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T he role of cell-cell communication in cell fate decision-making has not been well-characterized
through a dynamical systems perspective. To do so, here we develop multiscale models that
couple cell-cell communication with cell-internal gene regulatory network dynamics. This allows

us to study the influence of external signaling on cell fate decision-making at the resolution of single
cells. We study the granulocyte-monocyte vs. megakaryocyte-erythrocyte fate decision, dictated by the
GATA1-PU.1 network, as an exemplary bistable cell fate system, modeling the cell-internal dynamic with
ordinary differential equations and the cell-cell communication via a Poisson process. We show that, for
a wide range of cell communication topologies, subtle changes in signaling can lead to dramatic changes
in cell fate. We find that cell-cell coupling can explain how populations of heterogeneous cell types can
arise. Analysis of intrinsic and extrinsic cell-cell communication noise demonstrates that noise alone
can alter the cell fate decision-making boundaries. These results illustrate how external signals alter
transcriptional dynamics, and provide insight into hematopoietic cell fate decision-making.

Introduction

The production of mature cell types from stem cells and progenitors is essential for development and
organ homeostasis. Nevertheless, in few cases are we able to fully specify the conditions necessary to
drive stem cell differentiation towards a particular cell lineage. Stem cell differentiation is controlled by
cell-internal and external signals that, in turn, control the transcriptional state of the cell and specify
its eventual fate [1–3]. These changes in transcriptional state are often irreversible and involve binary
choices. Thus, multipotent cells, through successive binary lineage specification choices, eventually
become committed to a specific lineage and cell fate. Significant unanswered questions remain regarding
the cell fate decisions that dictate lineage specification of stem/progenitor cells: how large is the role of
extracellular signaling in regulating cell differentiation? What mechanisms allow cells from initially
homogeneous or clonal populations to converge to different lineages? How does one population of
progenitor cells maintain stable heterogeneous subpopulations of committed cell types?

During lineage specification, changes in gene expression are controlled by gene regulatory networks
(GRNs), consisting of genes and their protein products (transcription factors), which are able to regulate
the expression of various genes, including other transcription factors, creating feedback loops. Codified
through mathematical models, GRNs can be studied in light of their steady states, where each steady
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state can represent a committed cell fate. Certain GRN topologies permit bistability, that is, more than
one steady state can be reached for a single set of biological conditions [4]: such topologies are frequently
observed in networks that control lineage decisions [5]. The GRN topology that dictates a particular
lineage decision is generally conserved across cells, thereby providing insight into the intracellular
dynamics that occur during cell differentiation. Crucially, the GRNs that instigate or reinforce lineage
decisions are not only controlled by cell-intrinsic networks, but also by cell-extrinsic signals.

The GRN topology considered in this work consists of two mutually repressive genes; a topology
frequently observed among gene networks mediating lineage decisions [6]. One such decision point
occurs during hematopoiesis: myeloid progenitor cells make a binary choice between commitment to
the megakaryocyte-erythroid (ME) lineage or the granulocyte-monocyte (GM) lineage. GATA1 and PU.1
(SPI1) mutually inhibit one another; GATA1 is expressed in the ME lineage and PU.1 is expressed in the
GM lineage. This mutually repressive GRN has been extensively studied and characterized in models,
mostly consisting of ordinary differential equations that permit bistability, thus enabling investigation
into the dynamics of this myeloid lineage decision [7–11]

Given the GATA1-PU.1 mutual inhibitory loop that leads to bistability, changing the initial conditions
(gene expression levels) within a bistable region is sufficient to change the cell fate. It has thus been
proposed that random fluctuations of GATA1 and PU.1 levels are primarily responsible for determining
cell fate in the bipotent progenitor population that has dual ME and GM lineage potential [10]. More
recently this notion was challenged by a study that used a double reporter mouse (PU.1eGFPGata1mCherry)
to show that that random fluctuations of PU.1 and GATA1 are insufficient to initiate the cell fate decision
between ME and GM lineages [12]. Hoppe et al. also provide strong evidence that ME v. GM lineage
specification cannot be determined solely from initial ratios of PU.1 to GATA1 expression.

