








A single-cell resolved cell-cell communication model explains lineage commitment in
hematopoiesis
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Figure 5: (A) Schematic depicting how extrinsic noise (ηe) and intrinsic noise (ηp) are modeled through
their effects on the signaling strength A. (B) Probability distributions of cell fate commitment (to G
high state) for each cell in a ten cell chain, with λ = 18: no added noise (solid lines); and with added
noise (dashed lines). The colors darken as the position of the cell along the chain increases. The type of
noise modeled is intrinsic, with Var(ηp) = σ2

p = 0.1. (C) As for (B), but for extrinsic noise modeled, with
Var(ηe) = σ2

e = 0.04. (D) As for (B), but for extrinsic noise modeled, with Var(ηe) = σ2
e = 0.1.

λ = 30 and A0 = 1.0, 1.002, and 1.004. We see that the distribution of cells converging to each state
changes with the value of A0. Further analysis of distributions with different values of λ can be found in
Fig. S7.

In this section we have identified an explicit mechanism by which cell-cell communication can break
the symmetry of a homogeneous population of progenitor cells, and give rise to stable, heterogeneous
populations of lineage-committed cells. The proportion of cells committed to each lineage depends
on the external environment, A0, and the strength of cell-cell coupling due to signaling, λ. Moreover,
these results show that fluctuations in the external environment can lead to shifts in the relative
abundances of committed cell types. These results corroborate previous work that studied the generation
of heterogeneous cell populations through stem cell differentiation [28], and showed that external signals
(e.g. through cell-cell communication) are required both to maintain heterogeneous cell populations
and to shift relative cell types abundances in response to environmental perturbations.
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Intrinsic and extrinsic noise alter cell fate decision-making boundaries

We have until now assumed that signals are passed between cells with perfect fidelity. In fact, multiple
sources of noise contribute to imperfect communication between cells, and the modeling framework here
lends itself well to the investigation of the effects of intrinsic vs. extrinsic noise [29, 30]. We investigated
the impact of two different sources of noise in cell-cell communication: due to cell-extrinsic factors, i.e.
noise with respect to the extracellular environment (Eq. 6); or due to cell-intrinsic factors, i.e. noise due
to signal transduction downstream of a paracrine signaling factor (Eq. 7). These sources of noise are
represented in the model by varying either the baseline level of cell-cell communication (extrinsic noise)
or the cell signaling pulse level, i.e. the intrinsic signal transduction noise (Fig. 5A).

For simple topologies, as expected, the observed variability in cell fate outcomes increases as the
variance of either the extrinsic or the intrinsic noise increases (Fig. S8). This results also holds for larger
cell-cell communication topologies, e.g. a ten-cell loop, for both intrinsic (ηp) and extrinsic (ηe) noise
(Fig. 5B-D): both reduce the sensitivity of the cell fate decision-making boundary. We also observe
a striking and unexpected result: not only are the probability distributions flattened by either noise
source, but they are shifted to the left, i.e. intrinsic and extrinsic noise directly affect the decision-making
boundary (by shifting its mean), as well as the sensitivity of cell-fate decision-making.

Through comparison of the relative effects of the intrinsic signal transduction noise (Fig. 5B) and the
extrinsic extracellular noise (Fig. 5C-D), we see that the impact on the cell fate decision-making boundary
is much larger for extrinsic rather than intrinsic noise contributions. Indeed, when ηe ∼ N (0, 0.1), (Fig.
5D), the probability curves for cells 2-10 in the chain flatten to the extent that the sensitivity with
which to distinguish cell fate decision-making by cell position along the chain is lost entirely. Moreover,
the probability curves for cells ≥ 2 along the chain intersect with the point at which cell one (which
is deterministic) switches fates from the low to the high state (black line in Fig. 5D), thus forcing all
other cells also into the high state with probability = 1. This coordination of cell fates is influenced by
cell-cell coupling (here we use λ = 18 < λ∗). Recall that for λ values less than the critical value λ∗, we
observed total fate coordination between cells in loop topologies. The dominant impact of extrinsic
over intrinsic noise here is in agreement with previous works, including a study that quantified the
contributions of extrinsic and intrinsic noise in the MAPK signaling pathway, and showed that extrinsic
noise is the dominant driver of cell-to-cell variability [31]. It has also been shown that explicit extrinsic
noise contributions are necessary to explain mRNA abundance distributions [32].

In summary, the effects of intrinsic and extrinsic noise on cell-cell communication topologies are
to increase the variance of the resulting cell fate distributions and (surprisingly) to alter the mean
values of these probability distributions. In other words, the presence of noise alone can force cells to
change lineages. The observed increases in the variability of cell fate decision-making are maintained
for large cell-cell communication topologies. A similar result was described in a study of cell fate
decision-making during early mouse gastrulation [33]: transcriptional noise is greatest at the point
of cell fate decision-making (when epiblasts begin to differentiate). Our results reiterate the same
point made by Mohammed et al., that gene expression noise is beneficial during windows of cell fate
decision-making as it leads to an increased possible repertoire of cell fates. Our findings go even further
in that they suggest a rationale: that the increase in transcriptional noise results from noisy extracellular
factors influencing cell-cell signaling during differentiation.

