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Abstract  26 

Collateral sensitivity (CS)-based antibiotic treatments, where increased antibiotic resistance to one antibiotic leads to 27 

increased antibiotic sensitivity of second antibiotic, could constitute a strategy to limit emergence of antibiotic 28 

resistance. However, it is unclear how to design CS-based dosing schedules that effectively suppress resistance. Here, 29 

we use a mathematical modelling approach incorporating pharmacokinetic and pharmacodynamic features to 30 

simulate bacterial population dynamics for different combination treatment designs. We study how differences in 31 

pathogen- and drug-specific factors influence the probability of resistance at end of treatment for different dosing 32 

strategies. We show that drug administration sequence is critical, whilst surprisingly, reciprocal CS was not essential 33 

to suppress resistance. Overall, we find that  one-day cycling or simultaneous treatment schedules were most effective 34 

to supress the probability of resistance. In conclusion, our analysis provides insight into key design principles that 35 

contribute to the success of CS-based treatment strategies in suppressing resistance. 36 
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Introduction 44 

Antimicrobial resistance (AMR) is a worldwide health threat due to the reduction of clinically effective antibiotics. 45 

Current drug discovery pipelines of new-in-class antibiotic agents are insufficient to offset the emergence of new 46 

AMR[1]. Innovative strategies to reduce the rate that AMR develops are thus critically needed. Treatment with 47 

antibiotics in individual patients represents one important situation where de novo AMR may emerge[2,3]. However, 48 

antibiotic dosing strategies used in the clinic do not typically explicitly consider within-host emergence of AMR. 49 

Instead, current clinical strategies are primarily based on exposure targets that are associated with sufficient bacterial 50 

kill in preclinical studies, or with clinical outcomes in patient studies[4]. Thus, there is need for clinical dosing strategies 51 

designed to suppress emergence of AMR[5].  52 

Selection inversion mechanisms that exploit evolutionary trade-offs associated with AMR are of increasing interest to 53 

design antibiotic dosing strategies that suppress the within-host emergence of AMR [6]. In this context, collateral 54 

sensitivity (CS), where resistance to one antibiotic leads to increased sensitivity to a second antibiotic, has been 55 

proposed as a potential strategy to suppress AMR [7,8]. CS has been extensively characterized in vitro, typically by 56 

evolving AMR strains and then quantifying correlated changes in the sensitivity to other antibiotics[9–12]. CS effects 57 

have been characterized for several clinically relevant pathogens, including Escherichia coli[9,13], Pseudomonas 58 

aeruginosa[14], Enterococcus faecalis[13], Streptococcus pneumoniae[15], and Staphylococcus aureus[16]. CS 59 

relationships between antibiotics can either be one directional, where decreased sensitivity to one antibiotic show CS 60 

to a second antibiotic but not the reverse, or reciprocal, where decreased sensitivity either of the antibiotics results in 61 

CS to the other. Reciprocal CS is often considered a prerequisite for effective CS-based treatments, but such 62 

relationships have been less frequently observed compared to one directional CS[9–16].  63 

CS-based treatment strategies can use different designs to combine antibiotics showing a CS-relationship, including 64 

simultaneous, sequential, or cyclic (alternating) administration. For example, consider a cycling drug strategy using 65 

two antibiotics showing reciprocal CS (Figure 1). Initial treatment would start with antibiotic A. This leads to resistance 66 

to A and a corresponding increase in sensitivity to B. When treatment is switched to antibiotic B, the inverted selection 67 

pressure leads to the eradication of cells that are resistant to antibiotic A (due to CS), but possibly favouring any 68 

remaining cells that are resistant to B, but susceptible to antibiotic A. . By cycling between the two drugs to sequentially 69 

eliminate all cells that show reciprocal CS, complete eradication can been achieved. Although the conceptual strategies 70 

of CS-based treatments have been discussed[6], it remains unclear when CS-based dosing strategies are most likely to 71 

be beneficial, and how to design specific antibiotic dosing (combination) schedules based on CS. Furthermore, it is 72 

unclear how pathogen-specific factors, such as CS effect magnitude and directionality, fitness costs of resistance, and 73 

mutation rates, as well as pharmacological factors related to pharmacokinetics (PK) and pharmacodynamics (PD) for 74 

different drug types, can affect optimal dosing schedules.  75 

Experimental studies in vitro are essential to characterize the incidence, evolvability and magnitude of CS, all of which 76 

are important but isolated components that may contribute to the success of CS-based treatments [9–16]. However, 77 

for translation of in vitro CS findings to in vivo or clinical treatment scenarios, consideration of pharmacodynamic (PD) 78 
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and pharmacokinetic (PK) factors is essential, as these determine the differential impact of different antibiotics on the 79 

rate and concentration dependent effects of bacterial growth, inhibition, and killing [17,18]. By affecting bacterial 80 

dynamics, antibiotic PK-PD can have a profound influence on resistance evolution, and are therefore key factors to 81 

design optimised CS-informed treatments. To this end, mathematical models are important tools to integrate multiple 82 

biological and pharmacological factors contributing to treatment outcomes, including different PK parameters of 83 

specific antibiotics in patients, antibiotic-specific PD parameters, and pathogen specific characteristics such as strain 84 

fitness and the rate and magnitude of CS effects. 85 

In the current study we aim to determine if and when CS-based dosing schedules are likely to lead to the suppression 86 

of within-host emergence of antibiotic resistance. We utilise a mathematical modelling approach to comprehensively 87 

study the influence of key pathogen-specific factors and the contribution of PK and PD properties to identify key design 88 

principles to inform rational design of antibiotic combination dosing schedules that suppress antibiotic resistance. 89 

 90 

 91 

Figure 1. Concept of collateral sensitivity (CS)-based treatments using two hypothetical drugs, antibiotic A and B. Adapted from Pál et al 2015 92 
[19] A: Reciprocal CS relationship between antibiotic A and B. B: Theoretical cycling regimen exploiting CS between antibiotic A and B to supress 93 
resistance.  94 

Methods 95 

Model framework 96 

A differential-equation based model of components accounting for antibiotic PK and PD, and associated bacterial 97 

population dynamics, to study the impact of differences in pathogen- and drug-specific characteristics for different 98 

treatment strategies for treatment with two antibiotics (AB) referred to as antibiotic A (ABA) and antibiotic B (ABB). 99 

Pharmacokinetics 100 

A 

B 
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A mono-exponential PK model was defined for both antibiotics ABi, where i = {A,B}, as follows: 101 

𝑑𝐴𝐴𝐵𝑖

𝑑𝑡
= −𝑘𝑒,𝐴𝐵𝑖

× 𝐴𝐴𝐵𝑖
             (1) 102 

𝑡ℎ𝑎𝑙𝑓,𝐴𝐵𝑖
=  

𝑙𝑛(2)

