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ABSTRACT: 
 
Bioprinting is an emerging tissue engineering method used to generate cell-laden 
scaffolds with high spatial resolution. Bioprinting parameters, such as pressure, nozzle 
size, and speed, have a large influence on the quality of the bioprinted construct. 
Moreover, cell suspension density, cell culture period, and other critical biological 
parameters directly impact the biological function of the final product. Therefore, an 
approximation model that can be used to find the values of bioprinting parameters that 
will result in optimal bioprinted constructs is highly desired. Here, we propose type-1 and 
type-2 fuzzy systems to handle the uncertainty and imprecision in optimizing the input 
values. Specifically, we focus on the biological parameters, such as culture period, that 
can be used to maximize the output value (mineralization volume). To achieve a more 
accurate approximation, we have compared a type-2 fuzzy system with a type-1 fuzzy 
system using two levels of uncertainty. We hypothesized that type-2 fuzzy systems may 
be preferred in biological systems, due to the inherent vagueness and imprecision of the 
input data. Here, our results demonstrate that the type-2 fuzzy system with a high 
uncertainty boundary (30%) is superior to type-1 and type-2 with low uncertainty boundary 
fuzzy systems in the overall output approximation error for bone bioprinting inputs.  
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1. Introduction 
 
Additive manufacturing is a process by which three-dimensional objects are generated by 
material deposition in sequential layers [1][2]. Bioprinting is an emerging field of additive 
manufacturing, in which bioactive scaffolds can be quickly generated by deposition of 
layers of cell-laden biocompatible materials, such as collagen or other hydrogels. After 
specifying the exact geometry of the construct, G-code containing the extrusion path and 
parameters is generated to direct fabrication by one of several commercially available 
desktop bioprinters. Indeed, the ability to place cells in biologically relevant scaffold 
materials with high spatial resolution has made bioprinting a popular fabrication method 
for tissue engineering [3][4]. 
 
In addition to the specific geometry of the bioprinted construct, the parameters used to 
perform the bioprinting procedure itself will have significant effects on the final properties 
of the model. Therefore, it is essential to fully characterize and optimize the bioprinting 
parameters (e.g. print speed or bioink viscosity) that are necessary to reach the desired 
outputs, such as high cell viability, appropriate cell function, and necessary mechanical 
properties [5]. For example, increasing the nozzle size on the bioprinter decreases the 
shear stress placed on the biomaterial during extrusion, resulting in both increased cell 
viability and reduced print resolution [6]. Therefore, determining the optimal print 
parameters is important for success in bioprinting. As a result, several studies have been 
performed in the field of bioprinting optimization, such as optimization of a solid model for 
3D bioprinting, bioink optimization, and bioprinting parameter selection [7][8]. 
 
Nonetheless, there is a significant degree of imprecision and uncertainty inherent in 
bioprinting optimization. A potential approach to handling this issue, which arises from 
normal biological variation, is through the implementation of approximation systems 
based on computational methods [9]. In recent years, systems biology has become a 
critical multidisciplinary research area between computer science and biology. Studies in 
this field aim to develop computational models of biological processes, requiring both a 
robust dynamic model as well as a large dataset of experimental results [10][11].  
 
Developing a dynamic model is challenging and requires well-characterized control 
parameters in order to approximate outcomes from laboratory experiments. Nonetheless, 
recent studies have observed that computational optimization algorithms can effectively 
approximate output parameters using either a deterministic or stochastic biological model. 
A partial list of the approaches employed to this end include meta-heuristic, evolutionary, 
global optimization, genetic programming, simulated annealing, simplex, ant-colony, 
fuzzy genetic hybrid system, and multi-objective optimization [12][10]. 
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Here, we have developed a quantitative model of a biological system using the fuzzy 
system approach, which is a potential solution for overcoming uncertainty in an 
experimental dataset. In fact, previous studies have shown that the accuracy of a fuzzy 
system approach is the same as the deterministic mathematical approach (ordinary 
differential equations) for the same kinetic dataset [13]. Moreover, fuzzy systems can be 
utilized to find the qualitative system response when a quantitative dataset is not available 
[14][15]. 
  
Fuzzy logic is an extended model of standard logic. In standard logic, values can only be 
completely false or completely true (degree of truth equal to 0 and 1, respectively), 
whereas fuzzy logic values can have a degree of truth between 0 and 1. This 
generalization provides a mathematical model to move from discrete to continuous 
values. A system based on fuzzy logic is called a fuzzy system [16]. In order to define a 
fuzzy system, it is essential to first describe the fuzzy set theory. 
 