As noted by Hoppe et al. [12], the role of extracellular signaling could resolve this controversy.
Dynamic extracellular signaling however has been understudied in investigations into gene regulatory
networks and their stability. Extracellular signaling through paracrine factors enables populations of
cells to share information and coordinate behaviors over short distances, and is implicated in a range of
cell fate behaviors from developmental branching [13, 14] to patterning [15] and migration [16]. We
begin this study with a simple question: how does short distance intercellular signaling impact myeloid
lineage specification controlled by the GATA1-PU.1 gene regulatory network?

Several studies have characterized the impact on cell fate of cell-cell communication through extracel-
lular signals. One approach is to model the internal gene dynamics with differential equations and model
cell-cell communication through allowing for molecular diffusion of proteins between neighboring cells
[17–19]. These methods however must neglect anisotropic effects, and assume that signaling between
cells occurs on the same timescale as intracellular dynamics: these processes can occur on vastly different
timescales. Other approaches have relaxed this assumption, permitting different timescales by modeling
the response time of a cell to a signal received as a random variable [20]. This approach however omits
any detail of the intracellular dynamics, which are often crucial to the response; GRNs are the enforcing
mechanisms of the phenotypic switches. Therefore, in order to model the behaviors of a population
of communicating cells, the gap between intracellular dynamics and extracellular signaling must be
bridged. A model of cell fate decision-making is needed that permits cell-cell communication while
allowing for both description of the cell-internal dynamics and of the extracellular signaling dynamics
without making diffusion-like approximations.

We present here a multiscale model that bridges this gap. We will assume deterministic dynamics
within each cell and thus model cell-internal GRNs with ordinary differential equations (ODEs). We
assume that signals sent between cells can be described by a Poisson process. Signals received by cells
can then alter the internal GRN dynamics by parameter modifications. We test this model in a large
range of different intercellular signaling topologies. We find that the addition of cell-cell communication
to GRN dynamics leads to model outcomes (cell fate distributions) becoming probabilistic, with cell fate
choice probabilities that depend on the cell’s position in a particular signaling topology. We discover that
the model can intuitively characterize cell-cell coupling, changes to which impact the cell fate decisions
made, which can lead to mixtures of heterogeneous cell types within a population. Finally, we study
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how noise propagates across various signaling topologies, and show that although both intrinsic and
extrinsic noise alter the cell fate decision-making boundaries, extrinsic noise is the dominant driver of
cell fate variability.

Methods

A multiscale model of cell-cell communication between single cells

To investigate how external signaling impacts intracellular dynamics during cell fate decisions, we first
must select an internal GRN topology to model. We choose to model a mutual inhibitory GRN: such net-
work topologies arise frequently in cell fate decision making and developmental biology [21, 22]. Within
certain parameter regions, such models give rise to two stable steady states and bistability (Fig. 1A). For
example, it has been observed that the GRN determining the bifurcation of erythroid/megakaryocyte
lineages from granulocyte/monocyte lineages contains a core mutual inhibitory loop topology con-
sisting of mutual antagonism of GATA1 (G) and PU.1 (P ). For this genetic switch, high expression
of G corresponds to commitment to the erythroid/megakaryocyte lineage and high expression of P
corresponds to commitment to the granulocyte/monocyte lineage. This myeloid progenitor cell lineage
decision has been rigorously studied, and there exist robust models of the intracellular GRN dynamics
[7, 8, 10, 11, 23, 24]. Here we implement the ODE model defined by Chickarmane et al., given by Eqs.
1-3 [7]. These ODEs give rise to two stable steady states for a region of parameter space with respect to
the parameters A,B and C, where A,B, and C are parameters summarizing environmental signals (Fig.
1B). The parameters through which the extracellular environment is summarized will be modified below
to implement a multiscale model of cell-cell communication. The parameter values used throughout this
work can be found in Table S1.

dG

dt
= −β1G+

α1A+ α2G

1 + γ1A+ γ2G+ γ3GP
(1)

dP

dt
= −β2P +

α3B + α4P

1 + γ4B + γ5P + γ6GP + γ7GX
(2)

dX

dt
= −β3X +

α5G

1 + γ8G+ γ9C
(3)