𝑘𝑒,𝐴𝐵𝑖

              (2) 103 

𝐶𝐴𝐵𝑖
=

𝐴𝐴𝐵𝑖

𝑉𝐴𝐵𝑖

              (3) 104 

where Equation 1 describes the change of the amount of ABi over time after intravenous administration, 𝑘𝑒,𝐴𝐵𝑖
 is the 105 

elimination rate of ABi, which can also be expressed as a half-life (𝑡ℎ𝑎𝑙𝑓,𝐴𝐵𝑖
) (Equation 2). The plasma concentration 106 

(𝐶𝐴𝐵𝑖
), which is the assumed driver of the antibiotic effect, is calculated using the 𝑉𝐴𝐵𝑖

, the distribution volume of ABi 107 

(Equation 3).  108 

Bacterial subpopulations 109 

A model for antibiotic sensitive and resistant subpopulations was defined, comprising of a four-state stochastic hybrid 110 

ordinary differential equation (ODE) model, where each state represents a bacterial subpopulation with different 111 

antibiotic susceptibility towards ABA and ABB.  112 

The model included an antibiotic sensitive bacterial subpopulation (WT) (Equation 4), one mutant subpopulation 113 

resistant to ABA but sensitive to ABB (RA) (Equation 5), one mutant subpopulation sensitive to ABA but resistant to ABB 114 

(RB) (Equation 6), and one double mutant subpopulation resistant to both ABA and ABB (RAB) (Equation 7). The initial 115 

bacterial population was assumed to be homogeneous and in the sensitive WT state unless stated otherwise.  116 

𝑑𝑊𝑇

𝑑𝑡
= 𝑊𝑇 × 𝑘𝑛𝑒𝑡,𝑊𝑇(𝑊𝑇, 𝑅𝐴, 𝑅𝐵, 𝑅𝐴𝐵 , 𝐹𝑓𝑖𝑡 , 𝑛𝑊𝑇) × 𝐸𝐴𝐵,𝑊𝑇(𝐸𝐴𝐵𝐴 ,𝑊𝑇 , 𝐸𝐴𝐵𝐵,𝑊𝑇) − 𝑘𝑊𝑇,𝑅𝐴

(𝑊𝑇, 𝜇) − 𝑘𝑊𝑇,𝑅𝐵
(𝑊𝑇, 𝜇)  (4) 117 

𝑑𝑅𝐴

𝑑𝑡
= 𝑅𝐴 × 𝑘𝑛𝑒𝑡,𝑅𝐴

(𝑊𝑇, 𝑅𝐴, 𝑅𝐵, 𝑅𝐴𝐵 , 𝐹𝑓𝑖𝑡 , 𝑛𝑅𝐴
) × 𝐸𝐴𝐵,𝑅𝐴

(𝐸𝐴𝐵𝐴,𝑅𝐴
, 𝐸𝐴𝐵𝐵 ,𝑅𝐴

) + 𝑘𝑊𝑇,𝑅𝐴
(𝑊𝑇, 𝜇) − 𝑘𝑅𝐴,𝑅𝐴𝐵

(𝑅𝐴, 𝜇)   (5) 118 

𝑑𝑅𝐵

𝑑𝑡
= 𝑅𝐵 × 𝑘𝑛𝑒𝑡,𝑅𝐵

(𝑊𝑇, 𝑅𝐴, 𝑅𝐵, 𝑅𝐴𝐵 , 𝐹𝑓𝑖𝑡 , 𝑛𝑅𝐵
) × 𝐸𝐴𝐵,𝑅𝐵

(𝐸𝐴𝐵𝐴 ,𝑅𝐵
, 𝐸𝐴𝐵𝐵,𝑅𝐵

) + 𝑘𝑊𝑇,𝑅𝐵
(𝑊𝑇, 𝜇) − 𝑘𝑅𝐵,𝑅𝐴𝐵

(𝑅𝐵, 𝜇)   (6) 119 

𝑑𝑅𝐴𝐵

𝑑𝑡
= 𝑅𝐴𝐵 × 𝑘𝑛𝑒𝑡,𝑅𝐴𝐵

(𝑊𝑇, 𝑅𝐴, 𝑅𝐵, 𝑅𝐴𝐵 , 𝐹𝑓𝑖𝑡 , 𝑛𝑅𝐴𝐵
) × 𝐸𝐴𝐵,𝑅𝐴𝐵

(𝐸𝐴𝐵𝐴 ,𝑅𝐴𝐵
, 𝐸𝐴𝐵𝐵,𝑅𝐴𝐵

) + 𝑘𝑅𝐴,𝑅𝐴𝐵
(𝑅𝐴, 𝜇) + 𝑘𝑅𝐵,𝑅𝐴𝐵

(𝑅𝐵, 𝜇)  (7) 120 

The above equations (Equation 4-7) describe the subpopulation specific rate of change for bacterial density, which is 121 

dependent on the bacterial density of subpopulation z, subpopulation specific net growth (knet,z), antibiotic effect 122 

(EAB,z), and mutation transition(s) (kz,M) if present.  123 

Resistance mutation 124 

Resistance evolution was included as stochastic mutation process. This process was modelled using a binomial 125 

distribution B with a mutation probability equal to the mutation rate (μ). The number of bacteria mutated per time 126 

step 𝑘𝑧,𝑀 depende on the number of bacteria available for mutation (nz), i.e. the bacterial subpopulation density of 127 

subpopulation z multiplied by the infection volume V, for mutation at time t (Equation 8). Double resistant mutants 128 

evolved through two mutation steps. 129 
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𝑘𝑧,𝑀 =  
𝐵(𝑛𝑧,𝜇)

𝑉
               (8) 130 

Pharmacodynamic effects 131 

Drug effects on bacterial subpopulations (Equation 4-7) were assumed to be additive and the total drug effect for each 132 

subpopulation z (EAB,z), and was implemented as follows (Equation 9): 133 

𝐸𝐴𝐵,𝑧 = 1 − (𝐸𝐴𝐵𝐴 ,𝑧(𝐶𝐴𝐵,𝐴, 𝐺𝑚𝑖𝑛, 𝐴𝐵𝐴
, 𝐻𝑖𝑙𝑙𝐴𝐵𝐴

, 𝑀𝐼𝐶𝐴𝐵𝐴 , 𝑧) +  𝐸𝐴𝐵𝐵 ,𝑧(𝐶𝐴𝐵,𝐵 , 𝐺𝑚𝑖𝑛, 𝐴𝐵𝐵
, 𝐻𝑖𝑙𝑙𝐴𝐵𝐵

, 𝑀𝐼𝐶𝐴𝐵𝐵, 𝑧))  Equation 9 134 

Here, antibiotic-mediated effects were implemented according to a previously developed PD model [17], where the 135 

effect of the ith antibiotic on bacterial subpopulation z (𝐸𝐴𝐵𝑖,𝑧) related to the unbound antibiotic concentration (𝐶𝐴𝐵,𝑖) 136 

according to Equation 10.  137 

𝐸𝐴𝐵𝑖,𝑧 =
(𝐺𝑚𝑎𝑥−𝐺𝑚𝑖𝑛, 𝐴𝐵𝑖

)×(
𝐶𝐴𝐵,𝑖

𝑀𝐼𝐶𝐴𝐵𝑖, 𝑧
)