In contrast to sets in classical logic, a fuzzy set is a set without a crisp boundary. For 
instance, if the reference set 𝑋 is a Universe of discourse for elements 𝑥, the fuzzy set 
A is defined: 
 

𝐴 = %	'𝑥, 𝜇!(𝑥),-𝑥 ∈ 𝑋} 
 
where 𝜇!(𝑥)	 is called the Membership Function (MF) for the fuzzy set A. The MF maps 
each element of the Universe set 𝑋 to a grade between 0 and 1. A membership with grade 
0 means that the associated element is not included, whereas the membership value of 
1 means a fully included element [17]. One of the most important applications of fuzzy set 
theory, introduced by Zadeh [16], is the fuzzy rule-based system. This tool is based on 
“if-then” rules where the antecedents and consequences are fuzzy logic statements. This 
rule-based fuzzy system is used for modelling the inputs and their relationships with the 
output variables.  A type-1 fuzzy system (T1 FS) is a framework consisting of weighted 
rules, membership functions, and a fuzzy inference system. This system takes the crisp 
data (fuzzy singletons) or fuzzy inputs and generates fuzzy outputs based on the given 
if-then rules. A method of defuzzification is then used to extract a crisp value inferred from 
the fuzzy model [18].  
 
The concept of a Type-2 Fuzzy System (T2 FS) is an extension of an ordinary type-1 
fuzzy set which was introduced by Zadeh [19]. In contrast to a T1 FS, Type-2 fuzzy sets 
have grades of membership that are themselves fuzzy both in primary and secondary 
memberships. A primary membership is the same as type-1 membership that maps 
each element to a grade between 0 and 1. Relative to each primary membership, there 
is a secondary membership (a grade between 0 and 1) that defines the uncertainty in 
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defining the primary membership using a fuzzy set construct. A type-2 FLS is also a 
framework consisting of weighted rules (IF-THEN), membership functions, and a fuzzy 
inference system. 
 
The type-2 fuzzy inference system is also similar to its type-1 counterpart, but includes 
a type-reducer and defuzzifier, which generate a type-1 fuzzy set output and a crisp 
number, respectively [20]. 
 
T2 FS have been widely applied to a variety of problems where handling uncertainty is 
critical, including decision making, function approximation, and data preprocessing [21]–
[25]. One example is a model with noisy and uncertain training data – here, uncertainty 
exists in the antecedent and consequents. The level of uncertainty and information 
regarding it can be used in mathematical modeling of antecedents and consequents. 
Moreover, non-quantitative data is often disseminated using words that convey an 
indistinct level of certainty [26]. T2 FS has the capability to grade these linguistic 
representations into membership functions, which shows a more robust algorithm rather 
than T1 FS in inferencing input data. However, the computational cost of T2 FS is higher 
than the T1 FS [20].  
 
The main objective of this study is to implement fuzzy systems towards the optimization 
of bioprinting parameters. We hypothesize that the implementation of a T2 FS would 
reduce the error in the output in biological systems with inherent uncertainty in both the 
inputs and outputs. To directly test this hypothesis, we have implemented type-1 and 
type-2 fuzzy logic systems and compared the performance of each for use in the 
optimization of bone bioprinting parameters. 
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2. Type-2 Fuzzy System 
 
The general flowchart of a T2 Mamdani fuzzy logic system is shown in Figure 1a, including 
the fuzzification, fuzzy inference, type reduction, and defuzzification steps. Considering 
the crisp inputs (n inputs) and one output: 
 

𝑥" ∈ 	𝑋", … , 𝑥# ∈ 	𝑋#	and	𝑦 ∈ 	𝑌, 
 
the k-th ( 𝑘 = 1,… , 𝐾 ) rule in Mamdani T2 FS is expressed as below:  
 

𝑅$ ∶ 𝑖𝑓	𝑥"	𝑖𝑠	𝐹<"$ 	𝑎𝑛𝑑 …𝑎𝑛𝑑	𝑥#	𝑖𝑠	𝐹<#$ , 𝑡ℎ𝑒𝑛	𝑦	𝑖𝑠	𝐺<$ 
 
Where 𝐹<"$ and 𝐺<$ 	are T2 FS. In this system, rules represent the fuzzy relations between 
multiple dimensional input space 𝑋 ≜ 	𝑋" × …	×	𝑋# and output space 𝑌. The definitions 
below are paraphrased from the Mendel and Liang article in T2 FS [20]: 
 
Definition 1 (Footprint of Uncertainty of a Type-2 Membership Function): Uncertainty in 
the region of upper and lower boundary of membership function is called the footprint of 
uncertainty. It is the union of all primary membership grades. 
 
