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Abstract  28 

Collateral sensitivity (CS)-based antibiotic treatments, where increased resistance to one antibiotic leads to 29 

increased sensitivity to a second antibiotic, may have the potential to limit the emergence of antimicrobial 30 

resistance. However, it remains unclear how to best design CS-based treatment schedules. To address this problem, 31 

we use mathematical modelling to study the effects of pathogen- and drug-specific characteristics for different 32 

treatment designs on bacterial population dynamics and resistance evolution. We confirm that simultaneous and 33 

one-day cycling treatments could supress resistance in the presence of CS. We show that the efficacy of CS-based 34 

cycling therapies depends critically on the order of drug administration. Finally, we find that reciprocal CS is not 35 

essential to suppress resistance, a result that significantly broadens treatment options given the ubiquity of one-way 36 

CS in pathogens. Overall, our analyses identify key design principles of CS-based treatment strategies and provide 37 

guidance to develop treatment schedules to suppress resistance. 38 

 39 

 40 

  41 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted September 8, 2021. ; https://doi.org/10.1101/2021.03.31.437927doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.31.437927


3 
 

Introduction 42 

Antimicrobial resistance (AMR) is a worldwide health threat due to the reduction of clinically effective antibiotics. 43 

Current drug discovery pipelines of new-in-class antibiotic agents are insufficient to offset the emergence of new 44 

AMR1. Innovative strategies to reduce the rate that AMR develops are thus critically needed. Treatment with 45 

antibiotics in individual patients represents one important situation where de novo AMR may emerge2,3. However, 46 

current clinical antibiotic treatment strategies, i.e., which types of antibiotics are included as well as timing and 47 

dosage, typically do not explicitly consider within-host emergence of AMR. Instead, current strategies used in clinical 48 

practise are primarily based on exposure targets that are associated with sufficient bacterial kill in preclinical studies, 49 

or with clinical outcomes in patient studies4. Thus, there is need for clinical dosing strategies specifically designed to 50 

suppress AMR emergence5.  51 

Trade-offs associated with AMR are of increasing interest to design antibiotic dosing strategies that suppress the 52 

within-host emergence of AMR6. In this context, collateral sensitivity (CS), where resistance to one antibiotic leads to 53 

increased sensitivity to a second antibiotic, has been proposed as a potential strategy to suppress AMR 7,8. CS has 54 

been characterized in vitro, typically by evolving AMR strains and then quantifying correlated changes in the 55 

sensitivity to other antibiotics9–12. CS effects have been characterized for several clinically relevant pathogens, 56 

including Escherichia coli9, Pseudomonas aeruginosa13, Enterococcus faecalis14, Streptococcus pneumoniae15, and 57 

Staphylococcus aureus16. CS relationships between antibiotics can either be one directional, where decreased 58 

sensitivity to one antibiotic show CS to a second antibiotic but not the reverse, or reciprocal, where decreased 59 

sensitivity to either of the antibiotics results in CS to the other. Reciprocal CS is often considered a prerequisite for 60 

effective CS-based treatments, but such relationships have been less frequently observed compared to one 61 

directional CS9–16.  62 

CS-based treatment strategies can use different designs to combine antibiotics showing a CS-relationship, including 63 

simultaneous, sequential, or cyclic (alternating) administration. For example, consider a cycling drug strategy using 64 

two antibiotics showing reciprocal CS (Fig. 1). Initial treatment would start with antibiotic A. This leads to resistance 65 

to A and a corresponding increase in sensitivity to B. When treatment is switched to antibiotic B, the inverted 66 

selection pressure leads to the eradication of cells that are resistant to antibiotic A (due to CS), but possibly 67 

favouring any remaining cells that are resistant to B, but susceptible to antibiotic A. By cycling between the two 68 
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drugs to sequentially eliminate all cells that show reciprocal CS, complete eradication can be achieved. Although the 69 

conceptual strategies of CS-based treatments have been discussed6, it remains unclear when CS-based dosing 70 

strategies are most likely to be beneficial, and how to design specific multi-drug antibiotic dosing schedules based on 71 

CS. Furthermore, it is unclear how pathogen-specific factors, such as CS effect magnitude and directionality, fitness 72 

costs of resistance, and mutation rates, as well as pharmacological factors related to pharmacokinetics and 73 

pharmacodynamics for different drug types, can affect optimal dosing schedules.  74 

Experimental studies in vitro are essential to characterize the incidence, evolvability and magnitude of CS, all of 75 

which are important but isolated components that may contribute to the success of CS-based treatments 9–16. 76 

However,  to translate in vitro CS findings to in vivo or clinical treatment scenarios, consideration of 77 

pharmacodynamic (PD) and pharmacokinetic (PK) factors is essential, as these determine the differential impact of 78 

different antibiotics on the concentration-dependent effects of bacterial growth, inhibition, and killing 17,18. By 79 

affecting bacterial dynamics, antibiotic PK-PD can have a profound influence on resistance evolution, and are 80 

therefore key elements to design optimised CS-informed treatments. In addition, it is necessary to disentangle the 81 

respective impacts of these separate parameters. Doing so requires a highly controlled system, where each factor 82 

can be modified separately; this this level of control cannot be established experimentally. To this end, a 83 

mathematical modelling approach can be highly valuable, as such models permit precise control of each factor. 84 

Additionally, mathematical models are important tools to integrate multiple biological and pharmacological factors 85 

contributing to treatment outcomes, including different PK parameters of specific antibiotics in patients, antibiotic-86 

specific PD parameters, and pathogen specific characteristics such as strain fitness and the magnitude of CS effects. 87 

Thus, using a mathematical modelling approach allows us to address key questions relating to CS-based treatments 88 

that have yet to be fully answered.  89 

 A number of mathematical models have been developed to evaluate multi-drug therapies in relation to collateral 90 

effects often using shifts in MIC or other summary metrics as endpoints. These include deterministic19 and Markov20 91 

models evaluating antibiotic cycling in vitro and in silico, which provide important insight into the importance of the 92 

design of the cycling regimen. Furthermore, a stochastic evolution model has been developed to assess the 93 

robustness of collateral sensitivity21. Despite the values of these models, they fail to characterise the bacterial 94 

dynamics underlying resistance evolution. Additionally, they do not include PK-PD relationships and lack 95 
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consideration of clinical PK, which are key factors when translating the findings into clinical dosing strategies. 96 