Discussion

Despite many theoretical and experimental advances in our understanding of gene regulatory network
(GRN) dynamics, our ability to use GRNmodels to explain cell fate decision-making during differentiation
of multipotent progenitor cells remains limited. Here, with application to a well-studied cell fate
control GRN – the GATA1-PU.1 mutual inhibition loop [7–11] – we introduced a new model that
can simultaneously describe GRN dynamics and single cell-resolved cell-cell communication. Notably,
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although cell-cell communication is often assumed to be a critical component of cell differentiation, it is
rarely incorporated into models. The previous studies that have characterized cell-cell communication in
models did not capture the detailed complexity of these dynamics, by making simplifying assumptions
either regarding the GRN dynamics [20] or regarding the mechanisms by which cells signal [18, 19].
We found that the model introduced here is able to describe noisy cell fate decision-making at single-cell
resolution and reconcile several outstanding controversies in the field.

Over a large domain of possible cell-cell communication topologies, we found that cell-cell communi-
cation alters cell fate decision-making boundaries, which become probabilistic in response to the levels of
external signaling factors. This helps to reconcile a controversy in the literature: on whether or not tran-
scriptional stochasticity is sufficient to initiate the granulocyte-monocyte vs. megakaryocyte-erythrocyte
cell fate decision. Previous models supported the hypothesis, however Hoppe et al. presented compelling
evidence to contradict it [12]. Our results agree with Hoppe et al., in that we show that eventual cell
fate cannot be inferred from the initial gene expression state alone—rather, it is probabilistic. Moreover,
the results presented here offer a plausible explanation of the missing element required to initiate
fate decision-making: cell-cell communication that affects GRN dynamics. Through analysis of cell-cell
coupling effects, we found that stable distributions of heterogeneous cell types are determined by the
external environment. This offers insight into another open question: that of how population-level cell
fate behaviors emerge during cell differentiation [28]. Finally, we show how (primarily extrinsic) noise
increases the variability of cell fate decision-making, in line with previous analyses of transcriptional
noise during development [33].

In this work we sought to constrain model complexity for parsimony and interpretability, yet relaxing
these constraints may lead to many further interesting observations. We assumed throughout that cells
were initially homogeneous, i.e. they shared the same initial conditions and internal GRN networks.
Heterogeneous initial conditions and heterogeneous cell fate decision-making (i.e. different GRNs in
different cells) ought to be explored, for example by considering interactions between two progenitor
cell types, each controlled by their own GRN. There is also much room for exploration of larger and more
varied cell signaling network topologies. Here, future work should be guided by data, as it becomes
harder to justify large signaling networks chosen a priori, i.e. spatial transcriptomics could be used to
infer cellular networks (e.g. of cells of similar type) that could then be input to our model framework.
There could include the incorporation of more dissensus as well as consensus signal types. There are
also a variety of well-informed modifications that could be made to the signaling model definition. For
example, currently signals only interact with GATA1; it would be interesting in future work to explore
signals that also interact directly with PU.1 expression by modifying the model parameter B.

A central challenge for the model introduced here is that of fitting to data. Ideally this would
require both spatially and temporally resolved single-cell transcriptomic data—at the limits of current
technologies. Thus in the current work we rely on comparison of qualitative features arising from the
model with previous experimental studies. Further, for Bayesian parameter inference, due to its hybrid
deterministic-stochastic formulation resulting in time-dependent signaling parameters, we doubt that it
will be possible to derive an appropriate likelihood function. Thus, approximate Bayesian computation
will likely be most appropriate. Yet, even here, simulation times may be prohibitive or require further
approximations to be made.

Given the stochastic nature of gene expression, a further model development would be to use
stochastic rather than deterministic dynamics to model the internal GRN, through discrete stochastic
simulation or stochastic differential equations (SDEs). We chose to model the GRN deterministically
here again for simplicity, and so that the bifurcation behavior of the model was fully tractable. This
also allowed us to better account for the effects of cell signaling variability and noise, without the need
to deal with confounding sources. Nonetheless, noise arising from transcription and translation plays
a vital role in single cell dynamics. Subsequent studies that seek to faithfully reproduce cell-internal
dynamics in the presence of cell-cell communication ought to consider GRN stochasticity, e.g. via use of
SDEs. This would be straightforward to accomplish within our model framework, without the need to
change the structure of the signaling model used for cell-cell communication. Such modifications would
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however complicate the analysis of the model bifurcations.
Overall, this model has helped to explain numerous cell fate decision-making phenomena by intro-

duction of a single-cell resolved cell-cell communication model coupled to GRN dynamics. Even with
a tightly constrained model, we have shown that modifications to the distribution of cell fates due to
cell-cell communication can be broad and varied. More generally, this highlights the importance of
considering multiscale effects in light of models of cell dynamics. We anticipate that the application of
similar methods to the study of different gene regulatory networks will lead to further advances in our
understanding of specific cell fate decision-making points, as well general principles that describe the
control of cell differentiation.
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