Definition 2 (Upper and Lower MFs): A type-1 fuzzy upper and lower boundary MFs for 
the Footprint of Uncertainty (FOU) of an interval type-2 MF. The upper and lower bounds 
of the region are the maximum and minimum membership grades of FOU. 
 
The over and under bars show the upper and lower MFs, respectively. The membership 
function of	𝐹<"$ is represented as below: 

𝜇%&!"(𝑥$) = ∫ 1/𝜔'	
)#∈[,$%!"

(."),,$%!"
(.")]

. 

The upper and lower boundaries on a Gaussian primary function with an uncertain 
standard deviation is represented below. In this representation, the Gaussian primary MF 
has a fixed mean 𝑚$

'  and an uncertain standard deviation 𝜎$'𝜖L𝜎$"' , 𝜎$2' M: 
 

𝜇$' (𝑥$) = exp[	−
1
2 (
𝑥$ −	𝑚$

'

𝜎$'
)2] 

Where 
 

𝑘	 ∈ (	1, … , 𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑎𝑛𝑡𝑒𝑐𝑒𝑑𝑒𝑛𝑡𝑠)					𝑙 ∈ 	 (	1, … , 𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑟𝑢𝑙𝑒𝑠) 
 
The upper and lower MF of 𝜇$' (𝑥$) are: 
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𝜇$
' (𝑥$) = 	𝒩(𝑚$

' , 𝜎$2' ; 𝑥$)  upper MF  
𝜇$' (𝑥$) = 	𝒩(𝑚$

' , 𝜎$"' ; 𝑥$) lower MF 
 
In the interval T2 non-singleton fuzzy system with type-2 fuzzification and minimum or 
product t-norm, the output fuzzy set is represented as below: 
 
𝜇3&(𝑦) = ∫ "

4
		

4∈567!⋆,&%!(9):∨	∙	∙	∙	∨67'⋆,&%'(9):,6	7
!
⋆,&%!(9):∨	∙	∙	∙	∨=7

'
⋆,&%'(9)>?	

 (2) 

 
In Equation 2, 𝑓 	 and 𝑓

	
are the result of the input and antecedent operations, based on 

the value of 𝑥$ inwhich the supremum occurs as 𝑥$,@A.' and 𝑥$,@A.
' : 

 

𝑓$
'
=	𝜇B&"(𝑥$,@A.

' ) ⋆ 𝜇%&"#(𝑥$,@A.
' ) 

 
𝑓$' =	𝜇B&"(𝑥$,@A.

' ) ⋆ 𝜇%&"(𝑥$,@A.
' ) 

 
In the algorithm above, we follow the following steps to obtain the crisp output: 1) 
fuzzification 2) fuzzy inference 3) type-reduction 4) defuzzification. The result of crisp 
input and antecedents is an interval type-1 fuzzy set, defined by the lower and upper MF 
𝑓	 	 and 𝑓	

	
, respectively. Regarding Equation (2), the fired output value, which is the 

combined output consequent set 𝜇3&(𝑦), can be computed. The type-2 fuzzy system is 
computationally intensive to implement [20]. A potential solution is a type-reduction 
method, such as Kendrick and Mendel proposed using the type-1 defuzzification method 
for reducing the type-2 to type-1 fuzzy system [27].  
 
Various type-reduction are proposed as centroid, center-of-sets, and height [20]. In our 
method, we have used center-of-set type-reduction method:  
 

𝑦' =	
∑ 7#

(9#
()

(*!
∑ 7#

()
(*!

   and    𝑦D =	
∑ 7+(9+()
(*!
∑ 7+()
(*!

 

 
Where the maximum and minimum value of 𝑦		are 𝑦D and 𝑦' respectively. 𝑦D and 𝑦' depend 
only on a mixture of 𝑓	 	 and 𝑓	

	
values, because 𝑓E ∈ 𝐹E = [	𝑓	 	, 𝑓	

	
]. Because 𝑦 is an interval 

non-convex set, we defuzzify it by using the average of 𝑦D and 𝑦'.  
 

𝑓(𝑥) = 	
𝑦D +	𝑦'
2 = 𝑑 
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Where 𝑑 is the defuzzified output in the above formula. 
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3. Methods  
 

A. Fuzzy Inference Engine 
 

The first step to develop this approximation model is to make a fuzzy inference system, 
such as the Mamdani or Sugeno systems. For this study, we chose the Mamdani 
inference engine due to the intuitive interpretable nature of its rule-base inferencing [28]. 
 