Udekwu and Weiss developed a deterministic PK-PD model to study clinically relevant cycling schedules for CS-97 

informed treatments and evaluated their ability to delay emergence of antibiotic resistance22. This simulation study 98 

serves as an important step toward designing clinically effective CS-based treatments. However, to take further steps 99 

towards such treatments, there is a need for a more comprehensive evaluation of the impact of several 100 

pharmacological and pathogen-associated factors related to dosing schedule designs, as well as specifically evaluate 101 

the impact of CS effects on treatment outcomes in comparison to the situation without CS.  102 

In the current study we aim to build on previously established models  in order to determine if and when CS-based 103 

dosing schedules lead to suppression of within-host emergence of antibiotic resistance. We utilise a mathematical 104 

modelling approach to comprehensively study the influence of key pathogen-specific factors and the contribution of 105 

PK and PD properties to identify key design principles to inform rational design of antibiotic multi-drug dosing 106 

schedules that suppress AMR.  107 

Methods 108 

Model framework 109 

A differential-equation based model, consisting of components accounting for antibiotic PK and PD, and associated 110 

bacterial population dynamics, was developed to study the impact of differences in pathogen- and drug-specific 111 

characteristics for different treatment strategies using two antibiotics, hereafter referred to as drug A (DA) and drug 112 

B (DB). As a foundation for our model development, we used a deterministic PK-PD model developed by Udekwu and 113 

Weiss 22, which explores the impact of different multi-drug treatments on time to resistance development in the 114 

presence of CS. We advanced the model by incorporating mutations as random events to capture the stochasticity of 115 

resistance evolution. We integrated the different model components into a framework that allowed us to simulate 116 

antibiotic multi-drug treatments while altering drug- and pathogen-specific factors as a strategy to disentangle their 117 

impacts on resistance development.  118 

 119 

Pharmacokinetics 120 
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A mono-exponential PK model was defined for both drugs Di, where i = {A,B}, as follows: 121 

𝑑𝐴D𝑖

𝑑𝑡
= −𝑘e,Di

× 𝐴D𝑖
             (1) 122 

𝑡half,D𝑖
=  

ln(2)

𝑘e,D𝑖

              (2) 123 

𝐶D𝑖
=

𝐴D𝑖

𝑉D𝑖

              (3) 124 

where Equation 1 describes the change of the amount of Di in plasma over time after intravenous administration, 125 

ke,ABi
 is the elimination rate of Di, which can also be expressed as a half-life (𝑡half,D𝑖

) (Equation 2). The unbound plasma 126 

concentration (𝐶D𝑖
), which is the assumed driver of the antibiotic effect, is calculated using the 𝑉D𝑖

, the distribution 127 

volume of Di with the assumption of negligible protein binding (Equation 3).  128 

Bacterial subpopulations 129 

A model for antibiotic sensitive and resistant subpopulations was defined, comprising a four-state stochastic hybrid 130 

ordinary differential equation (ODE) model, where each state represents a bacterial subpopulation with different 131 

antibiotic susceptibility towards DA and DB.  132 

The model included an antibiotic sensitive bacterial subpopulation (WT) (Equation 4), one mutant subpopulation 133 

resistant to DA but sensitive to DB (RA) (Equation 5), one mutant subpopulation sensitive to DA but resistant to DB (RB) 134 

(Equation 6), and one double mutant subpopulation resistant to both DA and DB (RAB) (Equation 7). The initial 135 

bacterial population was assumed to be homogeneous and in the sensitive WT state unless stated otherwise.  136 

𝑑WT

𝑑𝑡
= WT × 𝑘G,WT × 𝐸D,WT − 𝑘WT,RA

− 𝑘WT,RB
         (4) 137 

𝑑𝑅A

𝑑𝑡
= 𝑅A × 𝑘G,RA

× 𝐸D,RA
+ 𝑘WT,RA

− 𝑘RA,RAB
          (5) 138 

𝑑𝑅B

𝑑𝑡
= 𝑅B × 𝑘G,RB

× 𝐸D,RB
+ 𝑘WT,RB

− 𝑘RB,RAB
          (6) 139 

𝑑𝑅AB

𝑑𝑡
= 𝑅AB × 𝑘G,RAB

× 𝐸D,RAB
+ 𝑘RA,RAB

+ 𝑘RB,RAB
          (7) 140 

The above equations (Equation 4-7) describe the subpopulation specific rate of change for bacterial density, which is 141 

dependent on the bacterial density of subpopulation z, the subpopulation specific net growth (kG,z), the drug effect 142 

(ED,z), and mutation transition(s) (kz,M), if present.  143 
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Resistance mutation 144 

Resistance evolution was included as stochastic mutation process. This process was modelled using a binomial 145 

distribution B with a mutation probability equal to the mutation rate (μ). The number of bacteria mutated per time 146 

step 𝑘𝑧,𝑀 depended on the number of bacteria available for mutation (nz), i.e., the bacterial subpopulation density of 147 

subpopulation z multiplied by the infection volume V, for mutation at time t (Equation 8). Double resistant mutants 148 

evolved through two mutation steps. 149 

𝑘𝑧,𝑀 =  
𝐵(𝑛𝑧,𝜇)

𝑉
              (8) 150 

Pharmacodynamic effects 151 

Drug effects on bacterial subpopulations (Equation 4-7) were assumed to be additive and the total drug effect for 152 

each subpopulation z (ED,z) was implemented as follows (Equation 9): 153 

𝐸D,𝑧 = 1 −  (𝐸DA,𝑧 + 𝐸DB,𝑧)            (9)  154 

Here, antibiotic-mediated effects were implemented according to a PD model developed by Regoes et al. 17, where 155 

the effect of the ith antibiotic on bacterial subpopulation z (𝐸D𝑖,𝑧) was related to the unbound drug concentration 156 

(𝐶𝐷,𝑖) according to Equation 10.   157 

𝐸D𝑖,𝑧 =
(1−𝐺min, D𝑖

 𝑘Gmax,𝑧⁄ )×(
𝐶D,𝑖

MICD𝑖, 𝑧
)

HillD𝑖

(
𝐶D𝑖

MICD𝑖, 𝑧
)

