lithography [31,35] was used to produce PDMS elastomer gratings.
Silicon masters were made at the fabrication facilities of the Center for Functional Nanomaterials
at Brookhaven National Laboratory. Firstly, a Cr/sodalime mask (aBeam Technologies,

166	Hayward, CA) was used to used to pattern a photoresist-coated Si wafer of diameter 4" by UV
167	exposure using a Karl Suss MA6 Mask Aligner (Suss MicroTec SE, Garching, Germany). The
168	photoresist layer spun-cast onto the silicon wafers, nominally 1.1µm thick, was a positive resist,
169	Shipley S1811 (Shipley Co., Marlborough, MA, USA). UV exposure was 5-40 seconds,
170	followed by 110°C bake for 30s. The photoresist pattern was developed for 20-50s using a 2:3
171	mixture of MF-312 developer (Microposit, Rohm and Haas, Marlborough, MA) : water. Etching
172	of the developed photoresist pattern to produce the silicon masters was done by reactive ion
173	etching (RIE, Trion Phantom III RIEtcher, Trion Technology, Clearwater, FL, USA). The gas
174	mixture was 40:10 SF_6 : O ₂ at a pressure of 100mTorr. Etching power was 100-150 W and
175	etching time was 300-700s. Leftover photoresist was dissolved in acetone. Optical microscopy
176	(Olympus BH2 BHT) and atomic force microscopy (AFM, Digital Nanoscope 3000) were used
177	to characterize the silicon patterns. Fig 3A shows an AFM image and Fig 3B the cross-section of
178	a typical sample. The depth of the channels in the grating pattern was typically 2-5 μ m.
179	
180 181 182 183 184 185	Fig 3, AFM image of silicon grating. (A) AFM topographical image of a silicon grating used as a master mold for making PDMS stamps. (B) Height cross-section along the white line in (A).
186	Soft lithography molds of PDMS were made using Sylgard 184 Silicone Elastomer (Dow
187	Corning, Midland, MI, USA). A 10:1 mixture of elastomer and curing agent (by weight) was
188	mixed thoroughly and trapped bubbles were removed by placing the mixture in a vacuum
189	desiccator for one hour. The degassed PDMS was poured over the silicon mold to a thickness of
190	approximately 5mm. The silicon mold was precoated with a thin film (less than 10nm) of
191	PMMA, spun-cast from a 3mg/ml solution (molecular weight 70K). The purpose of the

192	precoating was to reduce PDMS-silicon adhesion and facilitate removal of the PDMS layer. The
193	PMMA-coated molds could be reused multiple times. The PMMA could also be removed with
194	toluene and the wafers recoated for further use. The PDMS layers were cured at 60°C for 4 hours
195	and then peeled off the molds. A typical cross-section of the grating, exposed by cutting the mold
196	with a razor, is shown in the optical micrograph of Fig 4.
197	
198 199 200 201	Fig 4. Optical Micrograph of a cross-section of a PDMS grating.
202	Microfluidic channels (approximately $4.5\pm0.1\mu m \ x \ 3.7\pm0.3\mu m \ x \ 12\pm2 \ mm$, width by height
203	by length, respectively) were made by placing the PDMS grating stamps in contact with the
204	DNA-adsorbed substrates and tamping down the mold with tweezers to make good contact. An
205	inlet/outlet hole of diameter 4mm had been previously cut through the PDMS layer using a
206	biopsy punch (Integra, Miltex, Princeton, NJ USA)) and a liquid reservoir (also made from
207	PDMS) with inner diameter of 6mm and height of 25mm was sealed to the stamp above the hole
208	with PDMS (painted on and cured) (see Fig 5). The far end of the channels, away from the
209	inlet/outlet, was sealed with PDMS, producing closed end channels. The cutting enzyme, here
210	DNase I (NEB B0303S, Ipswich, MA USA), is delivered through the channels, as described
211	below. The DNase I cuts the surface-immobilized DNAs along the channels while the PDMS
212	stamp protects the DNA between the channels from being cut.
213	
214 215	Fig 5. End-on and side views of a PDMS grating appended fluid reservoir.
216	
217	

218 **Results and discussion**

219	Preliminary to doing the patterned cutting of DNA, we prepared solutions at different
220	concentrations of DNase I and placed 3µl drops onto PMMA-coated samples with adsorbed
221	DNA. The samples were heated at 40°C for 20 minutes, with the drops covered by mineral oil
222	(M5904, MilliporeSigma, Burlington, MA) to prevent evaporation. They were then imaged by
223	fluorescence microscopy to determine an effective enzyme concentration for cutting. The stock
224	DNase I solution of $2\text{Units}(U)/\mu I$ was diluted in DNase I Reaction Buffer to concentrations
225	$0.024U/\mu$ l, $0.048U/\mu$ l and $0.095U/\mu$ l (the recommended concentration for reactions in solution is
226	given by the manufacturer as $0.02U/\mu l$). Effective digestion was found for both of the higher
227	concentrations, though somewhat more completely for the highest concentration. (see Fig 6). In
228	further experiments, the concentration of $0.095 U/\mu l$ was used unless noted otherwise. These
229	results are consistent with the work of Gueroui et al [36], who observed digestion of combed
230	DNA on a PMMA surface under similar conditions. (They also observed that for the restriction
231	endonucleases HindIII and DraI the solution-level biochemical activity was not observed. We
232	found the same result for PvuI.)
233	
234 235 236 237	Fig 6. Fluorescence image of SyBr Gold labeled DNA. Upper left area was covered with a solution containing 0.095U/µl of DNase I in NEB DNase I Reaction Buffer and shows effective digestion of DNA in that region.
238 239	For the first set of cutting experiments, a PDMS stamp placed in contact with a DNA sample
240	had its reservoir filled up with 300μ l of the DNase I solution. To fill the long, narrow