The main difference between Mamdani-type and Sugeno-type Fuzzy Inference System 
(FIS) is the method of how the output result is obtained. In Mamdani FIS, the crisp result 
is obtained through defuzzification of the rules. However, Sugeno FIS uses a weighted 
average of the rules to compute the crisp output. Moreover, Mamdani FIS can be applied 
to both “Multiple Input, Single Output” (MISO) and “Multiple Input, Multiple Output” 
(MIMO) systems, which is advantageous for biologic systems that frequently have 
multiple outputs. It is important to note that Sugeno-type systems can be used for MISO 
systems [28]. 
 

B. Membership functions parameterization and variables 
 
As discussed earlier, we obtained optimization data for the variables in our model from a 
previously published experimental study [29]. As shown in Figure 1b, the bioprinting 
approximation system has two inputs, which are the number of cells (millions per milliliter) 
and the culture period (days), and one output variable, which is the mineralized volume 
of the bioprinted construct (mm3). 
 
Next, the membership functions (MFs) were defined. MFs are distributed evenly by 
dividing the full input data range by the number of MFs, which is the input labels shown 
in Table 1 and Figure 2. The membership function is a 2D curve (type-1 fuzzy) that 
describes the variables’ degree of membership to a fuzzy set, using a value between 0 
and 1. Membership functions are used in a fuzzification process to convert the crisp 
values to fuzzy values [30]. Membership functions can be implemented using a variety of 
functions, such as triangular, Gaussian, or gamma. Here, we chose the Gaussian 
membership function due to the similarity of this function with many biological processes. 
In general, Gaussian membership functions are popular because of their smoothness and 
concise notation [31]. MFs designed with Gaussian forms, are modified by tuning the 
standard deviation and their mean values, as shown in Table 2. Table 1 indicates the fact 
that low mineralization volume and close data points in 7 days culturing period compared 
to the 14- and 21-days results in a smaller standard deviation than the two other MFs.  
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The membership functions based on the input value representation (Table 1) are plotted 
in Figure 2 (A, B, C). The Type-1 membership functions were converted to Type-2 with a 
prescribed 20 and 30 percent uncertainty using the Fuzzy Logic System toolbox (Matlab). 
The lower and upper boundary of the MFs type-2 FS with 0.2 lag are plotted in Figure 2 
(D,E,F). 
 

C. If-Then Rules Establishment 
 
The next step in designing a fuzzy system is to define the fuzzy IF-THEN rules. As shown 
in Table 2, we utilized previously published results from an experimental bioprinting study 
[29]. The model rules are shown at Table 3.  
 

D. Fuzzy Inference Process 
 
Finally, we implemented the type-1 fuzzy inference process using the following 
procedure: 
 

1. Fuzzification of the input variables 
2. Application of the fuzzy operator (AND) in the antecedent 
3. Implication from the antecedent to the consequent 
4. Aggregation of the consequent across the rules 
5. Defuzzification  

 
Next, the type-2 fuzzy system is implemented using the following process: 
 

1. Fuzzification of the input variables 
2. Application of the fuzzy operator (AND) in the antecedent 
3. Convert T1 MF to T2 MF with 0.2 and 0.3 lag 
4. Implication from the antecedent to the consequent 
5. Aggregation of the consequent across the rules 
6. T2 FS to T1 FS type reduction by Karnik-Mendel 
7. Defuzzification 

 
In the above process, we used “Minimum” for AND (Step 2), “Minimum” for Implication 
(Step 4), “Maximum” for Aggregation (Step 5), and “Centroid” for defuzzification (Step 7). 
The 3D surface of the implemented type-1 fuzzy and type-2 fuzzy (20% and 30% 
uncertainty) rule based on the two inputs and one output is plotted in Figure 3.  
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4. Results 
 
Type-1 and type-2 fuzzy systems were implemented as described above using input data 
from a previous experimental study [29]. Table 4 and Table 5 shows the T1 and T2 FS 
approximated values. In these tables, in addition to the experimental input data, the type-
2 fuzzy system has an  additional input, which is the uncertainty boundary (either 20% or 
30%).This uncertainty boundary is used as an input to compare the mineralization volume 
output with different noise levels in the input data.  
 