HillD𝑖
−

𝐺min, D𝑖
𝑘Gmax,𝑧

          (10) 158 

where 𝐺min, D𝑖
 represents the maximal killing effect for the Di, 𝑘Gmax,𝑧 is the subpopulation-specific maximal growth 159 

rate, 𝐻𝑖𝑙𝑙𝐴𝐵𝑖
 is the shape factor of the concentration-effect relationship, and MICD𝑖, 𝑧 is the subpopulation-specific 160 

MIC of Di. This multi-parameter model allows for the description of the concentration-effect relationship of different 161 

shapes in relation to the subpopulation-specific MIC.  162 

Sensitive bacteria were defined as having a MIC of 1 mg/L (MICWT) and resistant as 10 mg/L (MICR). Because the 163 

antibiotic concentrations are expressed as folds times MICWT, the absolute value of MICWT is arbitrary. However, the 164 

ratio between MICWT and MICR is of relevance. A tenfold increase was chosen to represent a significant increase for a 165 

biologically plausible scenario. Resistance-related CS effects were included on the two single resistant mutants (RA 166 
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and RB), and were implemented as a proportional reduction (CSA and CSB) of the MIC of the sensitive wild type 167 

bacteria (MICWT). The double resistant mutant (RAB) was fully resistant (MIC = MICR) to both antibiotic A and B, and 168 

did not have any collateral effects. The subpopulation- and antibiotic-specific MICs are stated below: 169 

MICDA,WT =  MICWT   and    MICDB,WT =  MICWT 170 

MICDA,RA
=  MICR   and   MICDB,RA

=  MICWT × CSB  171 

MICDA,RB
=  MICWT × CSA  and   MICDB,RB

= MICR 172 

MICDA,RAB
= MICR   and  MICDB,RAB

= MICR 173 

 174 

Growth rates and fitness effects 175 

The maximal net growth rate (kGmax) represents the maximal net growth of the wild type bacteria in the exponential 176 

growth phase. We considered resistance-associated fitness costs for the different mutant subpopulations. The fitness 177 

cost was incorporated using the factor Ffit, which introduced a fractional reduction of kGmax for each resistance 178 

mutation. Thus, each subpopulation is associated with a specific maximal net growth rate (kGmax,z), determined by the 179 

subpopulation-specific fitness, and was implemented according to Equation 11.  180 

𝑘Gmax,𝑧 = 𝑘Gmax × 𝐹fit
𝑁𝑧            (11) 181 

where 𝐹fit
𝑁𝑧 is the fitness cost factor per mutation, and Nz is the subpopulation-specific number of mutations (Nz = 0, 182 

1 or 2). 183 

The subpopulation-specific net growth in the absence of antibiotic (kG,z) was implemented according to Equation 12. 184 

𝑘G,𝑧 =  𝑘Gmax,𝑧 × (1 −
WT+𝑅A+𝑅B+𝑅AB

𝐵max
)          (12) 185 

where Bmax is the systems maximum carrying capacity, and WT, RA, RB, RAB represent the bacterial densities of the four 186 

different subpopulations, respectively. 187 

  188 

Pathogen- and infection-specific parameters 189 

The maximal growth rate (kGmax) of the hypothetical pathogen was 0.7 h-1, thus representing a doubling time of one 190 

hour. The infection-specific parameters were chosen to represent a human bacteraemia, thus a typical human blood 191 

volume of five litres was used as the infection site volume23. An initial bacterial density of 104 colony forming units 192 
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(CFU)/mL was used to represent an early stage of an established infection24. A system carrying capacity limitation 193 

(Bmax) of 108 CFU/mL24 was implemented according to Equation 12. When the maximum carrying capacity is reached, 194 

the net growth of the total bacterial population is zero, resulting in stationary phase. During this phase bacterial 195 

replication continues but is offset by bacterial death at the same rate, thereby still allowing for resistance mutations 196 

to occur. Resistance mutation rates of 10-6 and 10-9 mutations/base pair/hour were chosen to represent a high and a 197 

moderate mutation rate scenario, respectively25.  198 

Drug-specific parameters 199 

The two hypothetical antibiotics used for the simulations (DA and DB) have identical one-compartmental PK with 200 

distribution volumes of one litre, five-hour half-lives, and no protein binding. Their half-lives were selected to 201 

represent antibiotics with clinically relevant short half-lives, thereby rapidly reaching steady-state concentrations 202 

with minimal accumulation. The drugs were administrated as intravenous bolus doses twice daily over a treatment 203 

duration of two weeks. Several different dosing regimens were simulated including monotherapy, sequential non-204 

repetitive dosing, one- and three-days repeated cycling regimens, and simultaneous dosing. Here, sequential non-205 

repetitive dosing represents a multi-drug treatment using DA for the first seven days and then switching to DB for the 206 

remaining seven days of the treatment. The repeated cycling regimens represent multi-drug treatments starting with 207 

DA for the duration of the cycling interval (i.e., one or three days), then switching to DB for the same duration, and 208 

then back to DA, continuing the repeated cycling until the end of treatment. For sequential and repeated cycling 209 

treatments DA was always used as the starting drug. The doses used were obtained by calculating the required dose 210 

to achieve appropriate average steady state concentration (Css) relative to the MICWT. The lowest dose (using 0.5 x 211 

MIC increments) that gave kill or stasis of the WT bacteria within the 24 hours of treatment, but allowed for 212 

resistance development during monotherapy, was selected for all dosing regimens except for the simultaneous 213 

dosing, for which the dose for the individual antibiotics were reduced by half in order to allow for resistance 214 

development. Four different PD types were included using different combinations of representative parameter 215 

values of Hill (driver of antibiotic effect) and Gmin (type of antibiotic effect). The driver of the antibiotic effect, which 216 

is reflected by the steepness of the concentration-effect relationship (Hill), where shallow relationships are 217 

associated with time-over-MIC-dependency (Hill = 0.5) and steep relationship with concentration-dependency (Hill = 218 
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3). The type of antibiotic effects are commonly divided into bacteriostatic (Gmin = -1) or bactericidal (Gmin = -3). The 219 

corresponding PK-PD relationship of the four different antibiotic types is shown in Fig. 3.  220 

Simulation scenarios 221 

An initial set of dose-finding simulations revealed that monotherapy required Css equal to 1.5 mg/L (1.5 x MICWT) to 222 

achieve killing of the WT while allowing for emergence of resistance in the absence of CS, regardless of the drug type 223 

used (Supplementary Fig. 1). These dosing conditions allow us to evaluate the effect of CS for the majority of the 224 

simulated treatments. However, for the treatments where antibiotics were dosed simultaneously, half of the dose 225 