- 241 microfluidic channels (micron-sized cross-section by mm lengths) with the solution can be done
- in a number of ways—using capillary action (the PDMS surface needs to be made hydrophilic),
 - 9

243 applying vacuum at an open end away from the reservoir or applying pressure above the liquid in 244 the reservoir, for example. We have used a convenient method [37], termed by the authors the 245 'channel outgas technique.' In this method, pressure is lowered above the reservoir (or the entire 246 device is submerged in the filling liquid), causing air bubbles from the channels to escape 247 through the liquid due to the buoyancy effect and allowing the channels to be filled with solution 248 from the reservoir. The sample with stamp and reservoir was placed in a vacuum chamber (using 249 an Edwards diaphragm pump having a teflon-coated diaphragm to enable pumping of high vapor 250 pressure liquids) and the pressure was lowered to 20 Torr for 40 minutes. The sample, with 251 channels now filled with the enzyme solution, was removed from the vacuum chamber and 252 placed on a 40°C hotplate for 90 minutes to effect DNA digestion in the channels. The result was 253 that digestion only occurred close to inlet of the reservoir, to a distance of less than 0.1mm. This 254 raised a concern that perhaps the DNase I enzyme was damaged due to shearing forces exerted 255 during the filling [38]. Therefore, it was decided to fill the channels first with buffer as above 256 (20 Torr for 40 minutes) and then to add enzyme solution to the reservoir and allow penetration 257 into the channels by diffusion (at 40°C for 90 minutes) through the liquid. The resulted in 258 effective cutting of the DNA to a distance of 1.1±0.2mm from the inlet (Fig 7). 259

Fig 7. Fluorescence image of fragmented DNA remaining after digestion by DNase I diffusing through microfluidic channels. Distance from reservoir inlet is 1.1mm. Following this modest improvement, we tried a series of similar experiments, lengthening the time of the heating/diffusion step up to 5 hours at 40°C. Experiments for times of 1.5, 2, 3, 4 and

5 hours all showed cutting up to a distance of approximately 1mm. A set of experiments varying 267 268 the concentration of DNase I was tried next, with concentrations of 0.195, 0.295, 0.395, 0.495 269 and 0.595 U/µl used (vacuum fill of buffer as above, followed by 2 hour 40°C heating/diffusion 270 step). No clear trend was discernible, though the best sample, for 0.495U/µl, had a cutting 271 distance of 1.8mm. 272 At this point, it occurred to us that enzyme adsorption to the walls of the channels might be 273 limiting the diffusion of the DNase I. Previous studies [39,40] have shown that proteins may be 274 adsorbed to PDMS and also that bovine serum albumin (BSA) may be used to block protein 275 adsorption [41]. Two experiments were conducted in which the vacuum filling of the channels 276 with buffer was followed by a heating/diffusion step of 1 hour at 40°C with the reservoir filled 277 with a solution containing both DNase I (at 0.096U/µl) and BSA (NEB B9000S) at 0.13mg/ml 278 or 0.40mg/ml. The lower BSA concentration had little effect on the cutting distance. However, 279 the higher concentration sample showed enzymatic cutting to a distance of 3.3mm. 280 Next, we decided to try to diffuse in the BSA separately from, and before, the cutting enzyme. 281 In addition, due to the sometimes excessive bubbling of the liquid in the reservoir during vacuum 282 filling (the boiling point of water at 20 Torr is 21.9°C, quite close to typical room temperature), 283 the vacuum filling was done at 120 Torr for 40 minutes. The sample was also tilted at 45° to the 284 horizontal to promote escape of gas bubbles from the channels. Following the vacuum filling, 285 BSA was added to the reservoir to a concentration of 0.40mg/ml and left to incubate at 40°C for 286 1 hour. (As a check on the diffusion rates of BSA, we ran tests using fluorescently-labeled FITC-287 BSA (ThermoFisher Scientific, Waltham, MA), see Fig 8.) Afterwards, DNase I was added to 288 0.095U/µl in the reservoir and incubated for 2 hours. With these changes, the effective cutting distance was increased to 5.0±0.4mm. 289

