Abstract
The role of cell-cell communication in cell fate decision-making has not been well-characterized through a dynamical systems perspective. To do so, here we develop multiscale models that couple cell-cell communication with cell-internal gene regulatory network dynamics. This allows us to study the influence of external signaling on cell fate decision-making at the resolution of single cells. We study the granulocyte-monocyte vs. megakaryocyte-erythrocyte fate decision, dictated by the GATA1-PU.1 network, as an exemplary bistable cell fate system, modeling the cell-internal dynamic with ordinary differential equations and the cell-cell communication via a Poisson process. We show that, for a wide range of cell communication topologies, subtle changes in signaling can lead to dramatic changes in cell fate. We find that cell-cell coupling can explain how populations of heterogeneous cell types can arise. Analysis of intrinsic and extrinsic cell-cell communication noise demonstrates that noise alone can alter the cell fate decision-making boundaries. These results illustrate how external signals alter transcriptional dynamics, and provide insight into hematopoietic cell fate decision-making.
Competing Interest Statement
The authors have declared no competing interest.