(Css 0.75 mg/L) was used in order to keep the total dose constant, and to allow for resistance emergence in the 226 

absence of CS and comparable to non-simultaneous dosing regimens. 227 

We used a systematic simulation strategy to study the impact of CS, fitness cost, mutation rate, and initial 228 

subpopulation heterogeneity in antibiotic sensitivity on the probability of resistance (PoR) development for different 229 

treatments. An overview of all simulated scenarios can be found in Supplementary Table 1. We simulated treatments 230 

using two same-type antibiotics (Gmin,A = Gmin,B and HillA = HillB) for scenarios without CS as well as in the presence of 231 

one directional and reciprocal CS in the magnitude of 50% or 90% (2 or 10-fold) reduction of the sensitive MIC 232 

(Supplementary Table 1, Scenario 1 and 2). For these scenarios the resistance was assumed to occur without any 233 

fitness cost, thus allowing us to evaluated CS-specific effects on PoR. We also simulated a set of treatment scenarios 234 

using two different antibiotic types in the presence or absence of CS (Supplementary Table 1, Scenario 3). To assess 235 

the impact of therapeutic window of antibiotics, as reflected by the fold-difference of steady state concentration 236 

(Css) to the MICWT, we simulated different dosing levels resulting in a range of Css of 0.5-5 x MICWT (Supplementary 237 

Table 1, Scenario 4). Additionally, we simulated same-type treatment scenarios covering a wide range of fitness costs 238 

(10% to 50% fitness cost per mutation compared to the wild type) implemented as a growth rate reduction 239 

(Supplementary Table 1, Scenario 5). In order to better understand the interplay between CS and fitness cost we 240 

simulated these scenarios with and without CS. We further investigated how low levels of pre-existing resistance 241 

(1%) towards either ABA or ABB affected the PoR at the end of treatment for different dosing regimens 242 

(Supplementary Table 1, Scenario 6). Finally, we examined the effect of increased mutation rates on resistance 243 

development (Supplementary Table 1, Scenario 7).  244 
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Each simulated scenario was realized 500 times (n), thus representing 500 virtual patients for which the within-245 

patient resistance development was assessed. For each scenario we evaluated different multi-drug treatments 246 

regimens, including within-patient cycling and simultaneous administration. We note that most previously 247 

conducted studies investigating the clinical utility of antibiotic cycling and mixing to supress AMR have evaluated 248 

stewardship strategies at a community level26–28, e.g., between patients within a hospital ward. However, community 249 

level strategies are conceptually different from the within-patient multi-drug treatment strategies we investigate in 250 

this analysis. Therefore, the results we derive from our simulations are not directly comparable to the findings from 251 

such epidemiological studies. 252 

Evaluation metrics 253 

We computed the probability of resistance (PoR), which was defined as resistant bacteria reaching, or exceeding, the 254 

initial bacterial density of 104 CFU/mL at the end of treatment, for each subpopulation separately (Equation 13)  255 

PoR𝑧 =
𝑛R,𝑧

𝑛
              (13) 256 

where nR,z denotes the number of patients having resistant bacteria of subpopulation z at the end of treatment 257 

(Equation 14): 258 

𝑛R,𝑧 =  ∑ 𝟏𝑥𝑧,𝑘≥104cfu/mL 

𝑛

𝑘=1

 262 

              (14) 259 

where 1 denotes the indicator function and xz,k denotes the bacterial density of subpopulation z at the end of 260 

treatment of patient k.   261 

We also calculated the PoR for the case where any, i.e., one or more, resistant subpopulation(s) exceeded the 263 

resistance cut-off (RAny).             264 

The standard error (SE) of the PoR was calculated according to Equation 15. 265 

SE = √
PoR(1−PoR)

𝑛
             (15) 266 
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Software and model code 267 

All analyses were conducted in R version 4.0.5, using the ODE solver package RxODE (version 1.0.0-0)29,30. The 268 

associated model code is available at https://github.com/vanhasseltlab/CS-PKPD)31.  269 

Results 270 

Drug type and treatment schedule influence the probability of resistance 271 

We simulated multi-drug antibiotic treatments using two antibiotics of the same type, with either no (0%) or 272 

reciprocal CS (50 or 90% decrease comparing to MICWT). We show that the impact of reciprocal CS on resistance 273 

dynamics is dependent on the simulated drug type and dosing regimen (Fig. 4). In our simulations, treatments with 274 

concentration-dependent antibiotics could achieve full CS-based resistance suppression for dosing schedules using 275 

one-day cycling interval (Fig. 4C, 4G) or simultaneous administration (Fig. 4D, 4H). A 50% MIC reduction was 276 

sufficient to achieve this effect for all of the four treatments, which is relevant in light of experimental results 277 

consistent with these CS magnitudes15,16,20,32,33. Treatments using time-dependent antibiotics dosed according to 278 

these schedules (Fig. 4K, 4L, 4O, 4P) were efficient in fully supressing resistance with or without CS. Full resistance 279 

suppression was not achieved by any of the other treatment schedules tested. Although none of the CS-based 280 

treatments dosed according to the three-day cycling regimen managed to fully supress resistance, the ones using 281 

time-dependent antibiotics (Fig. 4J, 4N) did show reduced PoR in the presence of CS. For these treatments, the effect 282 

of CS was most prominent for bacteriostatic antibiotics (Fig. 4N) where a CS magnitude of 90% resulted in a decrease 283 

of the PoR of12.6% for RAny. Importantly, we also find that for some treatments the presence of CS was not only 284 

unable to fully supress resistance, but favoured the formation of double resistant mutants (Fig. 4F, 4I, 4M).   285 

Directionality of CS effects influence the probability of resistance 286 

We next sought to determine if reciprocity is a requirement for CS-based treatments to suppress de novo resistance. 287 