𝐻𝑖𝑙𝑙𝐴𝐵𝑖

(
𝐶𝐴𝐵𝑖

𝑀𝐼𝐶𝐴𝐵𝑖, 𝑧
)

𝐻𝑖𝑙𝑙𝐴𝐵𝑖
−

𝐺𝑚𝑖𝑛, 𝐴𝐵𝑖
𝐺𝑚𝑎𝑥

          Equation 10 138 

where 𝐺𝑚𝑎𝑥 = 1, 𝐺𝑚𝑖𝑛, 𝐴𝐵𝑖
 representing the maximal killing effect for the ABi, 𝐻𝑖𝑙𝑙𝐴𝐵𝑖

 being the shape factor of the 139 

concentration-effect relationship, and 𝑀𝐼𝐶𝐴𝐵𝑖, 𝑧 being the subpopulation-specific MIC of ABi.  140 

Subpopulation-specific MIC for ABi was defined according to Equation 11. Sensitive bacteria were defined as having a 141 

MIC of 1 mg/L (MICWT) and resistant as 10 mg/L (MICR). Because the antibiotic concentrations are expressed as folds 142 

times MICWT, the absolute value of MICWT is irreverent. However, the ratio between MICWT and MICR is of relevance. A 143 

tenfold increase was chosen to represent a significant increase for a biologically plausible scenario. Resistance-related 144 

CS effects were included on the two singly resistant mutants (RA and RB), and were implemented as a proportional 145 

reduction (CSA and CSB) of the sensitive MIC (MICWT). The subpopulation- and antibiotic-specific MICs are stated below: 146 

𝑀𝐼𝐶𝐴𝐵𝐴,𝑊𝑇 =  𝑀𝐼𝐶𝑊𝑇   and    𝑀𝐼𝐶𝐴𝐵𝐵,𝑊𝑇 =  𝑀𝐼𝐶𝑊𝑇 147 

𝑀𝐼𝐶𝐴𝐵𝐴,𝑅𝐴
=  𝑀𝐼𝐶𝑅   and   𝑀𝐼𝐶𝐴𝐵𝐵,𝑅𝐴

=  𝑀𝐼𝐶𝑊𝑇 × 𝐶𝑆𝐵  148 

𝑀𝐼𝐶𝐴𝐵𝐴,𝑅𝐵
=  𝑀𝐼𝐶𝑊𝑇 × 𝐶𝑆𝐴  and   𝑀𝐼𝐶𝐴𝐵𝐵,𝑅𝐵

= 𝑀𝐼𝐶𝑅 149 

𝑀𝐼𝐶𝐴𝐵𝐴,𝑅𝐴𝐵
= 𝑀𝐼𝐶𝑅   and  𝑀𝐼𝐶𝐴𝐵𝐵,𝑅𝐴𝐵

= 𝑀𝐼𝐶𝑅 150 

Fitness effects 151 

We considered resistance-associated fitness cost by including a fitness cost factor (Ffit), which introduced a fractional 152 

reduction of the growth rate (kG) for each resistance mutation. The net growth rate was implemented according to 153 

Equation 12. 154 

𝑘𝑛𝑒𝑡,𝑧 =  𝑘𝐺 × (1 −
𝑊𝑇+𝑅𝐴+𝑅𝐵+𝑅𝐴𝐵

𝐵𝑚𝑎𝑥
) × 𝐹𝑓𝑖𝑡

𝑛,𝑧         Equation 12 155 

where knet,z is the subpopulation specific net growth in the absents of antibiotic, Bmax is the systems maximal carrying 156 

capacity, and nz is the subpopulation specific number of mutations (nz = 0, 1 or 2).  157 
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  158 

Figure 2. Simulation workflow. Pharmacokinetic-pharmacodynamic (PK-PD) framework comprising of four bacterial subpopulations (WT, RA, RB, 159 
RAB) and PK-PD of two hypothetical antibiotics (ABA and ABB). The framework includes fixed infection- and pathogen-specific parameters and 160 
fixed drug PK parameters. The model input includes both drug and pathogen related factors, which vary between different scenarios. The 161 
framework was used to simulate different treatment schedules of two week combination treatments using ABA and ABB for n patients. In the 162 
simulation example a three-day cycling treatment regimen (PK panel) is simulated for six patients. The resulting patient specific bacterial profiles 163 
are shown in the PD panel. Resistance was evaluated for each patient and bacterial subpopulation at the end of treatment (EoT), for which the 164 
corresponding probability of resistance (PoR) was calculated.  165 
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Pathogen- and infection-specific parameters 166 

The infection-specific parameters were chosen to represent a human bacteraemia, thus a typical human blood volume 167 

of five litre was used as the infection site volume[20]. An initial bacterial density of 104 colony forming units (CFU)/mL 168 

was used to represent a severe infection, which reflects an early stage of an established infection[21].  A system 169 

carrying capacity limitation (Bmax) of 108 CFU/mL[21] was implemented according to Equation 12. When the maximal 170 

carrying capacity is reached, the net growth of the total bacterial population is zero, resulting in a stationary phase. 171 

During this phase bacterial replication continues, but is offset by bacterial death at the same rate, thereby still allowing 172 

for resistance mutations to occur. Resistance mutation rates of 10-6 and 10-9 mutations/base pair/hour were chosen 173 

to represent a high and a moderate mutation rate scenario, respectively[22].  174 

Table 1. Pathogen-, infection-, and drug-specific model parameters used in the simulations. 175 

 176 

 177 

 178 

 179 

  180 

 181 

 182 

 183 

 184 

 185 

 186 

 187 

 188 

Drug-specific parameters 189 

The two hypothetical antibiotics used for the simulations (ABA and ABB) have identical one-compartmental PK with 190 

distribution volumes of one litre, five-hour half-lives (Table 1), and no protein binding. The selected half-life represents 191 

antibiotics with clinically relevant short half-lives, thereby rapidly reaching steady-state concentrations with minimal 192 

accumulation. The drugs were administrated as intravenous bolus doses twice daily over a treatment duration of two 193 

weeks. Several different dosing regimens were simulated including monotherapy, sequential dosing, cycling regimens, 194 

and simultaneous dosing. For sequential and cycling treatments ABA was used as the starting drug. The doses used 195 

were obtained by calculating the required dose to achieve appropriate average steady state concentration (Css) relative 196 

to the MICWT. The lowest dose that gave kill or stasis of the WT bacteria within the 24 hours of treatment, but allowed 197 

for resistance development during monotherapy, was selected for all dosing regimens except for the simultaneous 198 

dosing, for which the dose for the individual antibiotics were reduced by half. Four different PD types were included 199 

using different combinations of parameter values of Hill (driver of antibiotic effect) and Gmin (type of antibiotic effect), 200 

and represented 1) time-dependent (Hill = 0.5) or concentration-dependent (Hill = 3) and 2) bacteriostatic (Gmin = -1) 201 