290

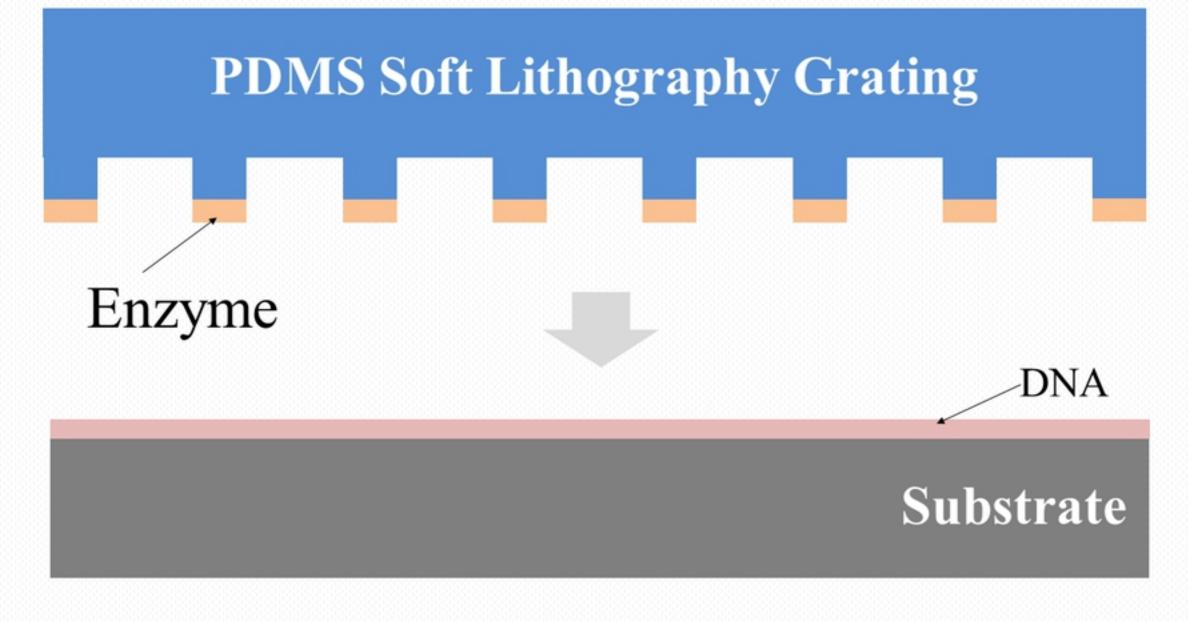
291 292 293 294	Fig 8. Measured diffusion distance of FITC-labeled BSA through micorfluidic channels versus diffusion time.
294 295	Further optimization was obtained by using the same steps but varying the BSA concentration
296	up to 1.07 mg/ml, varying BSA incubation time up to 3 hours and DNase I incubation time also
297	up to 3 hours. This produced a significant improvement, with cutting distances of 10mm
298	consistently achieved. Fig 9 shows a sample with effective digestion for a sample with high
299	density of adsorbed DNA.
300	
301 302 303	Fig 9. DNA (at high density) fragmented on a surface by DNase I. Distance from inlet is 8.7mm.
304 305	Finally, an effort was made to shorten the times of the various steps, keeping the optimum
306	concentrations fixed. The following streamlined protocol was found:
307	(1) 15 minutes of vacuum filling of the channels at a pressure of 120 Torr. The reservoir was
308	filled with 150µl of DNase I Reaction Buffer.
309	(2) The sample was placed on a 40°C hotplate. 8µl of BSA stock was added to the reservoir,
310	making the BSA concentration 1.07mg/ml. The solution was mixed by careful up-and-down
311	pipetting.
312	(3) 60 minutes incubation with reservoir covered by parafilm to reduce evaporation.
313	(4) Addition of 7.5µl of DNase I stock to reservoir, making the concentration 0.09Units/µl.
314	Follow with mixing by careful up-and-down pipetting.
315	(5) 1 hour of incubation at 40°C with reservoir covered by parafilm.
316	