We find that bactericidal and bacteriostatic drugs showed the same overall behaviour for treatment outcomes when 288 

tested in relation to CS directionality (Supplementary Fig.2). We specifically focus on the one-day cycling and 289 

simultaneous treatment that appeared to be most successful in fully supressing resistance for reciprocal CS. We find 290 

that for the one-day cycling regimen the presence of one directional CS for the second administrated antibiotic (DB) 291 

is sufficient to fully suppress resistance development. This is illustrated for treatments using concentration-292 
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dependent bacteriostatic antibiotic in Fig. 5. In this scenario, one directional CS results in resistance levels close to 293 

the reciprocal scenario (e.g., one directional 50% CS resulted in 0.4% PoR of RAny for bacteriostatic (Fig. 5A) vs 0% for 294 

reciprocal CS (Fig.5B)). In contrast, when CS is only present for the first antibiotic administered (DA), we found 295 

resistance levels close to the scenario without any CS (PoR 11.5% (Fig. 5D) vs 12.4% (Fig. 5C)). Overall, these results 296 

suggest that when using a drug-pair without reciprocity, the order of administration has a large impact on treatment 297 

success and that therapy should be initiated with the antibiotic for which there is no CS. This strategy allows for 298 

evolution and growth of RA on the first day, while RB is supressed by DA. When the selection is inverted on day two, 299 

the low levels of RA are effectively killed by DB in the presence of CS. In the absence of CS towards DB, RA will reach 300 

high levels, which can lead to further evolution of RAB. When simultaneous administration of concentration-301 

dependent antibiotics is used, we found that reciprocity is necessary to fully supress resistance, as one directional CS 302 

will only supress resistance for the resistant subpopulation which shows CS (Fig. 5A and 5B). However, one 303 

directional CS did reduce the PoR for RAny by approximately 50% (ΔPoR -19.6% and -19.2% for CSA and CSB, 304 

respectively) for both of these treatments. 305 

  306 

Administration sequence and antibiotic type influence resistance suppression 307 

As CS does not only occur between antibiotics of the same type, it is important to understand how the 308 

administration sequence of different-type antibiotics affects resistance evolution. Our results for one-day cycling and 309 

simultaneous schedules demonstrated that the suppression of de novo resistance was mainly driven by the first 310 

administered antibiotic (DA) for all non-simultaneous regimens (Supplementary Fig. 3), highlighting the importance 311 

of drug sequence. In line with our findings for multi-drug treatments using same-type antibiotics (Fig. 4), resistance 312 

was fully suppressed from CS only when using one-day cycling or simultaneous administration dosing regimens. 313 

Particularly for one-day cycling regimens (Fig. 6), initiating treatment with a time-dependent antibiotic was more 314 

effective at supressing resistance in the presence of reciprocal CS compared to the initial administration of a 315 

concentration-dependent antibiotic.  316 

  317 
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CS-based multi-drug treatments show greatest promise for antibiotics with a narrow therapeutic 318 

window  319 

Although many antibiotics are well-tolerated and can be dosed well above the MIC of susceptible strains others, e.g., 320 

aminoglycosides, display a narrow therapeutic window due to toxicity34–36. Understanding the relationship between 321 

average steady-state concentrations (Css) and the impact of CS on de novo resistance development would help 322 

identify in which clinical scenarios CS could be exploited to improve treatment. To this end, we simulated a set of 323 

dosing regimens (using same-type antibiotics) resulting in Css ranging between 0.5-5 x MICWT. These simulations 324 

revealed that CS has the greatest impact on RAny for Css close to the MICWT (Fig. 7 and Supplementary Fig. 4). Most 325 

treatments showing a benefit of CS lost the advantage when the Css exceeded 1.5 x MICWT. The only exception was 326 

one-day cycling treatment using concentration-dependent bacteriostatic drugs, which retained an advantage up to 327 

Css of 2 x MICWT (Fig. 7G). 328 

Fitness cost of antibiotic resistance can contribute to the success of CS-based treatments  329 

Resistance evolution is commonly associated with fitness costs37. We studied the impact of different levels of fitness 330 

cost on the suppression of de novo resistance development (Fig. 8). Fitness cost was included as a fractional 331 

reduction of growth per mutation, thereby doubly penalising the double resistant mutant RAB. In the absence of CS, 332 

fitness cost below 50% per mutation had little impact (|ΔPoR| ≥ 5%) on RAny for most treatment scenarios. However, 333 

when concentration-dependent bactericidal drugs were dosed simultaneously the presence of fitness costs slightly 334 

increased the PoR (maximum ΔPoR 10.2 %). The presence of fitness cost increased the impact of CS on PoR the 335 

three-day cycling regimen using time dependent antibiotics (Fig. 8J and 8N), which failed to fully supress resistance 336 

in the presence of fitness cost-free CS. The fitness cost generating the largest impact of CS for these treatments on 337 

PoR was 40% and 50% cost per mutation when treated with bacteriostatic (Δ PoR -48.4) and bactericidal (Δ PoR -338 

42.8%) drug, respectively.  339 

CS-based simultaneous treatment designs suppress pre-existing resistance 340 

The presence of rare pre-existing resistant cells in the bacterial population establishing an infection is clinically 341 

associated with antibiotic-treatment failure38. We here studied if CS-based dosing schedules can be used to eradicate 342 

such a heterogeneous population (Fig. 9 and Supplementary Fig. 5). In the absence of CS, most of the simulated 343 
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treatment scenarios resulted in a higher probability of the expansion and fixation of pre-existing resistant sub-344 

populations. As with de novo resistance and cycling regimens, the benefit of reciprocal CS was only apparent when 345 

resistance was towards the second antibiotic (subpopulation RB). This is illustrated with the one-day cycling 346 

treatments shown in Fig.9, where all CS-based treatments could supress PoR for pre-existing RB, but failed for all 347 

with pre-existing RA. For three-day cycling regimens and pre-existing resistance towards the first antibiotic, CS was 348 

shown to increase the PoR for RAB (Supplementary Fig. 5). In the presence of CS, all simultaneously dosed treatments 349 

were effective in fully suppressing resistance regardless of pre-existing resistance (Supplementary Fig. 5). 350 