Parameter Value Unit Scenario Reference 

Pathogen-specific 

Maximal growth rate (kG) 0.7  h-1 Doubling time of 1 h - 

Mutation rate (μ) 10-6 - 10-9  mut/bp/ h High to moderate mutation rates - 

Infection-specific 

Starting bacterial density (B0) 104
 

 cfu/ml In vivo bacteraemia day one [21] 

Maximal carrying capacity (Bmax) 108  cfu/ml In vivo experiment after 4 days  [21] 

Infection site volume (V) 5  L Total blood volume [20] 

Drug-specific 

Distribution volume of ABi (𝑉𝐴𝐵𝑖
) 1 L Facilitates conversion from amount to 

concentration 

- 

Half-life of ABi (𝑡ℎ𝑎𝑙𝑓,𝐴𝐵𝑖
) 5 h Clinically relevant short half-life - 
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or bactericidal (Gmin = -3) antibiotics. The corresponding PK-PD relationship of the four different antibiotic types is 202 

shown in Figure 3.  203 

 204 

 205 

Figure 3. MIC-specific PK-PD relationships. A: Initial pharmacokinetic (PK) profiles of mono or combination treatments using two hypothetical 206 
antibiotics ABA (turquoise) and ABB (purple), administrated twice daily, with a dose resulting in Css of 1.5 mg/L or 0.75mg/L for simultaneous 207 
dosing. B: MIC-specific pharmacodynamic profiles concentration effect relationship of different antibiotic drug types including concentration- 208 
(Hill = 3, red) or time- (Hill = 0.5, blue) dependent antibiotics and bactericidal (Gmin = -3, solid) and bacteriostatic (Gmin = -1, dashed), where the 209 
effect is representing the proportional bacterial growth inhibition/killing. The effect is driven by the PK profile shown in panel A according to 210 
Equation 9 and 10. 211 

Simulations scenarios 212 

An initial set of dose finding simulations revealed that monotherapy required Css equal to 1.5 x MICWT to achieve killing 213 

of the WT, regardless of the drug type used (Figure S1). This Css was subsequently used for treatment scenarios unless 214 

explicitly stated otherwise.  215 

We used a systematic simulation strategy to study the impact of CS, fitness cost, initial subpopulation heterogeneity 216 

in antibiotic sensitivity, and mutation rate on the probability of resistance (PoR) development for different treatments. 217 

An overview of all simulated scenarios can be found in Table 2. We simulated treatments using two same-type 218 

antibiotics for scenarios without CS as well as in the presence of one directional and reciprocal CS in the magnitude of 219 

50% or 90% reduction of the sensitive MIC (Table 2, Scenario 1 and 2). For these scenarios the resistance was assumed 220 

to occur without any fitness cost, thus allowing us to evaluated CS-specific effect on PoR. We also simulated a set of 221 

treatment scenarios using two different antibiotic type in the presence or absence of CS (Table 2, Scenario 3). 222 

Additionally, we simulated same-type treatment scenarios covering a wide range of fitness costs (10% to 50% per 223 

mutation) implemented as a growth rate reduction (Table 2, Scenario 4). To assess the impact of therapeutic window 224 

of antibiotics, as reflected by the fold-difference of steady state concentration (Css) to the MICWT, we simulated 225 

A B 
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different dosing levels resulting in a range of Css of 0.5-5 x MICWT (Table 2, Scenario 5). In order to better understand 226 

the interplay between CS and fitness cost we simulated these scenarios with and without CS. We further investigated 227 

how low levels of pre-existing resistance (1%) towards either ABA or ABB affected the PoR at the end of treatment for 228 

different dosing regimens (Table 2, Scenario 6). Finally, we examined the effect of increased mutation rates on 229 

resistance development (Table 2, Scenario 7).  230 

Each simulated scenario was realized 500 times (n), thus representing 500 virtual patients. 231 

 232 

Table 2. Simulation scenarios evaluated and associated pathogen- and pharmacological factors studied 233 

Scenario Pathogen factors Treatment factors 

 

Collateral 
sensitivity 

(%) 

Fitness 
cost per 

mutation 

(%) 

Mutation 
rate 

(mut/bp/h) 

Pre-existing 
resistance 

PD parameters Steady state 

concentration* 

1: Treatment design 
Symmetric 
reciprocal: 

50 or 90 
No 10-9 No 

Same-type 
combinations: 

𝐺𝑚𝑖𝑛,𝐴𝐵𝐴
=  𝐺𝑚𝑖𝑛,𝐴𝐵𝐵

 

and 
𝐻𝑖𝑙𝑙𝐴𝐵𝐴

=  𝐻𝑖𝑙𝑙𝐴𝐵𝐵
 

 

1.5x MICWT 

2: Directionality of CS 

One directional or 
asymmetric 
reciprocal: 

50 or 90 

No 10-9 No 

Same-type 
combinations: 

𝐺𝑚𝑖𝑛,𝐴𝐵𝐴
=  𝐺𝑚𝑖𝑛,𝐴𝐵𝐵

 

and 
𝐻𝑖𝑙𝑙𝐴𝐵𝐴

=  𝐻𝑖𝑙𝑙𝐴𝐵𝐵
 

 

1.5x MICWT 

3: Drug sequence  
Symmetric 
reciprocal: 

50 or 90 
No 10-9 No 

Different types 
combined: 

𝐺𝑚𝑖𝑛,𝐴𝐵𝐴
≠  𝐺𝑚𝑖𝑛,𝐴𝐵𝐵

 

and/or 
𝐻𝑖𝑙𝑙𝐴𝐵𝐴

≠  𝐻𝑖𝑙𝑙𝐴𝐵𝐵
 

 

1.5x MICWT 

4: Fitness cost 
Symmetric 
reciprocal: 

50 or 90 

Yes: 
10, 20, 30, 
40, or 50  

10-9 No 

Same-type 
combinations: 

𝐺𝑚𝑖𝑛,𝐴𝐵𝐴
=  𝐺𝑚𝑖𝑛,𝐴𝐵𝐵

 

and 
𝐻𝑖𝑙𝑙𝐴𝐵𝐴

=  𝐻𝑖𝑙𝑙𝐴𝐵𝐵
 

 