First, we generated approximated values at each of the input value combinations 
available (Table 4). A graphical visualization of these values has been generated as a 3D 
surface, for the T1 FS (Fig. 3A), 20% T2 FS (Fig. 3B), and 30% T2 FS (Fig. 3C). Next, 
we compared the experimental output value (mineralization volume) to the approximated 
values in each of the three fuzzy systems (Table 5). Here, we calculated the root mean 
square error (RMSE) between the experimental and approximated values with same input 
values. The equation of the measurement is given as follow: 
 

𝑅𝑀𝑆𝐸 = 	b
∑ (𝑥E − 𝑥̅E)2F
EG"

𝑁  

 
 As compared to the T1 FS, we observed that the 20% T2 FS increased the overall error 
of the approximation (+5.3%). In contrast, we observed that the 30% T2 FS decreased 
the overall error of the approximation (-2.8%), relative to the T1 FS. 
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5. Discussion 
 
Bioprinting research is a time-consuming and expensive process requiring the use of cells 
that may be difficult to source followed by a lengthy culture period. Finally, quantification 
of the suitability of the bioprint itself can be challenging. As a result, it is difficult to 
exhaustively optimize a bioprinted construct experimentally. Here, we have demonstrated 
that approximating bioprinting output parameters using fuzzy systems based on input 
variables is a viable approach to accelerate research, reduce experimental costs, and 
improve outcomes. Furthermore, our fuzzy system approach can be redesigned with 
additional input and output variables, qualitative results, or expert knowledge using 
linguistic rules. 
 
In this study, we implement a fuzzy logic-based model using both type-1 and type-2 fuzzy 
systems to compare the results in handling the uncertainty associated with the bioprinting 
process. This uncertainty can arise from noisy input data or imperfect expert knowledge. 
Using experimental data, we have demonstrated that the implemented fuzzy logic can 
convert the discrete crisp input data to fuzzy sets to achieve a continuum data surface 
with high accuracy. Furthermore, we found that the 30% type-2 fuzzy system can 
accommodate more imprecision with higher accuracy, which may prove valuable for 
bioprinting optimization. In contrast, the 20% type-2 fuzzy system was unable to provide 
higher accuracy relative to the type-1 fuzzy system, so additional work may be necessary 
to determine the level of uncertainty specific to the biological process being optimized. 
 
We have provided 3D surfaces generated by the fuzzy rules (e.g. Figure 3) as an intuitive 
tool to help researchers design new studies for experimental optimization of bioprinted 
constructs. For example, researchers should avoid performing new experiments in “flat” 
areas of the 3D model. In our study, the 3D surface illustrates a relatively flat area for 
moderate cell suspension densities and culture periods of around 14 days. Therefore, if 
the researcher wishes to maximize mineralization volume with a low number of cells (e.g. 
5 x106 cells/mL), they may prefer to increase their culture time to 21 days rather than 
attempt to triple their cell number in order to traverse the flat area of the surface. In total, 
implementation of this system may help researchers optimize their study design to 
eliminate unnecessary experimentation. 
 
We also note that the 3D surfaces generated for the type-2 fuzzy systems (Figures 3B,C) 
are both qualitatively smoother than surface generated using the type-1 fuzzy system 
(Figure 3A). In particular, we observed a sharp edge around a culture period of 8 days. 
This smoothness is likely to result in higher accuracy in approximated values, as 
biological mathematical models ought to have a smooth transmission when increasing 
the input values. 
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Fuzzy systems are designed for decision-making, approximation, and optimization. A 
limitation of our method is the lack of a feedback system for incorporating new 
experimental results. Methods such as the Adaptive Neuro-Fuzzy Inference System 
(ANFIS) with Sugeno model give the fuzzy system a feedback feature to train and adjust 
the fuzzy membership functions based on new trained and tested data. Future studies 
should focus on implementing such a feature to further improve this approximation system 
for bioprinting.  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 31, 2021. ; https://doi.org/10.1101/2021.03.31.437908doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.31.437908


References: 
 
[1] A. Sedigh, A. R. Kachooei, P. K. Beredjiklian, A. R. Vaccaro, and M. Rivlin, 

“Safety and efficacy of casting during COVID-19 pandemic: A comparison of the 
mechanical properties of polymers used for 3D printing to conventional materials 
used for the generation of orthopaedic orthoses,” Arch. Bone Jt. Surg., vol. 8, no. 
SpecialIssue, 2020, doi: 10.22038/abjs.2020.44038.2204. 

[2] A. Sedigh, M. H. Ebrahimzadeh, M. Zohoori, and A. Kachooei, “Cubitus Varus 
Corrective Osteotomy and Graft Fashioning Using Computer Simulated Bone 
Reconstruction and Custom-Made Cutting Guides,” Arch. Bone Jt. Surg., vol. 0, 
Nov. 2020, doi: 10.22038/abjs.2020.52457.2592. 