 351 

The combined effect of CS and mutation rate on resistance development differs between 352 

treatments  353 

Because some antibiotic treatments can enhance the genome-wide mutation rate in pathogenic bacteria 39, we 354 

included a set of simulations with higher mutation rates than 10-9 mutations/bp/h (10-8-10-6 mutations/bp/h). We 355 

show that the impact of mutation rate on the PoR was dependent on the combination of treatment design and the 356 

antibiotic type used, especially in the presence of CS (Fig. 10). The largest impact of the interaction between CS and 357 

mutation on PoR was found for the extremes of the antibiotic switching time, i.e., one-day cycling and sequential 358 

treatment design (maximum ΔPoR -57.8% and -52.4%, respectively). In the absence of CS, an increased mutation 359 

rate generally led to an increased PoR, with the exception of simultaneous administration of time-dependent 360 

antibiotics, which actually resulted in full suppression of resistance regardless of CS and mutation rate. For 361 

sequential treatments using time-dependent antibiotics with reciprocal CS (Fig.10I, 10M), the highest PoR was 362 

observed at a mutation rate of 10-7 mutations/bp/hour, and decreased at higher mutation rates. For all mutation 363 

rates and in the presence of CS, simultaneous treatments supressed resistance. 364 

 365 

Discussion 366 

 367 

Our theoretical analysis shows that CS can be exploited to design treatment schedules that suppress within-host 368 

development of antibiotic resistance, with CS-based treatments holding the most potential for antibiotics with 369 

narrow-therapeutic windows. Our simulations indicated that several previously unrecognised factors need to be 370 
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considered to ensure optimal design of CS-based dosing regimens, which include antibiotic PD characteristics, the 371 

magnitude and reciprocity of CS effects, and the effect of fitness cost of antibiotic resistance mutations. In addition, 372 

we found that antibiotic sequence has strong impact on the success of CS-based cycling treatments. An overview of 373 

the main insights and derived design principles we obtained can be found in Supplementary Table 2. 374 

CS-based dosing schedules have mainly considered reciprocal CS scenarios, where resistance against one antibiotic 376 

leads to increased sensitivity to a second antibiotic and vice versa12,16. We show, however, that one directional CS 377 

can be sufficient to supress resistance. For a one-day cycling regimen, the one-directional CS effects were nearly 378 

identical to the scenario that considered reciprocal CS (Fig. 5A vs 5B), but only when bacteria showed CS to the 379 

second drug administrated. When CS was only present for the first antibiotic (DA) (Fig. 5D), initial bacterial growth 380 

was extensive, thus leading to increased risk of the double resistant subpopulation emerging. Because one-381 

directional CS relationships are much more common than reciprocal CS relationships 9–16, this significantly expands 382 

the number of clinical scenarios for which effective CS-based treatments can be designed. 383 

We find that CS-based treatments show the greatest promise for antibiotics with a narrow therapeutic window. The 384 

therapeutic window of an antibiotic is defined by the drug exposure, or concentration range, leading to sufficient 385 

efficacy without associated toxicity. In the majority of our simulations, we have studied dosing schedules leading to 386 

an antibiotic steady state concentrations (Css) of 1.5 x MICWT (or 0.75 x MICWT for simultaneous dosing regimens), 387 

which led to complete killing of the sensitive population but did allow emergence of resistance to occur. This 388 

concentration can be considered to reflect a narrow-therapeutic window antibiotic, e.g., where the antibiotic 389 

concentration required for bacterial killing is closer to the MIC because of occurrence of (severe) toxicities at higher 390 

concentrations. Indeed, for concentrations (much) higher than the MIC, or simultaneously administrating two drugs 391 

above the MIC, the benefit of CS rapidly disappears (Fig. 7). This means that especially for antibiotics with a narrow 392 

therapeutic window such as polymyxins or aminoglycosides, exploiting CS-based dosing schedules offers significant 393 

opportunities for successful antibiotic treatment while minimizing both the risks of antibiotic-related toxicity and de 394 

novo antibiotic-resistance development. Additionally, for simultaneously administrated antibiotics, the presence of 395 

CS could provide the possibility to lower the dosage of the individual antibiotics without decreasing efficacy. 396 

Cycling based dosing regimens are frequently discussed as a strategy to improve antibiotic treatment when CS 397 

occurs. In our simulations, we show that for one-day cycling treatments antibiotic type (Fig. 6), directionality of CS 398 
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(Fig. 5), and the identity of any pre-existing resistance subpopulation (Fig. 9) should be considered when choosing 399 

which drug to administer first. We, specifically, show that the type of the first administrated antibiotic had a larger 400 

impact on the PoR compared to the type of the second administrated antibiotic. The presences of CS to the second 401 

administrated antibiotic had a greater effect PoR compared to CS to the first administrated antibiotic. In the case of 402 

pre-existing resistance,  the PoR was smaller if there was pre-existing resistance to the second administrated drug 403 

compared to the first antibiotic. These findings are consistent with previous studies showing that the probability of 404 

resistance is influenced by the sequence of antibiotics40, and optimized cycling sequences outperformed random 405 

drug cycling regimens14. Additionally, we show that one-day cycling outperforms a three-day cycling interval, both in 406 

the presence and absence of CS. This is in agreement with previous in vitro studies showing an advantage of shorter 407 

cycling intervals41. Furthermore, in the context of cycling, or alternating antibiotic treatments, consideration of the 408 

pharmacokinetics, e.g., the time-varying antibiotic concentrations, was found to be important because the 409 

remaining concentration of the first antibiotic administered added to the total drug effect (illustrated in Fig. 3). 410 

Therefore, the antibiotic switch contributes to a higher total drug effect than after repeated administration of the 411 

same drug, even in the absence of collateral effects. In our simulations, the impact of this increased effect is 412 

dependent on the type of the antibiotic and was shown to be especially important for time-dependent antibiotics. 413 

This highlights the importance of considering both PK and PD when designing effective antibiotic treatments, 414 

something that is overlooked when drawing conclusion regarding treatments solely based on static in vitro models. 415 

To better characterize the population dynamics of pathogens in response to antibiotic treatment under presence of 416 

CS, we studied the effect of fitness costs of antibiotic resistance and mutation rates leading to antibiotic resistance. 417 

We find that introducing fitness costs had a negligible effect on PoR for the majority of the simulated CS-based 418 

treatments, with the exception of the three-day cycling using time dependent antibiotics (Fig. 8J and 8N), where 419 

introducing fitness costs improved the CS-based treatments by preventing resistant bacteria from reaching high 420 

densities before the first antibiotic switch. Typically, the PoR increased with mutation rate, which is in line with 421 

previous findings of mutator strains being associated with higher level of resistance42,43. For pathogens with a low 422 

mutation rate and/or administration of non-mutagenesis-inducing antibiotics (10-9 mut/bp/h), one-day cycling 423 

regimens and simultaneous antibiotic treatments are most relevant to benefit from CS, whereas for high mutation 424 

rates (e.g., 10-6 mut/bp/h), sequential and simultaneous antibiotic treatments are the most beneficial (Fig. 10). This 425 
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means that in situations when the occurrence of mutator strains is likely (e.g., such as in cystic fibrosis lung 426 

infections44) and/or when the administered  antibiotics induce mutagenesis (e.g., fluoroquinolones45), this should be 427 

considered in the design of dosing schedules. With respect to the competition between different bacterial 428 

subpopulations occurring in vivo, we included a bacterial carrying capacity which introduces clonal competition. 429 