1.5x MICWT 

5: Therapeutic window 
Symmetric 
reciprocal: 

50 or 90 
No 10-9 No 

Same-type 
combinations: 

𝐺𝑚𝑖𝑛,𝐴𝐵𝐴
=  𝐺𝑚𝑖𝑛,𝐴𝐵𝐵

 

and 
𝐻𝑖𝑙𝑙𝐴𝐵𝐴

=  𝐻𝑖𝑙𝑙𝐴𝐵𝐵
 

 

0.5-5x MICWT 

6: Pre-existing resistance 
Symmetric 
reciprocal: 

50 or 90 
No 10-9 

Yes: 
1% RA or 1% 

RB 

Same-type 
combinations: 

𝐺𝑚𝑖𝑛,𝐴𝐵𝐴
=  𝐺𝑚𝑖𝑛,𝐴𝐵𝐵

 

and 
𝐻𝑖𝑙𝑙𝐴𝐵𝐴

=  𝐻𝑖𝑙𝑙𝐴𝐵𝐵
 

 

1.5x MICWT 

7: Mutation rate 
Symmetric 
reciprocal: 

50 or 90 
No 

10-9
, 10-8

 ,  

10-7, or 10-6
 

No 

Same-type 
combinations: 

𝐺𝑚𝑖𝑛,𝐴𝐵𝐴
=  𝐺𝑚𝑖𝑛,𝐴𝐵𝐵

 

and 
𝐻𝑖𝑙𝑙𝐴𝐵𝐴

=  𝐻𝑖𝑙𝑙𝐴𝐵𝐵
 

 

1.5x MICWT 
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CS=Collateral sensitivity; PD=Pharmacodynamics; Gmin,ABi = type of antibiotic effect; HillABi = driver of antibiotic effect; 234 

MICWT = 1 mg/L 235 

*divided by 2 for simultaneous dosing regimens 236 

Evaluation metrics 237 

For evaluation of the simulated scenario’s we computed the probability of resistance (PoR), which was defined as 238 

resistant bacteria reaching at the end of treatment at least the initial bacterial density of 104 CFU/mL, for each 239 

population separately (Equation 13)  240 

𝑃𝑜𝑅𝑧 =
𝑛𝑅,𝑧

𝑛
               (13) 241 

where nR,z denotes the number of patients having resistant bacteria of subpopulation z at the end of treatment 242 

(Equation 14): 243 

𝑛𝑅,𝑧 =  ∑ 𝟏𝑥𝑧,𝑘≥104

𝑛

𝑘=1

 247 

              (14) 244 

where 1 denotes the indicator function and xz,k denotes the bacterial density of subpopulation z at the end of 245 

treatment of patient k.   246 

Furthermore we also calculated the PoR for the case where any, i.e., one or more resistant subpopulation(s) exceeded 248 

the resistance cut-off (RAny).             249 

The standard error (SE) of the PoR was calculated according to Equation 15. 250 

𝑆𝐸 = √
𝑃𝑜𝑅(1−𝑃𝑜𝑅)

𝑛
             (15) 251 

Software and model code 252 

All analyses were conducted in R version 4.0.4, using the ODE solver package RxODE (version 1.0.0-0)[23,24]. The 253 

associated model code is available at https://github.com/vanhasseltlab/CS-PKPD).  254 

Results 255 

Drug type and treatment schedule influence the probability of resistance 256 

We simulated antibiotic combination treatments of two antibiotics from the same type, with either no (0%) or 257 

reciprocal CS (50 or 90% decrease of MICWT). We show that the impact of reciprocal CS on resistance dynamics is 258 

dependent on the simulated drug type and dosing regimen (Figure 4). Treatments with concentration dependent 259 

antibiotics could achieve full CS-based resistance suppression for dosing schedules using  one-day cycling interval 260 

(Figure 4C, 4G) or simultaneous administration (Figure 4D, 4H). A 50% MIC reduction was sufficient to achieve this 261 

effect for three out of the four treatments, which is relevant in light of experimental results consistent with these CS 262 

magnitudes. Treatments using time dependent antibiotics dosed according to these schedules (Figure 4K, 4L, 4O, 4P) 263 
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were efficient in fully supressing resistance with or without CS. Full resistance suppression was not achieved by any of 264 

the other treatment schedules tested. Although none of the CS-based treatments dosed according to the three-day 265 

cycling regimen managed to fully supress resistance, the ones using time dependent antibiotics (Figure 4J, 4N) did 266 

show reduced PoR in presence of CS. For these treatments, the effect of CS was most prominent for the bacteriostatic 267 

antibiotics (Figure 4N) where a CS magnitude of 90% resulted in ΔPoR -29.2%. Such a decreased could have a potential 268 

clinical benefit. Importantly, we also find that for some treatments the presence of CS was not only unable to fully 269 

supress resistance, but favoured the formation of double resistant mutants (Figure 4E, 4F, 4I, 4M).  270 

 271 

Figure 4. The effect of treatment design and antibiotic in relation to different levels of collateral sensitivity (CS) on the probability of resistance 272 
(PoR) at end of treatment. The simulations show that CS had a profound impact on resistance development for treatments with concentration 273 
dependent antibiotics with  one-day cycling interval or simultaneous administration. PoR was estimated at end of treatment for treatments using 274 
different designs (columns) and antibiotic types (rows). Subpopulation-specific PoR are indicated by different colour and RAny, defined as the 275 
presence of any resistant subpopulation, is indicated in grey. The error bars represent the standard error of the estimation of PoR.  276 
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Directionality of CS effects influence the probability of resistance 277 

We next sought to determine if reciprocity is a requirement for CS-based treatments to suppress de novo resistance. 278 

We find that bactericidal and bacteriostatic drugs showed the same overall behaviour for the treatment tested when 279 

related to CS directionality (Figure S2). We specifically focus on the  one-day cycling and simultaneous treatment that 280 

appeared to be most successful in fully supressing resistance development for reciprocal CS. We find that for the  one-281 

day cycling regimen the presence of one directional CS for the second administrated antibiotic (ABB) is sufficient to 282 

fully suppress resistance development. This is illustrated for treatments using concentration dependent bacteriostatic 283 

antibiotic in Figure 5. In this scenario, one directional CS results in resistance levels close to the reciprocal scenario 284 

(e.g., one directional CS resulted in 2.2% PoR of RAny for bacteriostatic (Figure 5A) vs 0.2% for reciprocal CS (Figure 5B)). 285 

In contrast, when CS is only present for the first antibiotic (ABA) administered, we found resistance levels close to the 286 

scenario without any CS (PoR 7.2% (Figure 5D) vs 6.0% (Figure 5C)). Overall, these results suggest that when designing 287 