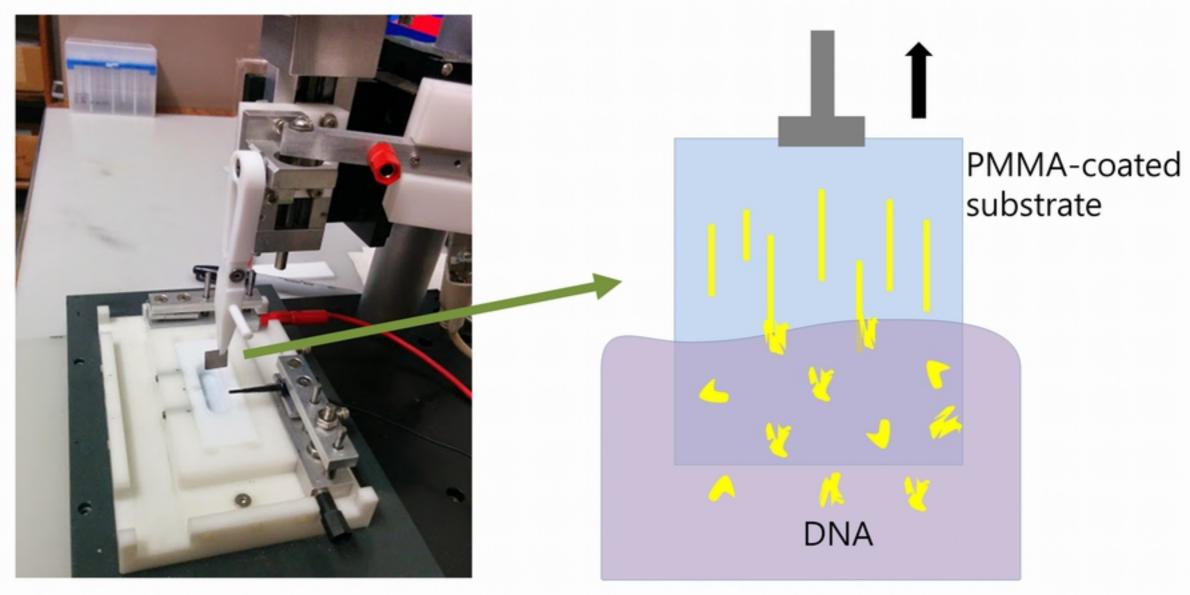
317 **Conclusions**

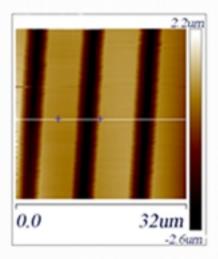
318 We have demonstrated an effective and reproducible method for the fragmentation of surface-319 adsorbed and immobilized DNAs using soft lithography and microfluidic delivery of 320 an anti-fouling coating (BSA) and the cutting enzyme (DNase I). This method also lends itself 321 to ordered microfluidic removal of the fragments for sequencing applications or in-situ 322 Next Generation Sequencing [33]. Removal of the fragments is complicated by the competing 323 requirements of having relatively strong DNA-surface interactions, to enable immobilization on 324 the surface, versus needing relatively weak interactions to allow desorption. One approach, 325 which we are currently exploring, is to use a substrate which exhibits a reversible solubility 326 switch from water-soluble to water-insoluble [42]. The immobilization is done in the water (and 327 DNA-compatible buffer)-insoluble state while desorption is done into a water-based buffer 328 which may be flowed through the channels. Alternatively, rather than use long microchannels, a 329 PDMS stamp with holes used to create separate chambers could be used for fragmenting and 330 amplifying/sequencing in-situ. Also, as noted above, steric hindrances can affect enzyme activity 331 and the use of microporous substrates [43,44] can broaden the range of useable enzymes. 332

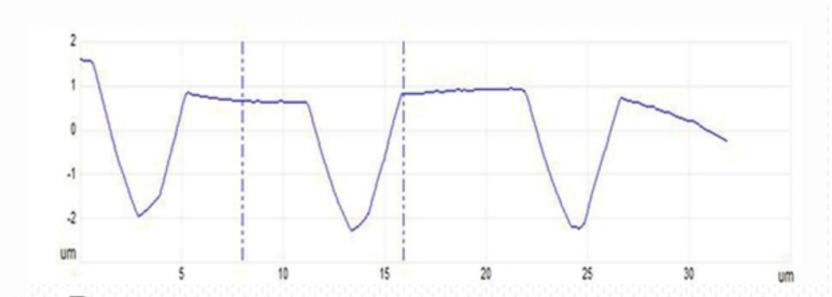
333 Acknowledgments

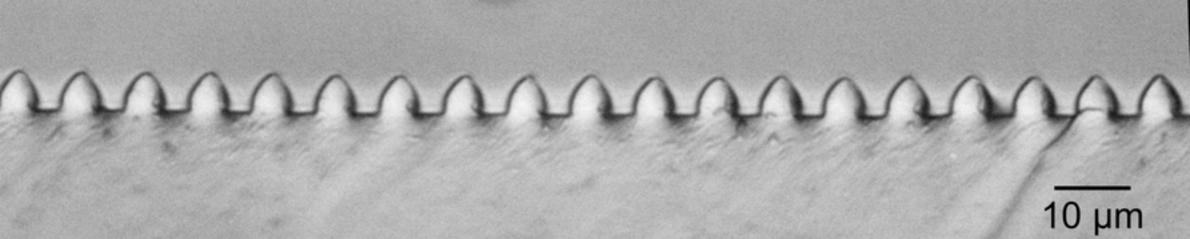
This research used resources of the Center for Functional Nanomaterials, which is a U.S. DOE Office of Science Facility, at Brookhaven National Laboratory under Contract No. DE-SC0012704. We thank Ke Zhu, Donald Liu, Alan Gan, Sara Goodwin and Adriana Pinkas-Sarafova for assistance with the experiments and for discussions.