[3] S. Derakhshanfar, R. Mbeleck, K. Xu, X. Zhang, W. Zhong, and M. Xing, “3D 
bioprinting for biomedical devices and tissue engineering: A review of recent 
trends and advances,” Bioactive Materials, vol. 3, no. 2. KeAi Communications 
Co., pp. 144–156, Jun. 01, 2018, doi: 10.1016/j.bioactmat.2017.11.008. 

[4] S. V. Murphy and A. Atala, “3D bioprinting of tissues and organs,” Nature 
Biotechnology, vol. 32, no. 8. Nature Publishing Group, pp. 773–785, 2014, doi: 
10.1038/nbt.2958. 

[5] T. K. Koo and M. Y. Li, “A Guideline of Selecting and Reporting Intraclass 
Correlation Coefficients for Reliability Research.,” J. Chiropr. Med., vol. 15, no. 2, 
pp. 155–63, Jun. 2016, doi: 10.1016/j.jcm.2016.02.012. 

[6] B. Webb and B. J. Doyle, “Parameter optimization for 3D bioprinting of hydrogels,” 
Bioprinting, vol. 8, pp. 8–12, Dec. 2017, doi: 10.1016/j.bprint.2017.09.001. 

[7] A. Sedigh, J. E. Tulipan, M. R. Rivlin, and R. E. Tomlinson, “Utilizing Q-Learning 
to Generate 3D Vascular Networks for Bioprinting Bone,” bioRxiv, p. 
2020.10.08.331611, Oct. 2020, doi: 10.1101/2020.10.08.331611. 

[8] R. Suntornnond, E. Tan, J. An, and C. Chua, “A Mathematical Model on the 
Resolution of Extrusion Bioprinting for the Development of New Bioinks,” 
Materials (Basel)., vol. 9, no. 9, p. 756, Sep. 2016, doi: 10.3390/ma9090756. 

[9] A. Torres and J. J. Nieto, “Fuzzy logic in medicine and bioinformatics,” Journal of 
Biomedicine and Biotechnology, vol. 2006. 2006, doi: 10.1155/JBB/2006/91908. 

[10] J. Sun, J. M. Garibaldi, and C. Hodgman, “Parameter estimation using 
metaheuristics in systems biology: A comprehensive review,” IEEE/ACM Trans. 
Comput. Biol. Bioinforma., vol. 9, no. 1, pp. 185–202, 2012, doi: 
10.1109/TCBB.2011.63. 

[11] L. You, “Toward computational systems biology,” Cell Biochemistry and 
Biophysics, vol. 40, no. 2. Springer, pp. 167–184, Apr. 2004, doi: 
10.1385/CBB:40:2:167. 

[12] J. R. Banga, “Optimization in computational systems biology,” BMC Systems 
Biology, vol. 2, no. 1. BioMed Central, p. 47, May 28, 2008, doi: 10.1186/1752-
0509-2-47. 

[13] R. Küffner, T. Petri, L. Windhager, and R. Zimmer, “Petri Nets with Fuzzy Logic 
(PNFL): Reverse Engineering and Parametrization,” PLoS One, vol. 5, no. 9, p. 
e12807, Sep. 2010, doi: 10.1371/journal.pone.0012807. 

[14] T. Z. Tan, G. S. Ng, and C. Quek, “A novel biologically and psychologically 
inspired fuzzy decision support system: Hierarchical complementary learning,” 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 31, 2021. ; https://doi.org/10.1101/2021.03.31.437908doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.31.437908


IEEE/ACM Trans. Comput. Biol. Bioinforma., vol. 5, no. 1, pp. 67–79, Jan. 2008, 
doi: 10.1109/TCBB.2007.1064. 

[15] J. Bordon, M. Moskon, N. Zimic, and M. Mraz, “Fuzzy logic as a computational 
tool for quantitative modelling of biological systems with uncertain kinetic data,” 
IEEE/ACM Trans. Comput. Biol. Bioinforma., vol. 12, no. 5, pp. 1199–1205, Sep. 
2015, doi: 10.1109/TCBB.2015.2424424. 

[16] L. Z.-I. and control and  undefined 1965, “Fuzzy sets,” Elsevier, Accessed: Nov. 
05, 2020. [Online]. Available: 
https://www.sciencedirect.com/science/article/pii/S001999586590241X. 

[17] S. Alayón, R. Robertson, S. K. Warfield, and J. Ruiz-Alzola, “A fuzzy system for 
helping medical diagnosis of malformations of cortical development,” J. Biomed. 
Inform., vol. 40, no. 3, pp. 221–235, Jun. 2007, doi: 10.1016/j.jbi.2006.11.002. 