CS-based  one-day cycling treatments using a drug-pair without reciprocity, the order for which these are 288 

administrated has a large impact on treatment success and the therapy should be initiated with the antibiotic for 289 

which there is no CS. This strategy allows for evolution and growth of RA on the first day, while RB is supressed by ABA. 290 

When the selection is inverted on day two, the low levels of RA present is effectively killed by ABB in the presence of 291 

CS. In the absence of CS towards ABB, RA will reach high levels, which can lead to further evolution of the RAB. When 292 

simultaneous administration of concentration-dependent antibiotics is used, we found that reciprocity is necessary to 293 

fully supress resistance, as one directional CS will only supress resistance for the resistant subpopulation which show 294 

CS (Figure 5A  and 5B). However, one directional CS did reduce the PoR for RAny by approximately 50% (ΔPoR -18.4% 295 

and 20.2% for CSA and CSB, respectively) for both of these treatments, thus having a potential clinical value.  296 

  297 

Figure 5. The effect of the direction or reciprocally of collateral sensitivity (CS) on end of treatment probability of resistance (PoR). PoR was 298 
estimated at end of treatment for different CS scenarios using concentration dependent bacteriostatic drugs. Subpopulation-specific PoR is 299 
indicated by different colour and RAny resistance, defined as the presence of any resistant subpopulation, is indicated in grey. The error bars 300 
represent the standard error of the estimation of PoR. For the  one-day cycling regimen it became evident that the CS towards the second 301 
administrated drug (ABB) was driving the effect, CS-based dosing using simulations administration of concentration dependent antibiotics 302 
showed that reciprocity is necessary to supress overall resistance. 303 
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Administration sequence and antibiotic type influence resistance suppression 304 

As CS dose not only occur between antibiotics of the same type, it is important to understand how the administration 305 

sequence of different-type antibiotics affect resistance evolution in the presence of reciprocal CS. Our results for   one-306 

day cycling and simultaneous schedules demonstrated that the suppression of de novo resistance was mainly driven 307 

by the first administrated antibiotic (ABA) for all non-simultaneous regimens (Figure S3), highlighting the importance 308 

of drug sequence. In line with our findings for same-type antibiotic combination treatments (Figure 4), resistance was 309 

fully suppressed from CS only when using  one-day cycling or simultaneous administration dosing regimens. 310 

Particularly for  one-day cycling regimens (Figure 6), initiating treatment with a time-dependent antibiotic was more 311 

effective at supressing resistance in the presence of reciprocal CS compared to the initial administration of a 312 

concentration dependent antibiotic.  313 

  314 

Figure 6. The effect of using different antibiotic combinations during  one-day cycling treatments in relation to different levels of collateral 315 
sensitivity (CS) on the probability of resistance (PoR) at the end of treatment. The simulations showed that initiating treatment with a time 316 
dependent than with a concentration dependent antibiotic was more effective in supressing resistance in the presence of reciprocal CS. PoR was 317 
estimated at the end of treatment for  one-day cycling regimen with different antibiotic combinations. Subpopulation-specific PoR is indicated 318 
by different colour and RAny, defined as the presence of any resistant subpopulation, is indicated in grey. The error bars represent the standard 319 
error of the estimation of PoR.  320 
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CS-based combinations show greatest promise for antibiotics with a narrow therapeutic window    321 

Although many antibiotics are well-tolerated and can be dosed well above the MIC of susceptible strains others, e.g., 322 

aminoglycosides, display a narrow therapeutic window due to toxicity[25–27]. Understanding the relationship 323 

between average steady-state concentrations (Css) and the impact of CS on de novo resistance development would 324 

help identify which clinical scenarios that CS could be exploited to improve treatment. A set of simulated dosing 325 

regimens with same-type antibiotics resulting in Css between 0.5-5 x MICWT revealed that CS has the greatest impact 326 

on RAny for Css close to the MICWT (Figure 7 and S4). Most treatments showing a benefit of CS lost the advantage when 327 

the Css exceeded 1.5 x MICWT. The only exception was  one-day cycling treatment using concertation dependent 328 

bacteriostatic drugs, which retained an advantage up to Css of 2 x MICWT (Figure 7G). 329 

 330 

 331 

Figure 7. The effect of antibiotic steady state concentrations (Css) in relation to different levels of collateral sensitivity (CS) on the probability 332 
of resistance at the end of treatment (PoR). The simulation revealed that CS had the largest impact on PoR for Css close to MIC of the wild type 333 
strain (MICWT). Css was expressed as factor difference from the MICWT. PoR of RAny, defined as the presence of any resistant subpopulation, was 334 
estimated at the end of treatment for treatments using different designs (columns) and antibiotic types (rows). Colour and line-type indicate the 335 
magnitude of reciprocal CS simulated. The error bars represent the standard error of the estimation. 336 

 337 
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Fitness cost of antibiotic resistance can contribute to the success of CS-based treatments  338 

Resistance evolution is commonly associated with fitness costs.[28]. We studied the impact of different levels of fitness 339 

cost on the suppression of de novo resistance development (Figure 8). Fitness cost was included as a fractional 340 

reduction of growth per mutation, thereby doubly penalising the double resistant mutant RAB. In the absence of CS, 341 

fitness cost below 50% per mutation had little impact (ΔPoR > -5%) on RAny for most treatment scenarios, except for 342 

the three-day cycling regimen using time dependent bacteriostatic drugs (Figure 8N), which showed a clear 343 

relationship between increasing fitness cost and deceasing RAny. The presence of fitness costs increased the impact of 344 

CS on PoR for a number of treatments, including three-day cycling regimen using time dependent antibiotics (Figure 345 

8J and 8N) and one-day cycling with concentration dependent bacteriostatic drugs (Figure 8G). In the case of these 346 

three-day cycling regimens, which failed to fully supress resistance in the presence of fitness cost-free CS, the impact 347 

of fitness differed between bactericidal and bacteriostatic drug (Figure 8J vs 8N). The fitness cost generating the largest 348 

impact of CS (90%)for these treatments on PoR was 20% and 40% cost per mutation when treated with bacteriostatic 349 

(Δ PoR -35.0) and bactericidal (Δ PoR -43.8%) drug, respectively. 350 

 351 

 352 

Figure 8. The effect of fitness costs for developing resistance for different levels of collateral sensitivity effects on the probability of resistance 353 
(PoR). PoR of RAny, defined as the presence of any resistant subpopulation, was estimated at end of treatment for treatments using different 354 
designs (columns) and antibiotic types (rows). Colour and line-type indicate the magnitude of reciprocal CS simulated. The error bars represent 355 
the standard error of the estimation of PoR. 356 
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CS-based simultaneous treatment designs suppress pre-existing resistance 357 