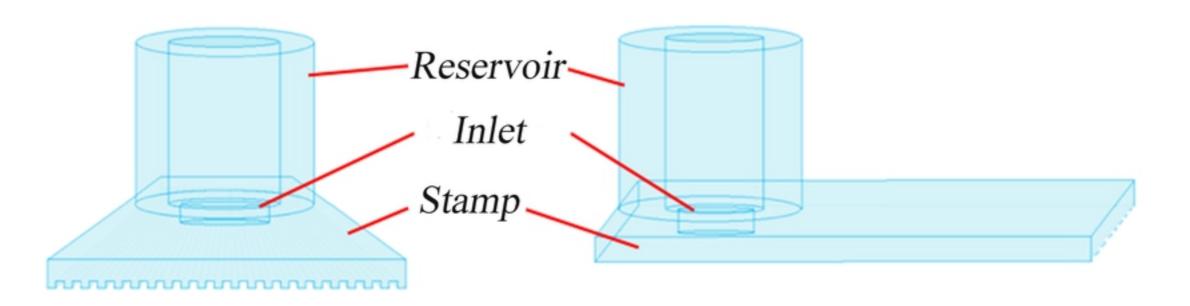

339 **References**

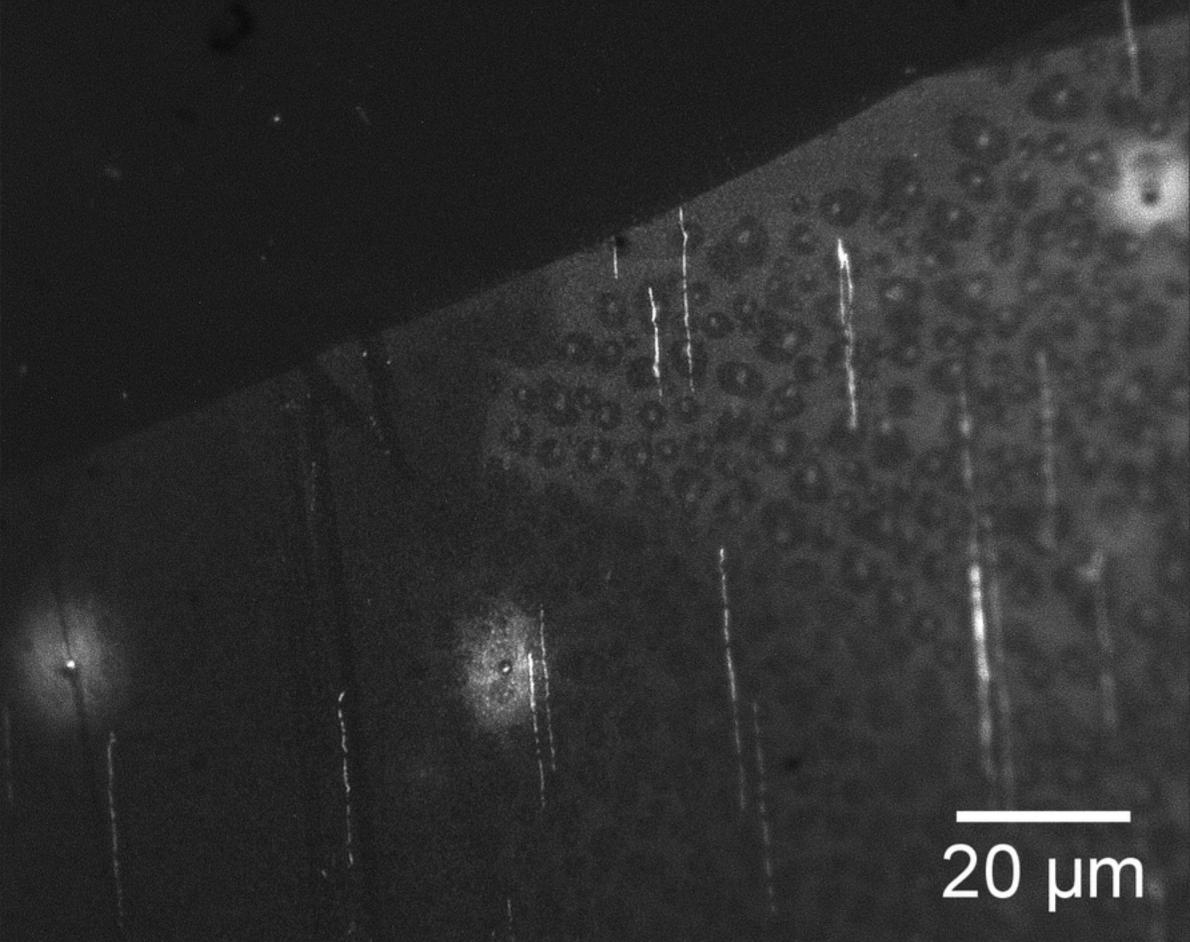

340	
341	1. Mardis, ER. Next-generation DNA sequencing methods. Annual Review
342	of Genomics and Human Genetics. 2008; 9: 387-402.
343	2 Casterin & Mallaman ID McCambia WD Camina afaras tan mana af
344 345	2. Goodwin, S, McPherson, JD, McCombie, WR. Coming of age: ten years of Next-Generation Sequencing Technologies. Nature Reviews Genetics. 2016; 17: 333-
345 346	
340 347	351.
348	3. Giani, AM, Gallo, GR, Gianfranceschi, L, Formenti, G. Long walk to
349	genomics: History and current approaches to genome sequencing and assembly.
350	Computational and Structural Biotechnology Journal. 2020; 18: 9–19.
351	Computational and Structural Diotechnology Journal. 2020, 10. 9–19.
352	4. Hannan, AJ. Tandem repeats mediating genetic plasticity in health and disease. Nature
353	Review Genetics. 2018; 19(5): 286-298.
354	5. Kitzman, JO, Mackenzie, AP, Adey, A, Hiatt, JB, Patwardhan, RP, Sudmant,
355	PH, et al. Haplotype-resolved genome sequencing of a Gujarati Indian
356	individual. Nature Biotechnology. 2011; 29: 59-63.
357	
358	6. Peters, BA, Kermani, BG, Sparks, AB, Alferov, O, Hong, P, Alexeev, A,
359	et al. Accurate whole-genome sequencing and haplotyping from 10 to
360	20 human cells. Nature. 2012; 487: 190–195.
361	7 Amini S. Duchkarov, D. Christianson, I. Kastam, F. Davias, T. at al. Hanlatura
362 363	7. Amini, S, Pushkarev, D, Christiansen, L, Kostem, E, Royce, T, et al. Haplotype- resolved whole-genome sequencing by contiguity-preserving transposition and combinatorial
363 364	indexing indexing indexing. Nature Genetics. 2014; 46: 1343-1349.
365	indexing. indexing indexing. Nature Genetics. 2014, 40. 1343-1349.
366	8. Zheng, GX, Lau, BT, Schnall-Levin, M, Jarosz, M, Bell, JM, et al. Haplotyping
367	germline and cancer genomes with high-throughput linked-read sequencing. Nature
368	Biotechnology. 2016; 34: 303-311.
369	
370	9. Bruinsma, S, Burgess, J, Schlingman, D, et al. Bead-linked transposomes enable a
371	normalization-free workflow for NGS library preparation. BMC Genomics. 2018; 19: Article
372	722.
373	
374	10. Chen, H, Yao, J, Fu, Y, Pang, Y, Wang, J, Huang, Y. Tagmentation on microbeads:
375	restore long-range DNA sequence information using Next Generation Sequencing with
376	library prepared by surface-immobilized transposomes. ACS Applied Materials and
377	Interfaces. 2018; 10: 11539-11545.
378	
379	11. Eid, J, Fehr, A, Gray, J, Luong, K, Lyle, J, et al. Real-time DNA sequencing from single
380	polymerase molecules. Science. 2009; 323(5910): 133-138.
381	
382	12. Deamer, D, Akeson, M, Branton, D. Three decades of nanopore sequencing. Nature
383	Biotechnology. 2016; 34: 518–524.