[18] E. M.-P. of the institution of electrical and  undefined 1974, “Application of fuzzy 
algorithms for control of simple dynamic plant,” ieeexplore.ieee.org, Accessed: 
Nov. 05, 2020. [Online]. Available: 
https://ieeexplore.ieee.org/abstract/document/5250910/. 

[19] N. N. Karnik, J. M. Mendel, and Q. Liang, “Type-2 fuzzy logic systems,” IEEE 
Trans. Fuzzy Syst., vol. 7, no. 6, pp. 643–658, Dec. 1999, doi: 
10.1109/91.811231. 

[20] Q. Liang and J. M. Mendel, “Interval type-2 fuzzy logic systems: Theory and 
design,” IEEE Trans. Fuzzy Syst., vol. 8, no. 5, pp. 535–550, Oct. 2000, doi: 
10.1109/91.873577. 

[21] N. N. Karnik and J. M. Mendel, “Centroid of a type-2 fuzzy set,” Inf. Sci. (Ny)., vol. 
132, no. 1–4, pp. 195–220, Feb. 2001, doi: 10.1016/S0020-0255(01)00069-X. 

[22] N. N. Karnik and J. M. Mendel, “Applications of type-2 fuzzy logic systems: 
handling the uncertainty associated with surveys,” in IEEE International 
Conference on Fuzzy Systems, 1999, vol. 3, doi: 10.1109/fuzzy.1999.790134. 

[23] F. Baghbani, M. R. Akbarzadeh-T., and A. Akbarzadeh, “Indirect adaptive robust 
mixed H2/H∞ general type-2 fuzzy control of uncertain nonlinear systems,” Appl. 
Soft Comput. J., vol. 72, pp. 392–418, Nov. 2018, doi: 
10.1016/j.asoc.2018.06.049. 

[24] S. F. Toloue, M. R. Akbarzadeh, A. Akbarzadeh, and M. Jalaeian-F, “Position 
tracking of a 3-PSP parallel robot using dynamic growing interval type-2 fuzzy 
neural control,” Appl. Soft Comput. J., vol. 37, pp. 1–14, Dec. 2015, doi: 
10.1016/j.asoc.2015.07.015. 

[25] H. R. Hassanzadeh, M. R. Akbarzadeh-T, A. Akbarzadeh, and A. Rezaei, “An 
interval-valued fuzzy controller for complex dynamical systems with application to 
a 3-PSP parallel robot,” Fuzzy Sets Syst., vol. 235, pp. 83–100, Jan. 2014, doi: 
10.1016/j.fss.2013.02.009. 

[26] J. M. Mendel, “A comparison of three approaches for estimating (synthesizing) an 
interval type-2 fuzzy set model of a linguistic term for computing with words,” 
Granul. Comput., vol. 1, no. 1, pp. 59–69, Mar. 2016, doi: 10.1007/s41066-015-
0009-7. 

[27] N. N. Karnik and J. M. Mendel, “Type-2 fuzzy logic systems: type-reduction,” in 
Proceedings of the IEEE International Conference on Systems, Man and 
Cybernetics, 1998, vol. 2, pp. 2046–2051, doi: 10.1109/icsmc.1998.728199. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 31, 2021. ; https://doi.org/10.1101/2021.03.31.437908doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.31.437908


[28] K. Guney and N. Sarikaya, “COMPARISON OF MAMDANI AND SUGENO 
FUZZY INFERENCE SYSTEM MODELS FOR RESONANT FREQUENCY 
CALCULATION OF RECTANGULAR MICROSTRIP ANTENNAS,” 2009. 

[29] J. Zhang et al., “Optimization of mechanical stiffness and cell density of 3D 
bioprinted cell-laden scaffolds improves extracellular matrix mineralization and 
cellular organization for bone tissue engineering,” Acta Biomater., vol. 114, pp. 
307–322, Sep. 2020, doi: 10.1016/j.actbio.2020.07.016. 

[30] B. M. Moreno-Cabezali and J. M. Fernandez-Crehuet, “Application of a fuzzy-logic 
based model for risk assessment in additive manufacturing R&D projects,” 
Comput. Ind. Eng., vol. 145, p. 106529, Jul. 2020, doi: 10.1016/j.cie.2020.106529. 

[31] A. Sadollah, “Introductory Chapter: Which Membership Function is Appropriate in 
Fuzzy System?,” in Fuzzy Logic Based in Optimization Methods and Control 
Systems and its Applications, InTech, 2018. 