The presence of a low-number pre-existing resistant cells amongst the bacterial population establishing an infection 358 

is a clinically realistic scenario associated with antibiotic-treatment failure[29]. We here studied if CS-based dosing 359 

schedules can be used to eradicate such a heterogeneous population (Figure 9 and S5). In the absence of CS, the pre-360 

existence of a subpopulation of either single mutant, resulted in higher probability of the expansion and fixation of 361 

these resistant populations. As with de novo resistance and cycling regimens, the benefit of  reciprocal CS was only 362 

apparent when resistance was towards the second antibiotic (RB). This is illustrated with the one-day cycling 363 

treatments shown in Figure 9, where all CS-based treatments could supress PoR for pre-existing RB, but for failed for 364 

all with pre-existing RA. For three day cycling of concentration dependent drugs and pre-existing resistance towards 365 

the first antibiotic, CS was shown to increase the PoR (Figure S5). In the presence of CS, all simultaneously dosed 366 

treatments were effective in fully suppressing resistance regardless of pre-existing resistance . 367 

 368 

 369 

Figure 9. The effect of pre-existing resistant mutants for different magnitudes of collateral sensitivity on the probability of resistance (PoR). 370 
PoR was estimated at the end of treatment for different scenarios of low levels of pre-existing resistance (columns) and antibiotic types (rows). 371 
Subpopulation-specific probability of resistance is indicated by colour and PoR of RAny, defined as the presence of any resistant subpopulation, 372 
is indicated in grey. The error bars represent the standard error of the estimation of PoR.  373 
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The combined effect of CS and mutation rate on resistance development differs between treatments   374 

Because some antibiotic treatments can enhance the genome-wide mutation rate in pathogenic bacteria [30], we 375 

included a set of simulations with higher mutation rates than 10-9 mutations/bp/h (10-8-10-6 mutations/bp/h). We show 376 

that the impact of mutation rate on the PoR was dependent on the combination of treatment design and the antibiotic 377 

type used, especially in the presence of CS (Figure 10). The largest impact of the interaction between CS and mutation 378 

on PoR was found for the extremes of the time between switching of antibiotics, i.e.,  one-day cycling and sequential 379 

treatment design (maximum ΔPoR -71.6% and -52.0%, respectively). In the absence of CS an increased mutation rate 380 

generally led to an increased PoR, with the exception of simultaneous administration of time-dependent antibiotics, 381 

which actually resulted in full suppression of resistance regardless of CS and mutation rate. For some sequential 382 

treatments with reciprocal CS (Figure 10E, 10I), the highest PoR was observed at a mutation rate of 10-7 383 

mutations/bp/hour, and decreased at higher mutation rates. For all mutation rates and in the presence of CS, 384 

simultaneous treatments conferred resistance suppression. 385 

 386 

Figure 10. The effect of increased mutation rate for different CS magnitudes on the probability of resistance (PoR). The combined impact of 387 
mutation rate and the CS on PoR was dependent on treatment schedule. PoR of RAny, defined as the presence of any resistant subpopulation, 388 
was estimated at the end of treatment for treatments using different designs (columns) and antibiotic types (rows) for different mutation rates 389 
(x-axis). Colour and line-type indicate the magnitude of reciprocal CS simulated. The error bars represent the standard error of the estimation. 390 

  391 
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Discussion 392 

Our analysis shows that CS can be exploited to design treatment schedules that suppress antibiotic resistance, where 393 

CS-based treatments hold the most potential for antibiotics with narrow-therapeutic windows. Our modelling 394 

approach indicated that several factors need to be considered to ensure optimal design of CS-based dosing regimens, 395 

which include antibiotic PD characteristics, the magnitude and reciprocity of CS effects, and the effect of fitness costs, 396 

and we found that the antibiotic sequence is of importance for the success of CS-based cycling treatments.   397 

CS-based dosing schedules have mainly considered reciprocal CS scenarios, where resistance against one antibiotic 398 

leads to increased sensitivity and vice versa[12,16]. We show, however, that one directional CS can be sufficient to 399 

supress resistance. For a one-day cycling regimen, the one-directional CS effects were nearly identical to the scenario 400 

that considered reciprocal CS (Figure 5A vs 5B), but only when bacteria showed CS to the second drug administrated. 401 

In the case where CS was only present for the first antibiotic (ABA) (Figure 5D), the initial bacterial growth was 402 

extensive, thus leading to increased risk of the double resistant subpopulation emerging. We consider this finding 403 

relevant because one-directional CS relationships are much more common than reciprocal CS relationships [9–16], 404 

thus expanding the number of clinical scenarios for which CS-based treatments can be designed. 405 

We find that CS-based treatments show the greatest promise for antibiotics with narrow therapeutic window. The 406 

therapeutic window of an antibiotic is defined by the drug exposure, or concentration range, leading to sufficient 407 

efficacy while not leading to toxicity. In the majority of our simulations, we have studied dosing schedules leading to 408 

an antibiotic steady state concentrations (Css) of 1.5xMIC,  which led to full kill of the sensitive population but did allow 409 

emergence of resistance to occur. This concentration can be considered to reflect a narrow-therapeutic window 410 

antibiotic, e.g., where the antibiotic concentration required for bacterial killing is closer to the MIC because of 411 

occurrence of (severe) toxicities at higher concentrations. Indeed, for concentrations (much) higher than the MIC, the 412 

benefit of CS rapidly disappears (Figure 7). This means that in particular for antibiotics with a narrow therapeutic 413 

windows such as polymyxins or aminoglycosides, the relevance of CS-based dosing schedules is most significant. 414 

Cycling based dosing regimens are frequently discussed as a strategy to utilize when CS occurs. We show that for one-415 

day cycling treatments antibiotic type (Figure 6), directionality of CS (Figure 5), and the identity of any pre-existing 416 

resistance subpopulation (Figure 9) should be considered when choosing which drug to initiate therapy with. We find 417 

that the type of the first administrated antibiotic had a larger impact on the PoR compared to the type of the second 418 

administrated antibiotic, the presences of CS to the second administrated antibiotic had a greater effect PoR compared 419 

to CS to the first administrated antibiotic, and the PoR was smaller if there was pre-existing resistance to the second 420 

administrated drug compared to the first antibiotic. These findings are in line with previous studies which show that 421 

the probability of resistance development is influenced by the sequence of antibiotics[31], and optimized cycling 422 

sequences outperformed random drug cycling regimens [13]. Furthermore, in the context of cycling, or alternating 423 

antibiotic treatments, consideration of the pharmacokinetics, e.g. the time-varying antibiotic concentrations was 424 

found to be of importance because remaining concentration of the first antibiotic administered add to the total drug 425 

effect. Therefore, the antibiotic switch contributes to a higher total drug effect than after repeated administration of 426 
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the same drug. In our simulations, the impact of this increased effect is dependent on the type of the antibiotic and 427 

was shown to be especially important for time-dependent antibiotics. 428 

To better characterize the population dynamics of pathogens in response to antibiotic treatment under presence of 429 