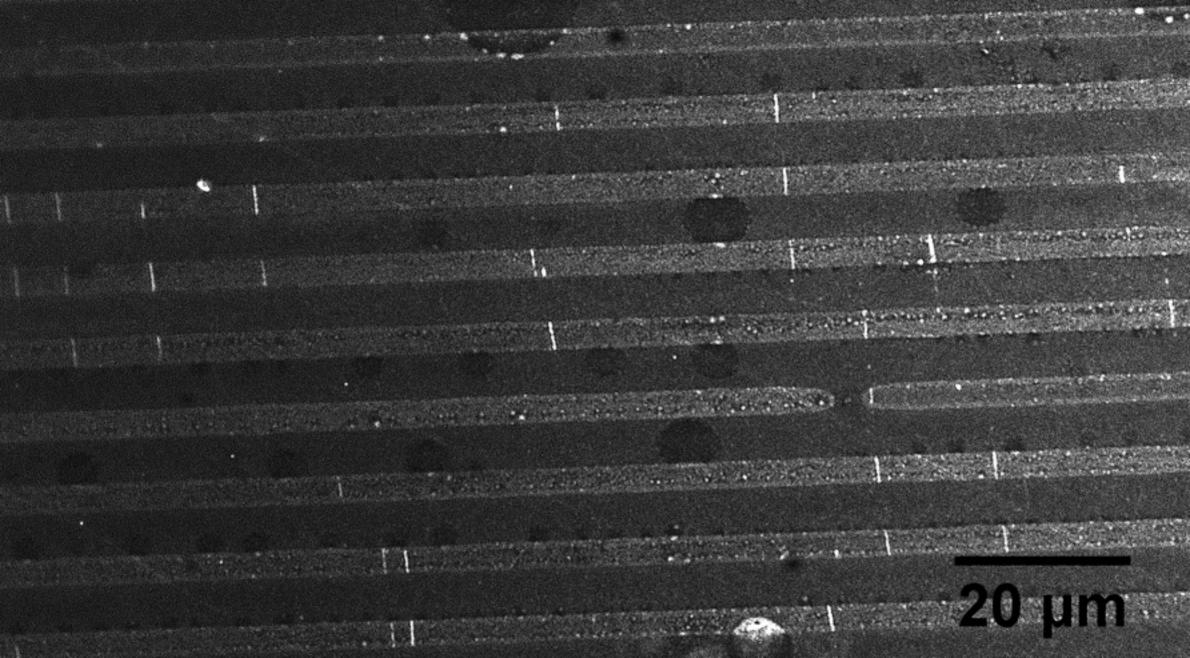

384	
385	13. Gordon, D, Huddleston, J, Chaisson, MJ, Hill, CM, Kronenberg, ZN, Munson, KM,
386	Malig, M, Raja, A, Fiddes, I, Hillier, LW, Dunn, C, Baker, C, Armstrong, J, Diekhans,
387	M, Paten, B, Shendure, J, Wilson, RK, Haussler, D, Chin, CS, Eichler, EE. Long-
388	read sequence assembly of the gorilla genome. Science. 2016; 352(6281): aae0344-1 to -7.
	Teau sequence asseniory of the gornia genome. Science. 2010, 332(0281). aae0344-1 to -7.
389	
390	14. Mantere, T, Kersten, S, Hoischen, A. Long-read sequencing emerging in medical
391	genetics. Frontiers in Genetics. 2019; 10: Article 426.
392	
393	15. Shafin, K, Pesout, T, Lorig-Roach, R, et al. Nanopore sequencing and the Shasta toolkit
394	enable efficient de novo assembly of eleven human genomes. Nature Biotechnology. 2020;
395	https://doi.org/10.1038/s41587-020-0503-6.
396	
397	16. Amarasinghe, SL, Su, S, Dong, X, Zappia, L, Ritchie, ME, Gouil, Q. Opportunities
398	and challenges in long-read sequencing data analysis. Genome Biology. 2020; 21(1): 1-16.
399	und endnenges in long load sequenenig data analysis. Genome Diology. 2020, 21(1). 1 10.
400	17. Knierim, E, Luckel, B, Schwarzl, J. M, Schuelke, M, Seelow, D. Systematic
400	comparison of three methods for fragmentation of long-range PCR products for Next
402	Generation Sequencingl. PloS ONE. 2011; 6(11): e28240.
403	
404	18. Poptsova, M, Il'icheva, I, Nechipurenko, D, et al. Non-random DNA fragmentation in next-
405	generation sequencing. Science Reports. 2015; 4: 4532 https://doi.org/10.1038/srep04532.
406	
407	19. Kurosawa, O, Okabe, K, Washizu, M. DNA analysis based on physical manipulation
408	Proceedings of the 13th Annual International Conference on Micro Electro
409	Mechanical Systems (MEMS 2000) pp. 311-316.
410	
411	20. Yamamoto, T, Kurosawa, O, Kabata, H, Shimamoto, N, Washizu, M. Molecular surgery
412	of DNA based on electrostatic micromanipulation. IEEE Transactions on Industry
413	Applications. 2000; 36(4): 1010-107.
414	
415	21. Kurosawa, O, Washizu, M. Dissection, acquisition and amplification of targeted position
416	of electrostatically stretched DNA. Journal of Electrostatics. 2007; 65: 423–430.
417	of electrostatically stretched DIVA. journal of Electrostatics. 2007, 05. 423–450.
418	22. Mizuno, A, Katsura, S. DNA immobilized on glass, localized Mg ions activated EcoRI
419	restriction enzyme manipulation of a large DNA molecule using the phase
420	transition. Journal of Biological Physics. 2002; 28: 587-603.
421	
422	23. Cho, N, Goodwin, S, Budassi, J, Zhu, K, McCombie, WR, Sokolov, J. Fragmentation of
423	surface adsorbed and aligned DNA molecules using soft lithography for Next-Generation
424	Sequencing. Journal of Biosensors & Bioelectronics. 2017; 8(3): DOI: 10.4172/2155-
425	6210.1000247.
426	
427	24. Bensimon, A, Simon, A, Chiffaudel, A, Croquette, V, Heslot, F, Bensimon, D.
428	Alignment and sensitive detection of DNA by a moving interface. Science. 1994;
429	265(5181): 2096-8.
/	