 
  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 31, 2021. ; https://doi.org/10.1101/2021.03.31.437908doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.31.437908


Tables 
 
 
 
Table 1. Input data extracted from the previous study [29] 
Culture Period (days) Cell Suspension Density 

(million cells /milliliter)  
Mineralization Volume (mm3) 

7 0 0 
7 1.67 0.1 
7 5 0.1 
7 15 0.2 
14 0 0 
14 1.67 1 
14 5 3 
14 15 12 
21 0 4 
21 1.67 14 
21 5 21 
21 15 24 
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Table 2. Gaussian membership functions range [ Sigma, Mean] 
Linguistic 
Variable 

Culture Period (days) Cell Suspension 
Density (million cells 
/milliliter)  

Mineralization Volume 
(mm3) 

Low [0.5011 6.78] [1.981 1] [1.54 0.1] 
Medium [2.109 14] [1.981 5.667] [3.38 8.11] 
High [2.476 21.03] [1.981 10.33] [3.384 16.03] 
Very High - [1.981 15] [3.384 24] 
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Table 3. Type-1 and Type-2 Fuzzy system rules 

Rule Culture Period (days) Cell Suspension Density 
(million cells / milliliter) Mineralization Volume (mm3) 

1 Low Low Low 
2 Low Medium Low 
3 Low High Low 
4 Low Very High Low 
5 Medium Low Low 
6 Medium Medium Medium 
7 Medium High Medium 
8 Medium Very High High 
9 High Low Medium 
10 High Medium High 
11 High High Very High 
12 High Very High Very High 
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Table 4. Type-1 and Type-2 Fuzzy system approximation comparison 
Culture 
Period 
(days) 

Cell 
Suspension 
Density 
(million cells 
/milliliter) 

Mineralization Volume (mm3) 

  Zero 
Uncertainty 
(T1 FS) 

%20 
Uncertainty 
(T2 FS) 

%30 
Uncertainty 
(T2 FS) 

7 3 1.84 1.7 1.92 
7 8 2.04 2.1 2.73 
7 11 1.75 1.32 1.31 
7 14 1.78 1.38 1.40 
14 3 7.22 6.72 6.75 
14 8 8.41 8.37 8.46 
14 11 9.43 8.89 8.91 
14 14 14.5 15.17 15.13 
21 3 11.53 11.14 11.15 
21 8 17.07 17.28 17.22 
21 11 20.76 21.51 21.56 
21 14 21.13 21.6 21.7 
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Table 5. Accuracy of Type-1 and Type-2 (20% and 30% uncertainty) Fuzzy Systems 
Culture 
Period 
(days) 

Cell 
Suspension 
Density 
(million cells 
/milliliter) 

Mineralization Volume (mm3) 

  Experimental 
Values 
(Actual) 

Zero 
Uncertainty 
(T1 FS) 

20% 
Uncertainty 
(T2 FS) 

30% 
Uncertainty 
(T2 FS) 

7 1.67 0.1 1.84 1.32 1.2 
7 5 0.1 2.04 2.1 2.73 
7 15 0.2 1.75 1.32 1.31 
14 1.67 1 7.6 5.8 4.0 
14 5 3 8.28 8.21 8.21 
14 15 12 15.57 15.58 15.87 
21 1.67 14 9.43 8.89 8.9 
21 5 21 14.9 15.4 15.45 
21 15 24 21.2 21.81 21.89 

RMSE N/A 3.6 3.79 3.5 
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Figures 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
  

Figure 1. Type-2 Fuzzy Logic Algorithm and Study Design. A) General overview and 
different features of the Type-2 Fuzzy system including fuzzification, rules, inference 
engine, type reduction, and defuzzification. B) Schematic of our study design, including two 
inputs (cell suspension density and culture period) and one output (mineralization volume). 
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Figure 2. Type-1 and Type-2 Fuzzy Membership Functions. A-C) Type-1 MFs for the two 
inputs, A) culture period and B) cell suspension density, as well as the single output C) 
mineralization volume. D-F) Type-2 MFs for D) culture period, E) cell suspension density, 
and F) mineralization volume. Type-2 membership functions are designed with 0.2 lag. 
Upper (red) and lower (blue) boundaries are as illustrated. 
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Figure 3. 3D surfaces generated by implemented fuzzy rules. A) Type-1 fuzzy system. B) 
Type-2 fuzzy system with 20% uncertainty. C) Type-2 fuzzy system with 30% uncertainty. 
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