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Summary
Biological imaging is one of the most innovative fields in the modern biological sciences. New imaging

modalities, probes, and analysis tools appear every few months and often prove decisive for enabling new

directions in scientific discovery. One feature of this dynamic field is the need to capture new types of data

and data structures. While there is a strong drive to make scientific data Findable, Accessible, Interoperable

and Reproducible (FAIR 1), the rapid rate of innovation in imaging impedes the unification and adoption of

standardized data formats. Despite this, the opportunities for sharing and integrating bioimaging data and, in

particular, linking these data to other "omics" datasets have never been greater. Therefore, to every extent

possible, increasing "FAIRness" of bioimaging data is critical for maximizing scientific value, as well as for

promoting openness and integrity.

In the absence of a common, FAIR format, two approaches have emerged to provide access to bioimaging

data: translation and conversion. On-the-fly translation produces a transient representation of bioimage

metadata and binary data but must be repeated on each use. In contrast, conversion produces a permanent

copy of the data, ideally in an open format that makes the data more accessible and improves performance

and parallelization in reads and writes. Both approaches have been implemented successfully in the

bioimaging community but both have limitations. At cloud-scale, those shortcomings limit scientific analysis

and the sharing of results. We introduce here next-generation file formats (NGFF) as a solution to these

challenges.

Limits of On-the-fly Translation
One classically successful approach to provide unified access to bioimaging data uses a library that

dynamically translates bioimage metadata and binary data from the innumerable proprietary file formats

(PFFs) that exist in this domain (Figure 1a). This strategy is provided by several open source solutions,

including the authors’ Bio-Formats 2, a Java-based library that supports >150 PFFs; OpenSlide 3, a C++ library

that focuses on PFFs used in whole slide imaging (WSI); and aicsimageio 4, a Python library that wraps vendor

libraries for simplified numpy access. Translating data in real-time has worked well for many applications, and

such translation libraries have become the reference APIs in their fields. However, large, public data resources

like the Allen Cell Explorer (https://www.allencell.org/), Image Data Resource 5, Systems Science of Biological
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Dynamics Database 6, and others have revealed the fundamental bottlenecks created by the computational

cost and time required for repeated translation of massive collections of PFFs. The same problem occurs in

data hungry applications like machine learning (ML), where the cost of real-time translation precludes the use

of even larger, more richly annotated datasets. Furthermore, the outputs of these applications remain

fundamentally isolated from the original data when either the complexity or licensing of PFFs prevents the

writing of further analytical metadata in the same format. Finally, individual dataset volumes have grown with

the advent and popularization of imaging modalities that support large tissue samples, such as digital

pathology, light sheet microscopy (LSM), and focused on beam-scanning electron microscopy. In these

applications, efficient, high performance data access requires multi-resolution representations (often referred

to as pyramidal data) that enable zoomable visualization and selectable levels of resolution for interactive

navigation and scalable analysis. Providing multi-resolution support across >150 PFFs is simply not practical

nor computationally effective. In short, for the applications that are becoming strategic opportunities for new

directions in bioimaging, real-time translation no longer scales.

Figure 1 | Conversion tools provide an alternative to continual, on-the-fly translation of PFFs.

Figure shows workflows for file format conversion. A. The classical approach to access images produced by an
acquisition system is to use a library like Bio-Formats to translate the proprietary file format (PFF) and produce an
in-memory copy of the imaging data on-the-fly. This translation needs to be repeated on every use. B. With the
existence of open, community-supported formats, converting PFFs becomes the most cost-efficient method for
long-term storage and sharing of microscopy data. bioformats2raw and raw2ometiff parallelize the creation of an
open format, OME-TIFF, by using an intermediate format consisting of many, individual files each with one chunk
of the original image data.

Permanent Conversion
A distinct approach -- converting data from PFFs to a common, well-defined format -- solves the

computational demands of repeated and real-time image translation but requires a format that has broad

application and utility, long-term stability and multiple open-source implementations and the support of the

community. Some success has been achieved with OME-TIFF, a 2D multi-resolution image format that

captures acquisition metadata as OME-XML in the TIFF header 2,7,8. Reference software implementations are

available in Java (https://github.com/ome/bioformats/), C++

(https://gitlab.com/codelibre/ome/ome-files-cpp) and Python (e.g.,

https://github.com/AllenCellModeling/aicsimageio, https://github.com/apeer-micro/apeer-ometiff-library,

https://github.com/cgohlke/tifffile). OME-TIFF is supported by several commercial imaging companies (see
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https://www.openmicroscopy.org/commercial-partners/) and is the recommended format for public data

projects like Image Data Resource (IDR) or Allen Institute of Cell Science, making their data available from

https://open.quiltdata.com/b/allencell/.