During clonal competition, competition between subpopulations can lead to their suppression, e.g., high densities 430 

for one subpopulation can suppress the growth of a second subpopulation, even if the second population might be 431 

more fit. Treatments giving rise to clonal competition-based containment, where the selection pressure favors 432 

specific subpopulations which will in turn suppress others due to the capacity limitation of the system, have been 433 

suggested as a potential strategy to suppress AMR46. In our simulation, we observe a clear impact of clonal 434 

competition. When CS is present, single resistant subpopulations are unable to reach high enough levels to suppress 435 

the growth of the double resistant mutant, which allows the double mutant to take over, for some treatments. This 436 

support the value of characterizing CS-based treatments beyond the quantified summary metric of collateral effect. 437 

Our study advances the work by Udekwu and Weiss 22 by explicitly comparing treatment outcomes to a base 438 

scenario without CS to determine the specific contribution of CS effects, and by performing a more systematic 439 

analysis of key drug- and pathogen specific factors that could influence optimal CS-based treatment scenarios. 440 

Additionally, we incorporated mutations as random events to capture the stochastic nature of resistance evolution, 441 

which is overlooked when using purely deterministic models. Our mathematical model was designed to facilitate 442 

identification of the primary factors driving the success or failure of antibiotic treatments in a general setting, and 443 

not for specific antibiotics and/or pathogens. We thereby did not consider factors that could further contribute to 444 

treatment outcomes for specific pathogens or antibiotics. We did not consider that more complex evolutionary 445 

mutational trajectories can occur with associated complex patters of changes in antibiotic sensitivity and MIC47, 446 

which are not easily definable to apply to antibiotic treatment in general. Other factors not considered include local 447 

antibiotic tissue concentrations 48,49, pharmacokinetic drug-drug interactions or the contribution of the immune 448 

system. We expect that such factors will not affect the specific subpopulations studied in different ways and 449 

therefore will not have a great impact on the general findings derived in this analysis.  450 

In this analysis we assumed independent additive drug effects, thus excluding the possibility of pharmacodynamic 451 

drug-drug interactions between antibiotics, e.g., synergy or antagonism50. Combined drug effects can furthermore 452 
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be modelled according to different null interaction assumption, including: (i) dependence of drug effects through a 453 

shared mechanism of action (Loewe additivity)50,51 [ref], (ii) independent drug effects with a shared maximum drug 454 

effect (Bliss independence)52, or (iii) fully independent additive drug effects50 as implemented in this paper. The 455 

choice of null interaction model, or the presence of drug interactions (synergy, antagonism) may influence treatment 456 

outcomes in particular for simultaneous treatment schedules. Although an analysis of the effect of various possible 457 

drug interactions was beyond the scope of this analysis, we do expect this will be an important factor to consider 458 

when designing CS-based treatment for specific antibiotic combinations, where specific pharmacodynamic drug 459 

interactions can be explicitly incorporated. 460 

The developed modelling framework is applicable for design of clinical treatment designs for specific antibiotic 461 

agents and pathogens, where the model can be further expanded with additional pathogen-, drug-, and patient-462 

specific characteristics53, derived from separate experimental studies and by utilizing published clinical population PK 463 

models for specific antibiotics54,55, which include inter-individual variability or target site concentrations at the site of 464 

infection. This would thus allow us to derive tailored CS-based dosing regimens for specific antibiotics and 465 

pathogens. Additionally, we did not evaluate how the presence of collateral resistance (CR) could impact treatment 466 

efficacy. Although such scenarios are beyond the scope of the current study, the flexibility of our developed 467 

framework allows for the incorporation of CR, and could thus serve as a tool to investigate how CR impacts 468 

treatment efficacy. Furthermore, cellular hysteresis, where non-genetic CS-like responses have been observed, may 469 

be another direction for which our modelling framework could be extended41. 470 

In this study we showcase how a mathematical modelling can address questions that are difficult to answer using an 471 

experimental approach. We conclude that CS-based treatments are likely to be able to contribute in the suppression 472 

of resistance. However, the success of such treatment strategies will be dependent on careful design of a dosing 473 

schedule, and requires explicit consideration of pathogen- and drug-specific characteristics. Our developed 474 

modelling framework delineates key factors for the overall design of effective CS-informed treatments and can be 475 

used to facilitating help the design of treatments tailored to specific pathogens and antibiotic combinations. 476 

Although well-conserved CS effects remain a key requirement, we found that  reciprocal CS may not be a 477 

requirement to design such dosing schedules, expanding the applicability of CS-based treatments. Such CS-based 478 
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treatments appear to be most relevant for antibiotics with a narrow therapeutic window, which are also the 479 

antibiotics where within-host emergence of resistance is most likely to occur. 480 
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Figure captions 615 

 616 

Figure 1. Concept figure of collateral sensitivity (CS)-based treatments using two hypothetical drugs, antibiotic A and B, based on Pál et al 617 

2015 56 A: Reciprocal CS relationship between antibiotic A and B. B: Theoretical cycling regimen exploiting CS between antibiotic A and B to 618 

supress resistance.  619 

Figure 2. Simulation workflow. Pharmacokinetic-pharmacodynamic (PK-PD) framework comprised of four bacterial subpopulations (WT, RA, 620 