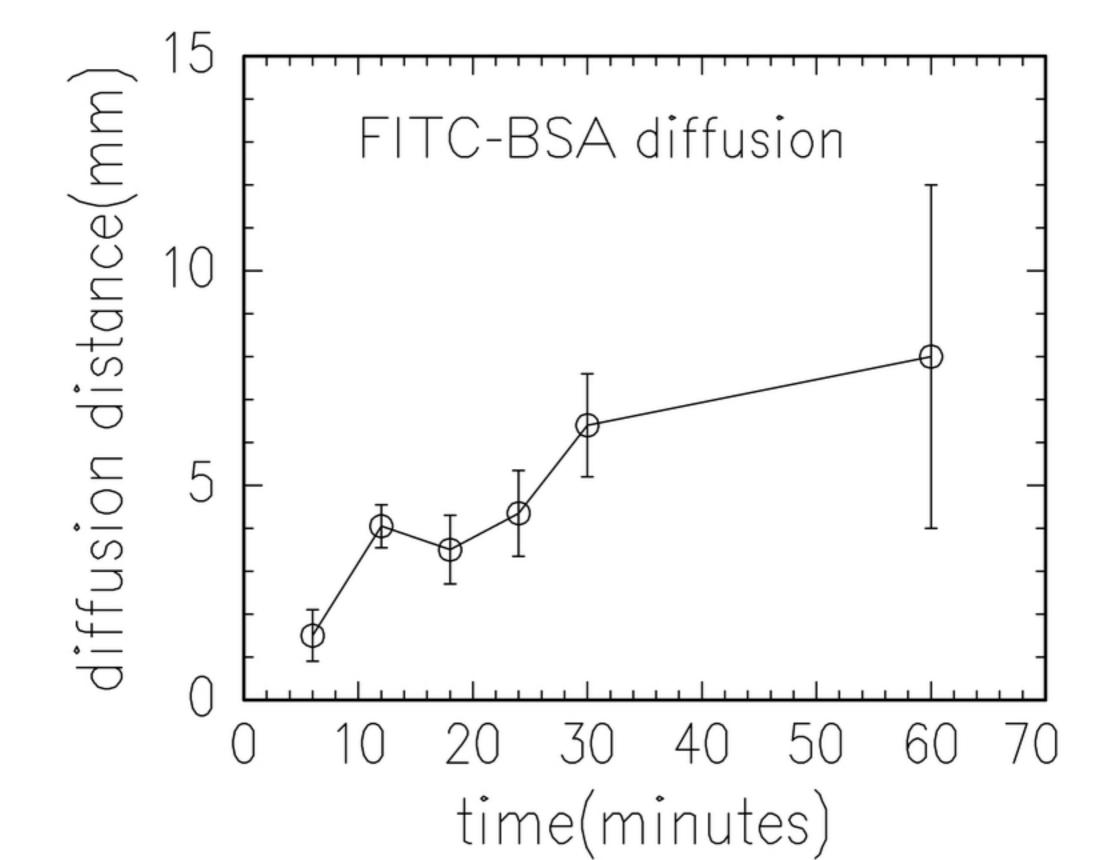

430	
431	25. Bensimon, D, Simon, AJ, Croquette, V, Bensimon, A. Stretching DNA with a
432	receding meniscus: experiments and models. Physical Review Letters. 1995;
433	74(23): 4754-4757.
434	
435	26. Michalet, X, Ekong, R, Fougerousse, F, Rousseaux, S, Schurra, C, Hornigold, N,
436	van Slegtenhorst, M, Wolfe, J, Povey, S, Beckmann, JS, Bensimon, A. Dynamic
437	molecular combing: stretching the whole human genome for high-resolution
438	studies. Science. 1997; 277(5331): 1518-1523.
439	
440	27. Schwartz, DC, Li, X, Hernandez, LI, Ramnarain, SP, Huff, EJ, Wang, Y-K. Ordered
441	restriction maps of Saccharomyces cerevisiae chromosomes constructed by optical
442	mapping. Science. 1993; 262(5130); 110-114.
443	mapping. Science. 1995, 202(3150), 110-114.
444	28. Kaykov A, Taillefumier T, Bensimon A, Nurse P. Molecular combing of single
445	DNA molecules on the 10 megabase scale. Scientific Reports. 2016; 6:19636:
446	DOI:10.1038/srep19636.
447	DOI.10.1038/SICP17050.
448	29. Allemand, JF, Bensimon, D, Jullien, L, Bensimon, A, Croquette, V. pH-dependent
449	specific binding and combing of DNA. Biophysical Journal. 1997; 73: 2064-2070.
450	specific binding and combing of DIVA. Diophysical journal. 1997, 75. 2004-2070.
451	30. Benke, A, Mertig, M, Pompe, W. Ph- and salt-dependent molecular combing of DNA:
452	experiments and phenomelogical model. Nanotechnology. 2010; 22(3): doi: 10.1088/0957-
453	4484/22/3/035304.
454	
455	31. Xia, Y, Whitesides, GM. Soft lithography. Angewandte Chemie International
456	Edition. 1998; 37: 550-575.
457	Edition: 1996, 57: 556 575.
458	32. Schwartz, J, Lee, C, Hiatt, JB, et al. Capturing native long-range contiguity by in-situ
459	library construction and optical sequencing. Proceedings of the National Academy of
460	Science. 2012; 109(46): 18749-18754.
	Science: 2012, 107(40): 18747-18754.
461	
462	33. Feng, K, Costa, J, Edwards, JS. Next-generation sequencing library construction on a
463	surface. BMC Genomics. 2018; 19:416: https://doi/10.1186/s12864-018-4794-4.
464	
465	34. Okumura, H, Akane, T, Tsubo, Y, Matsumoto, S. Comparison of
466	conventional surface cleaning methods for Si molecular beam epitaxy. Journal
467	of the Electrochemical Society. 1997; 144: 3765-3768.
468	
469	35. Whitesides, GM, Ostuni, E, Takayama, S, Jiang, X, Ingber, DE. Soft lithography