As our and others' use of existing tools for conversion to OME-TIFF grew, TIFF’s linear binary layout became a

bottleneck. Larger files took increasingly long to write. This problem was most obvious in projects that

required the conversion of large numbers of whole slide images from PFFs to OME-TIFF for use in data lakes

that are used for AI training sets (https://pathlake.org; https://icaird.com). The need for a scalable conversion

motivated our development of two tools, bioformats2raw

(https://github.com/glencoesoftware/bioformats2raw) and raw2ometiff

(https://github.com/glencoesoftware/raw2ometiff). Together they provide a parallel pipeline using

Bio-Formats to convert any supported PFF into multi-resolution OME-TIFF. This is achieved by breaking images

into atomic "chunks", writing them independently to disk, and generating subresolutions from them when

none are available, whereupon a second process can efficiently write these chunks into TIFF (Figure 1b). With

this conversion pipeline, OME-TIFF becomes a performant solution for domains handling larger planar data,

for example whole slide images in digital pathology.

Multi-dimensional Images

A fundamental issue with OME-TIFF is that though it supports 5D images, its binary data access is limited to

2D tiles. While storage of individual planes of image data that encompass hundreds of GBytes and dozens of

pyramidal resolutions of data is possible, performance suffers when scaling to multi-dimensional, multi-TByte

datasets, e.g., LSM datasets. In fact, in the benchmark below the LSM-like test data formatted in TIFF

consumed too much memory for completing the benchmark.

A possible solution to the dimensionality issue is HDF5, a multi-dimensional data format that internally

supports chunk-based access 9. Several open HDF5 bioimage file formats have been designed and

implemented 10–13 and libraries exist for these various formats in several of the major programming languages.

The HDF5-based BigDataViewer file format 11 has proven to be quite powerful for the LSM community, as it

provides a convenient integrated format and the chunking required for interactive visualization of the large

3D timelapse datasets produced by LSM. Oxford Instruments have released an alternative open HDF5-based

implementation that is widely used and includes a format specification

(https://imaris.oxinst.com/support/imaris-file-format) as well as an open reference implementation,

ImarisWriter 14. These formats have performed well for interactive visualization and analysis, but there remain

limitations for processing and integration of large numbers of HDF5 datasets. Parallel writing of HDF5 files is

only fully supported in high performance, specialised parallel computing environments where technologies

such as MPI (“message passing interface”) are available. Also, unlike TIFF, HDF5 files do not inherently have a

specification for image data, so each HDF5 implementation ends up being another file format, growing the

number of PFFs.

Cloud Performance

An issue with both TIFF and HDF5 is that any format must eventually be stored on a hard-drive or other

permanent memory structure. Filesystems have been the workhorse of the imaging community since its

inception. They enable low-latency, "random access" to large binary data files. This speed is an underlying

assumption of most visualization and analysis applications, but filesystems are relatively expensive and their

complexity comes with relatively high maintenance costs. With the ascendance of cloud computing, an

alternative is to use a loosely-defined storage technology (often called "object storage") that treats individual

files as distinct immutable objects. Object storage provides relatively simple read and write procedures that

transfer whole objects (often called "chunks"). Each object is stored redundantly across multiple servers,

which offers improved parallelization and scalability in exchange for increased access latency. To make use of

the advantages of object storage, a modern format, accommodating contemporary dataset volumes and
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dimensionality, is needed that does not require the whole binary structure to be accessed as a single

monolithic block on disk or in the cloud. While a monolithic strategy works for smaller files, it is

fundamentally limiting for multi-TByte, multi-dimensional and multi-modal imaging datasets. These datasets

are so large that they cannot be completely transferred between computers, locations or public resources,

even if sufficient storage were available, which is rarely the case. A new form of data access is needed in

bioimaging.

While the TIFF and HDF5 implementations remain valuable in their respective domains, their inability to cover

all use cases is illustrative of the pitfalls of format standardization. Creating a data format standard requires

equal consideration for performance, usability, and structure, with a balance of community-driven

specification and extensibility. Historically, OME-TIFF and OME-XML were highly specified but lacked optimal

adaptability to novel data volumes and high dimensionality, while HDF5 was highly extensible and thereby

suffered a branching into multiple PFFs. Improved performance motivated early adoption, especially given

high usability, but providing a clear structure for binary data and metadata is essential to yield a cohesive

landscape of new tools, rather than a divergence of format variants. Extensibility, however, is necessary for

adoption by new domains or vendors and integration with novel analytical approaches that were not

considered at the point of initial specification.