RB, RAB) and the PK-PD of two hypothetical drugs (DA and DB). The framework includes fixed infection- and pathogen-specific parameters and 621 

fixed drug PK parameters. The model input includes both drug- and pathogen-related factors, which vary between different scenarios. The 622 

framework was used to simulate different treatment schedules of two-week multi-drug treatments using DA and DB for n patients. In the 623 

example a three-day cycling treatment regimen (PK panel) is simulated for six patients. The resulting patient-specific bacterial profiles are 624 

shown in the PD panel. Resistance was evaluated for each patient and bacterial subpopulation at the end of treatment (EoT), for which the 625 

corresponding probability of resistance (PoR) was calculated.  626 

Figure 3. MIC-specific PK-PD relationships. A: Initial pharmacokinetic (PK) profiles of mono or multi-drug treatments using two hypothetical 627 

antibiotics DA (turquoise) and DB (purple) where both drugs follow one-compartmental kinetics with first order elimination. The drugs were 628 

administrated intravenously twice daily according to four different treatment schedules (columns), including non-reparative sequential 629 
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administration, repetitive cycling administration, and simulations administration. Dosages used were related to average steady state 630 

concentration of 1.5 mg/L (1.5 x MICWT) or 0.75mg/L (0.75 x MICWT) for simultaneous dosing. B: Pharmacodynamic profiles related to different 631 

treatment schedules using different antibiotic drug types including concentration- (Hill = 3, red) or time- (Hill = 0.5, blue) dependent antibiotics 632 

and bactericidal (Gmin = -3, solid) and bacteriostatic (Gmin = -1, dashed), where the effect is representing the proportional bacterial growth 633 

inhibition/killing of different bacterial phenotypes (rows). The bacterial phenotypes are associated with different sensitivities towards DA and 634 

DB. The effect is driven by the PK profile shown in panel A according to Equation 9 and 10. 635 

Figure 4. The effect of treatment design and antibiotic in relation to different levels of collateral sensitivity (CS) on the probability of 636 

resistance (PoR) at end of treatment. The simulations show that CS had a profound impact on resistance development for treatments with 637 

concentration dependent antibiotics with one-day cycling interval or simultaneous administration. A-P: PoR was estimated at end of treatment 638 

for treatments using different designs (columns) and antibiotic types (rows), where each simulated scenario was realized 500 times. 639 

Subpopulation-specific PoR are indicated by different colour and RAny, defined as the presence of any resistant subpopulation, is indicated in 640 

grey. Data are presented as mean PoR with the error bars represent the standard error of the estimation. Q: Bacterial dynamics relating to 641 

different treatment schedules using concentration-dependent bacteriostatic drugs , where each simulation was realized n=500 times. 642 

Subpopulation-specific bacterial density are indicated by different colours, where the solid lines indicate the median and the shaded area 643 

covers the 5th-95th percentiles of the predictions. The resistance cut-off (dashed line) is used for end of treatment evaluation of resistance. 644 

Figure 5. The effect of the direction or reciprocally of collateral sensitivity (CS) on end of treatment probability of resistance (PoR). PoR was 645 

estimated at end of treatment for different CS scenarios using concentration dependent bacteriostatic drugs. Subpopulation-specific PoR is 646 

indicated by different colour and RAny resistance, defined as the presence of any resistant subpopulation, is indicated in grey. Each simulated 647 

scenario was realized n=500 times. Data are presented as mean PoR with the error bars represent the standard error of the estimation. For the 648 

one-day cycling regimen it became evident that the CS towards the second administrated drug (DB) was driving the effect, CS-based dosing 649 

using simulations administration of concentration dependent antibiotics showed that reciprocity is necessary to supress overall resistance. 650 

Figure 6. The effect of using different antibiotic types during one-day cycling multi-drug treatments in relation to different levels of 651 

collateral sensitivity (CS) on the probability of resistance (PoR) at the end of treatment. The simulations showed that initiating treatment 652 

with a time-dependent antibiotic was more effective in supressing resistance than with a concentration-dependent antibiotic in the presence 653 

of reciprocal CS. Each simulated scenario was realized n=500 times. PoR was estimated at the end of treatment for one-day cycling regimen 654 

with different antibiotic combinations. Subpopulation-specific PoR is indicated by different colour and RAny, defined as the presence of any 655 

resistant subpopulation, is indicated in grey. Data are presented as mean PoR with the error bars represent the standard error of the 656 

estimation. 657 

Figure 7. The effect of antibiotic steady state concentrations (Css) in relation to different levels of collateral sensitivity (CS) on the probability 658 

of resistance at the end of treatment (PoR). The simulation revealed that CS had the largest impact on PoR for Css close to MIC of the wild type 659 

strain (MICWT). Css was expressed as factor difference from the MICWT. For the dosing regimen using simultaneous administrated antibiotics the 660 

Css represent the total antibiotic Css, where the individual antibiotics were dosed at  0.5 x Css. PoR of RAny, defined as the presence of any 661 
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resistant subpopulation, was estimated at the end of treatment for treatments using different designs (columns) and antibiotic types (rows). 662 

Each simulated scenario was realized n=500 times. Colour and line-type indicate the magnitude of reciprocal CS simulated. Data are presented 663 

as mean PoR with the error bars represent the standard error of the estimation.. 664 

Figure 8. The effect of fitness costs for developing resistance for different levels of collateral sensitivity effects on the probability of 665 

resistance (PoR). PoR of RAny, defined as the presence of any resistant subpopulation, was estimated at end of treatment for treatments using 666 

different designs (columns) and antibiotic types (rows). Colour and line-type indicate the magnitude of reciprocal CS simulated. Each simulated 667 

scenario was realized n=500 times. Data are presented as mean PoR with the error bars represent the standard error of the estimation. 668 

Figure 9. The effect of pre-existing resistant mutants for different magnitudes of collateral sensitivity on the probability of resistance (PoR). 669 

PoR was estimated at the end of treatment for different scenarios of low levels of pre-existing resistance (columns) and antibiotic types 670 

(rows). Subpopulation-specific probability of resistance is indicated by colour and PoR of RAny, defined as the presence of any resistant 671 

subpopulation, is indicated in grey. Each simulated scenario was realized n=500 times. Data are presented as mean PoR with the error bars 672 

represent the standard error of the estimation. 673 

Figure 10. The effect of increased mutation rate for different CS magnitudes on the probability of resistance (PoR). The combined impact of 674 

mutation rate and the CS on PoR was dependent on treatment schedule. PoR of RAny, defined as the presence of any resistant subpopulation, 675 

was estimated at the end of treatment for treatments using different designs (columns) and antibiotic types (rows) for different mutation rates 676 

(x-axis). Each simulated scenario was realized n=500 times. Colour and line-type indicate the magnitude of reciprocal CS simulated. Data are 677 

presented as mean PoR with the error bars represent the standard error of the estimation. 678 

679 
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