CS, we studied the effect of fitness costs of antibiotic resistance and mutation rates leading to antibiotic resistance. 430 

We find that the introduction of fitness cost had negligible effect on PoR for the majority of the simulated CS-based 431 

treatments, with the exception of the three-day cycling using time dependent antibiotics (Figure 8J and 8N), where  432 

the introduction of fitness cost improved the CS-based treatments because it prevents resistant bacteria to reach high 433 

levels before the first antibiotic switch. Pathogens with a low mutation rate (10-9), one-day cycling regimens are most 434 

relevant to benefit from CS, whereas for high mutation rates (e.g., 10-6), sequential or simultaneous antibiotic 435 

treatments are most beneficial (Figure 10). This means that in situations when the occurrence of hypermutator strains 436 

is likely, e.g., such as in CF [32], this should be considered in the design of dosing schedules. With respect to the 437 

competition between different bacterial subpopulations occurring in vivo, we included a bacterial carrying capacity 438 

which introduces clonal competition. During clonal competition, competition between subpopulations can lead to 439 

their suppression, e.g., high densities for one subpopulation can suppress the growth of a second subpopulation, even 440 

if the second population might be more fit. When CS is present, single resistant subpopulations are unable to reach 441 

high enough levels to suppress the growth of the double resistant mutant, which allows the double mutant to take 442 

over, for some treatments. 443 

Udekwu et al[33] previously demonstrated the utility of mathematical modelling to study cycling schedules for CS to 444 

delay emergence of antibiotic resistance in silico, simulating an in vitro chemostat experimental system, identifying 445 

the cycling interval to be the main factor impacting resistance development, and we consider this work as an important 446 

foundation of our study. Our study advances the work by Udekwu by explicitly comparing treatment outcomes to a 447 

base scenario without CS to determine the specific contribution of CS effects, and we perform a more systematic 448 

analysis of key drug- and pathogen specific factors that could influence optimal CS-based treatment scenarios.   449 

Our mathematical model was designed to facilitate identification of the primary factors driving the success or failure 450 

of antibiotic treatments in a general setting, and not for specific antibiotics or pathogens. We thereby did not consider 451 

factors that could further contribute to treatment outcomes for specific pathogens or antibiotics. We did not consider 452 

more complex evolutionary mutational trajectories can occur with associated complex patters of changes in antibiotic 453 

sensitivity and MIC[36], which are not easily definable to apply to antibiotic treatment in general. Other factors not 454 

considered include local antibiotic tissue concentrations [34,35], pharmacodynamic drug-drug interactions or the  455 

contribution of the immune system. We expect that such factors will not affect specific subpopulations studied in 456 

different ways and therefore not have a great impact on the general findings we do in this analysis. The developed 457 

modelling framework is applicable for design of clinical treatment designs for specific antibiotic agents and pathogens, 458 

where the model can be further expanded with additional pathogen-, drug-, and patient-specific characteristics[37], 459 

derived from separate experimental studies and by utilizing published clinical population PK models for specific 460 

antibiotics[38,39], which include inter-individual variability or target site concentrations at the site of infection. This 461 

would thus allow to derive tailored CS-based dosing regimens for specific antibiotics and pathogens. 462 
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We conclude that CS-based treatments are likely to be able to contribute in the suppression of resistance. However, 463 

the success of such treatment strategies will be dependent on careful design of a dosing schedule, and requires explicit 464 

consideration of pathogen- and drug-specific characteristics. Our developed modelling framework can be of use to 465 

facilitate the design of such treatment. In addition, the robustness of such CS effects is another external factor that 466 

remains a key requirement, although reciprocal CS may not be a requirement to design such dosing schedules. CS 467 

treatments appear to be most relevant for antibiotics with a narrow therapeutic index, which are also the antibiotics 468 

where within-host emergence of resistance is most likely to occur.  469 
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Supplementary figures  572 

 573 

Figure S1. Bacterial dynamics for simulated monotherapy using different antibiotic types (rows) and steady state concentrations 574 
(Css) relating to the MIC of the wild type (WT) (columns). These simulations shows that monotherapy required Css equal to 575 
1.5 x MICWT to achieve killing of the WT, regardless of the drug type used. Subpopulation-specific bacterial density are 576 
indicated by different colures, where the solid lines indicate the median and the shaded area covers the 5th-95th 577 
percentiles of the predictions. The resistance cut-off (dashed line) is used for end of treatment evaluation of resistance.  578 
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 579 
Figure S2. The effect of the direction or reciprocally of collateral sensitivity (CS) on end of treatment probability of resistance 580 
(PoR). PoR was estimated at end of treatment for different CS scenarios using concentration dependent bacteriostatic or 581 
bactericidal drugs. Subpopulation-specific PoR is indicated by different colour and RAny resistance, defined as the presence of any 582 
resistant subpopulation, is indicated in grey. The error bars represent the standard error of the estimation of PoR. For the  one-583 
day cycling regimen it became evident that the CS towards the second administrated drug (ABB) was driving the effect, CS-based 584 
dosing using simulations administration of concentration dependent antibiotics showed that reciprocity is necessary to supress 585 
overall resistance. 586 
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 587 

Figure S3. The effect of using different antibiotic combinations during treatments in relation to different levels of collateral 588 
sensitivity (CS) on the probability of resistance (PoR) at the end of treatment. PoR was estimated at the end of treatment for 589 
different treatment schedules with different antibiotic combinations. Subpopulation-specific PoR is indicated by different colour 590 
and RAny, defined as the presence of any resistant subpopulation, is indicated in grey. The error bars represent the standard error 591 
of the estimation of PoR.  592 
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 593 

Figure S4. The effect of antibiotic steady state concentrations (Css) in relation to different levels of collateral sensitivity (CS) on 594 

the probability of resistance at the end of treatment (PoR). Css was expressed as factor difference from the MICWT. PoR of RAny, 595 

defined as the presence of any resistant subpopulation, was estimated at the end of treatment for treatments using different 596 

designs and antibiotic types (rows). Subpopulation-specific PoR is indicated by different colour and RAny is indicated in grey. The 597 

error bars represent the standard error of the estimation of PoR. 598 
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 599 

Figure S5. The effect of pre-existing resistant mutants for different magnitudes of collateral sensitivity on the probability of 600 
resistance (PoR). PoR was estimated at the end of treatment for different scenarios of low levels of pre-existing resistance 601 
(columns) and antibiotic types (rows). Subpopulation-specific probability of resistance is indicated by colour and PoR of RAny, 602 
defined as the presence of any resistant subpopulation, is indicated in grey. The error bars represent the standard error of the 603 
estimation of PoR.  604 
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