Next-generation file formats
To address these challenges, we have begun preparing a new generation of binary file formats for bioimaging.

The work is based on the tenet that, given the diversity of the field of bioimaging, no single data structure or

file format will address all use cases, programming environments and technology domains. For instance the

requirements of an imaging technology manufacturer, which needs a file format with optimised write

performance, are very different from those of a computational scientist building new ML technologies or a

public data repository that has to publish and serve many millions to billions of image datasets.

As we investigated candidates for the intermediate multifile, "chunked" representation for parallelizing the
bioformats2raw and raw2ometiff conversion pipeline (see Figure 1), we realized that these data structures
could complement existing TIFF- and HDF5-based workflows and enable new types of parallel bioimaging
use cases. We collectively refer to these formats as "next generation file formats" (NGFFs). We have focused

on two very similar, open source strategies for laying out binary data. N5 (https://github.com/saalfeldlab/n5)

is a binary data format that uses embedded directories and defined multi-dimensional chunking to provide

fast, cloud-competent image data storage. N5 was developed out of the Fiji community 15 and there are now

several examples of public datasets in N5. Zarr (https://github.com/zarr-developers) follows a nearly identical

strategy of storing chunks in individual files across directories and was originally adopted for handling

genomic and geospatial data, similarly with a number of datasets available publicly 16. Since 2018, the two

communities have worked together

(https://github.com/zarr-developers/community/issues/1#issue-463966208) to unify the two formats to

maximize re-use. Table 1 summarizes the overall added value of the NGFFs.

Maturity Dimensionality Scalability

TIFF Ubiquitous 2D tiles Poor

HDF5 Well-supported 3D+ chunks Limited parallel access

Zarr/N5 Next-generation 3D+ chunks Fully parallel
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Table 1 | Characteristics of three binary containers for imaging data.

To accomplish this idea, we have defined an image specification for multiscale NGFFs on top of N5 and Zarr.

We have also built implementations of the specification, demonstrating the usability and performance of

these formats. bioformats2raw can be used for writing NGFF formats from standalone Java applications and

omero-cli-zarr is available for exporting from OMERO 17. Reading is implemented in ome-zarr-py which has

been integrated into the napari viewer 18, in Fiji via the MoBIE plugin 19, and finally via Viv-based vizarr for

access in the browser 20. Each additional implementation enables a different set of users to remotely access

data without the overhead of PFF translation. Permissively-licensed datasets from IDR have been converted

into Zarr and stored in an S3 object storage bucket for public consumption (Figure 2).

Figure 2 | Maximizing re-use by allowing popular tools to access bioimaging data in the cloud.

An example of using NGFFs for promoting the distribution of public image datasets. Selection of current
tools streaming different portions of the same SARS-COV-2 virus image at various resolutions directly
from S3 storage at the European Bioinformatics Institute (EBI). Original data from Lamers et al.
DOI:10.1126/science.abc1669 available in IDR at DOI:10.17867/10000135.

It should be noted that although this set of formats provides an initial basis for development, as the needs of

the community are catalogued, more sophisticated formats like TileDB Embedded may join this list of

supported candidates. TileDB Embedded uses a database-like storage engine based on sparse and dense

multi-dimensional arrays to service chunks of data and as it is an open source C++ run-time library, data can

be accessed from Java, Python and several other programming languages. However, a long-term commitment

to format support by the users, developers, and funders should be demonstrated to avoid a new translation

bottleneck.

Measuring access times
To illustrate the impact of these new binary formats in modern computing environments, we benchmarked

the latency of random chunk access across uncompressed datasets representative of two established imaging

modalities: large multi-channel two-dimensional images like the ones produced by cyclic

immunofluorescence (CycIF) 21 and timelapse isotropic volumes typically generated by LSM 22. Synthetic HDF5,

TIFF and Zarr datasets were generated by first invoking the ImarisWriter, then converting the HDF5-based

Imaris files into Zarr with bioformats2raw, and finally converting the Zarr to TIFF with raw2ometiff. All three

datasets along with a 1-byte dummy file for measuring overhead were placed in three types of storage: local

disk, a remote server, and in object storage. We measured the reading time of individual chunks for all four
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file types across the three storage systems, making use of fspec for all access (Figure 3). All code is available

for generating the data and running the benchmark in docker or on the AWS cloud.