470	in biology and biochemistry. Annual Review of Biomedical Engineering. 2001; 3: 335-
471	373.
472	
473 474	36. Gueroui, Z, Place, C, Freyssingeas, E, Berge, B. Observation by fluorescence microscopy of transcription on single combed DNA. Proceedings of the National Academy of


475	Sciences. 2002; 99(9): 6005-6010.
476	
477	37. Monahan, J, Gewirth, AA, Nuzzo, RA. Method for filling complex polymeric
478	microfluidic devices and arrays. Analytical Chemistry. 2001; 73(13): 3193-3197.
479	
480	38. Clarkson, JR, Cui, ZF, Darton, RC. Protein denaturation in foam. Journal of Colloid
481	and Interface Science. 1999; 215(2): 333-338.
482 483	20 James CD Davis DC Kam I. Craighard HC Japagan M Turner DI Shein
485 484	 James, CD, Davis, RC. Kam, L, Craighead, HG, Isaacson, M, Turner, JN, Shain, W. Patterned protein layers on solid substrates by thin stamp microcontact printing.
484	Langmuir. 1998; 14(4): 741-744.
486	Langmun. 1996, 14(4). 741-744.
487	40. Bernard, A, Delamarche, E, Schmid, H, Michel, B, Bosshard, HR, Biebuyck, H.
488	Printing patterns of proteins. Langmuir. 1998; 14(9): 2225-2229.
489	
490	41. Ostuni, E, Chen, CS, Ingber, DE, Whitesides, GM. Selective deposition
491	of proteins and cells in arrays of microwells. Langmuir. 2001; 17: 2828-2834.
492	
493	42. Linder, V, Gates, BD, Ryan, D, Parviz, BA, Whitesides, GM. Water-soluble
494	sacrificial layers for surface micromachining. Small. 2005; 1(7): 730-736.
495	
496 497	43. Fuke A, Suzuki, T, Nakama, K, Kabata, H, Kotera, H. High-throughput gene analysis
497 498	using suspending DNA fibers (SDFs) on a micro glass-phonorecord. Twelfth International Conference on Miniaturized Systems for Chemistry and Life Sciences. October 12 - 16,
498	2008; San Diego, California, USA, 1519-1521.
500	2000, San Diego, Camorina, USA, 1517-1521.
500	44. Trigo-Lopez, M, Vallejos, S, Reglero Ruiz, JA, Ramos, C, Beltran, S, García, FC,
502	García, JM. Fabrication of microporous PMMA using ionic liquids: An improved route to
503	classical ScCO2 foaming process. Polymer. 2019; 183: 121867.









	1967
	N.M.
19月1日日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の	
	Lik
	AR
	5
如何是一些人的问题,我们就是你的问题,我们们们就是你们的问题,我们们们们就是你们的问题。""我们就是你们的问题,我们们们们的,你们们们不是你的,你们们们们们们们们	
如果你们的你们的你们的你们的你们的你们的你们的你们的你们的你们的你们的你们的你们的你	
	5.7
	11
	7
20 LING AND	last
如何,如此我们的问题,我们就是我们的问题,我们就是我们的问题,我们就是我们就是我们就是我们就是我们就是我们的问题。 第二章	