We observed that access speeds for NGFF files are similar to HDF5 when the files reside locally (i.e., on the

same computer) and both substantially outperform TIFF. We note Kang showed that for most serial access

patterns, HDF5 can be significantly faster than Zarr 23. Together these results partially explain HDF5’s

popularity for desktop analysis and visualization of LSM datasets. But access speeds for NGFF files are at least

an order of magnitude faster than HDF5 on object storage. This leads to throughput comparable to local disk

access when using parallel reads 24, supporting streaming of image data files from remote http-based or

cloud-based servers. This speed improvement is achieved by enabling parallelised, chunk-based data access

where data is stored in the cloud. This obviates the need for wholesale data download and is especially

important for providing performant access to multi-TByte datasets.

A key parameter in overall access times is the size of individual chunks. As chunk sizes decrease, the number

of individual chunk files increases rapidly. In this benchmark, we have chosen a compromise between chunk

size and number of individual files. This illustrates the primary downside of NGFF formats: as the number of

files increases, so does the on-disk complexity with the result that copying the entire fileset between

locations now becomes limiting. This is a direct result of optimizing NGFFs for incremental rather than bulk

access.

Figure 3 | Chunk retrieval time is less sensitive to data location with next-generation file formats.

Random sampling of 100 chunks from synthetically generated, 5D images measures access times for three
different formats on the same file system ("local", green), over HTTP using the nginx web server ("http", orange),
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and using Amazon’s proprietary S3 object storage protocol ("s3", blue) under two scenarios: (A) a whole-slide
CycIF imaging dataset with many large planes of data (x=64k, y=64k, c=8) and chunks of 256x256 pixels (128 KB)
and (B) a time-lapse LSM dataset with isotropic dimensions (x=1024, y=1024, z=1024, t=100) and chunks of
32x32x32 pixels (64 KB).

The rain cloud plots on the left show that as the latency of access grows, access times for monolithic formats like
TIFF and HDF5 increase because libraries must seek the appropriate data chunk, whereas NGFF formats like Zarr
provide direct access to individual chunks. In the 3D case, the TIFF data was too large to fit into local memory and
the benchmark errored.

The line plots on the right show how the number of chunks needed for an image of the specified dimensions varies
with size of the chunk in X and Y (and Z for 3D). Chunk sizes were chosen here to balance chunk size with
number of files. All data was stored uncompressed to keep chunk sizes consistent for the random generated data.

All code for reproducing the runs both locally with docker or Amazon EC2 instances are available in
https://github.com/ome/ngff-latency-benchmark.

Interoperable through metadata specifications
Though we have demonstrated the performance benefits of a low-latency streaming format when accessing

large multi-dimensional volumes, it is also clear that multiple open bioimaging formats have a role to play in

the many use-cases of FAIR data access. Supporting multiple community formats, however, runs the risk of

again permanently requiring a translation library. The solution is to guarantee interoperability between the

formats themselves. All data in one format should be losslessly convertible to the other, supported formats.

The key to achieving this is a re-evaluation of the metadata format that OME has been maintaining for 15

years.

While TIFF provides a standardized specification for defining a 2D-binary image, the extension to

accommodate 5D images was only provided via the addition of OME-XML stored in TIFF’s header structure 2.

The definition of such "alignment" metadata, clearly specifying the relationships between dimensions and

measurements, is critical for the interpretation of evolving imaging data. In this modernization of the original

XML work, we have added metadata conventions into the metadata structures of the Zarr format to handle

multi-dimensional bioimaging data, including high-content screening datasets . We have provided a

specification for paired, derived labelled images such as segmentation or classification masks. We believe that

the remote streaming capabilities of NGFFs will complement high-throughput ML training and testing

workflows, whose outputs can now remain in a common data structure with the original pixel data and

metadata.

Metadata for experimental procedures, image acquisition parameters and analytics are another critical

component of a bioimaging file format and provide the basis for interoperable data access. The ability to

extend and adapt a standard is of particular importance for converting files permanently away from PFFs.

Technology developers and commercial manufacturers need clear guidelines and support for incorporating

their metadata into and adapting to a community-standard. We have published the current work as a formal

specification, following patterns developed by the World Wide Web Consortium that have been successful in

other domains, and provided means for public commentary and contribution

(https://ngff.openmicroscopy.org/latest/).

A general problem in metadata specifications, however, is that they necessarily focus on a specific domain.

While valuable, this can make extension to other domains difficult. An example is the OME-XML specification
7 which is focused on fluorescence microscopy, high content screening and digital pathology, and does not

provide an easy way for third parties to add support for other modalities or application domains. The

redefinition of the OME metadata for NGFFs provides an opportunity to specify conventions that will apply to

and support the breadth of formats needed by the community (Figure 4). In collaboration with RIKEN, initial

work on a Resource Description Framework (RDF)-based representation of OME metadata has been

completed that needs integrating into the NGFF structure 25–27.
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While the rapid pace of innovation in bioimaging continues, the core data structures-- binary pixel data and

experimental, acquisition and analytic metadata-- are likely common to most imaging experiments and

datasets. Indeed, recent work on minimal bioimaging metadata standards have focused on a collection of

core concepts including those from OME that can be extended to support domain- and application-specific

requirements. As a participant in the “Recommended Metadata for Biological Images” (Sarkans et al, Nature

Methods, in press) effort, we aim to provide open reference software and formats that implement the

proposed minimal metadata specification and can be widely adopted and extended by the bioimaging

community.

Figure 4 | Unification of metadata specifications will allow interoperability between TIFF, HDF5, and Zarr.

Each format is suited to particular use cases. TIFF is ideal for interoperability in digital pathology and other
2-dimensional domains since the format is widely accessible by established open source and proprietary software.
In higher-dimensional domains, HDF5 and Zarr are better suited. HDF5 will likely be preferred for local access. If
data is intended for sharing in the cloud, Zarr will likely be preferred. High-throughput image analysis will benefit
from the lower-latency access to data in HDF5 and Zarr. If original image data is paired with derived
representations like pixel or object classification, a shared structure in HDF5 or Zarr is likely the best choice.

Outlook: Suite of standard formats
Is it practical to expect that these next generation formats may one day become community-agreed and

widely adopted standards? Reducing the explosion of PFFs is essential for enabling data repositories and

maintaining the scale at which our community is working, but to date, the community has not been able to

agree on any single file format. Any format will be challenged by the level of innovation that has prevented

easy adoption of any of the previous candidates.

We assert that this suite of interoperable formats -- TIFF, HDF5, and now low-latency, cloud-capable NGFFs --

will provide the balanced set of trade-offs necessary for the community to converge on, slowing the

development of ever more file formats. When data is expected to be accessed frequently, either as a public

dataset or in an image analysis workflow, the upfront conversion time to Zarr will lead to overall time savings

over frequent accesses. In situations where object storage is mandated as in large scale public repositories,

we would encourage the use of OME’s next generation file formats (OME-NGFF) today. Alternatively, users

who will need to frequently transmit their images may choose to store their data in a large single file like

HDF5. OME-TIFF remains a safe option for those who rely on proprietary software for image viewing and

analysis, especially in digital pathology and other whole slide image applications, as many have been

extended to both read and write this open standard. Each choice comes with benefits and costs, and

individual scientists, institutions, global collaborations and public data resources need the flexibility to decide

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 13, 2021. ; https://doi.org/10.1101/2021.03.31.437929doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.31.437929
http://creativecommons.org/licenses/by/4.0/


Moore et al, p. 9

which approach is appropriate. Regardless, we foresee a fundamental change in work patterns where data

generated in advanced bioimaging applications is converted into a format that is optimised for downstream

processing, analysis, visualization and sharing, and all subsequent data access occurs via open data formats,

without the need for repeated, on-the-fly translation. When conversion of primary imaging data is an option,

we would encourage the community to choose from the most appropriate of the formats supported by OME.

Ultimately, we hope to see digital imaging systems producing open, transparent, in others words FAIR, data

without the need for further conversion. Until that time, we are committed to providing the data conversion

needs of the community. Following the same pattern we have used with bioformats2raw and raw2ometiff,

we propose to meet this challenge via a set of migration tools allowing efficient data transformations

between all data formats contained in this suite of interoperable formats. Additionally, as the specification

evolves based on community feedback, the same migration tools will allow upgrading the scientific data

generated by the bioimaging community to prevent the need for long-term maintenance of older data.

Upcoming specifications include geometric descriptions of regions of interest, meshes, transformations for

correlative microscopy, and others.

To provide the best chance of wide adoption and engagement, we are developing the formats in the open,

with frequent public announcements of progress and releases of reference software and examples

(https://forum.image.sc/tag/ome-ngff) and regular community meetings where we present work, source

feedback, and encourage community members, including vendors, to participate in the specification and

implementation. The community process is being developed and we welcome contributions from all

interested parties on https://github.com/ome/ngff.
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