To appropriately incorporate intercellular signaling into the model, we modify the cell-internal ODEs
in such a way that reflects the signals received without unrealistically changing the internal dynamics
(e.g. a loss of bistability). For simplicity, we choose a single parameter A to summarize the effects of
external signaling. We study both signals that recruit nearby cells to commit to the same lineage and
the opposite lineage of the sender. For the first case, we consider two cells, cell 1 and cell 2, where
cell 1 signals to cell 2. Let G1(t) and P1(t) denote the concentrations of G and P in cell 1 at time t
respectively and let A2(t) be the value of the parameter A in cell 2 at time t. Since cell 1 signals to cell 2
to be of the same lineage, then A2(t) should increase if the ratio G1(t) : P1(t) indicates that cell 1 is in,
or is moving toward, the ME state where G is highly expressed. Conversely, A2(t) should decrease if
the ratio G1(t) : P1(t) indicates that cell 1 is in, or is moving toward, the GM state where P is highly
expressed. Based on these assumptions, we constructed a communication model: we treat signaling as a
Poisson process, where the wait time between signals being sent by a cell follows an exponential random
variable with mean µ. After this wait time, at time ts, a signal is sent and we change the value of A2 by:

A2(t) =

{
G1(ts)
λ+P1(ts)

A2(ts), for t ∈ [ts, ts + τ) and λ > 0

A0, otherwise
(4)
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After a delay τ , A2 returns to it’s original value, A0 (Fig. 1C). Returning to the same value A0 between
signals ensures that attractor states (Fig. 1B) do not change. In Fig. 1D is a schematic of this signaling
model. Fig. S1 gives a sample simulation of a chain of four cells and the values of A2, A3, and A4 plotted
over time. In the case of signals that promote nearby cells to commit to the opposite lineage, we can
follow the same principles to define a signal:

A2(t) =

{
P1(ts)

κ+G1(ts)
A2(ts), for t ∈ [ts, ts + τ) and κ > 0

A0, otherwise
(5)

These definitions of signaling also allow for multiple cells to signal a single cell at similar times while
still having A2 well defined.

The model developed here shares similarities with models specified by piecewise-deterministic
Markov processes (PDMPs), first introduced by Davis [25]. Such models are comprised of continuous
dynamics and a discrete Markov process which can alter the continuous dynamics at discrete time
points. PDMPs have previously been applied to biological systems for the study of gene expression and
genetic networks [26, 27]. In the case of two cells sharing one directed signal between them, our model
resembles a PDMP with the single exception that in our case the discrete process is not Markovian.

Model specification and choice of parameters

To elucidate and justify how we arrived upon the choice of signaling model, we briefly discuss some
alternatives. Examples of alternative reasonable signaling model choices include: signals that change
more than one ODE parameter, additive rather than multiplicative signaling, or signals that permanently
change ODE parameters. We choose to modify a single parameter for interpretability and to constrain
the model space: the ODE system exhibits bifurcations with respect to many of its parameters, and we
do not seek to explore bifurcations of codimension 2 or greater here. Modeling with additive signals
brings complications, such as the possibility of obtaining negative values of A. Also, if a large number
of committed cells are communicating with a single cell, the value of |A| may be unrealistically large
and dominate the ODE. This problem is dealt with in the signaling model we present here through the
parameter λ. Lastly, permitting signals to cause permanent changes to ODE parameters (rather than
over time intervals) can result in the divergence of A. Thus, we have selected a signaling model that can
capture how changes in the extracellular environment can alter cell internal GRN dynamics while still
preserving the overall behaviors (i.e. the attractor states) of the dynamical system.

In this work, we will assume that cells are homogeneous, i.e. all cells share the initial conditions
(G,P,X) = (20, 1, 20). The internal GRNs are identical with the same parameter values, including the
same initial value of A, denoted A0. We set the signaling period to be τ = 5, and the mean of the
signaling wait time distribution to be µ = 50. Changing the values of µ and τ does not seem to cause
qualitative changes as long as τ is sufficiently large relative to µ. For more insight on the relationship
between the wait time distribution and τ, see Fig. S2. Unless otherwise specified, we set λ = κ = 1.
We initially chose λ = κ = 1 to avoid unrealistic behaviors when G or P ≈ 0. We will provide an in
depth discussion on the roles of these parameters in the next section. In any topology schematic, regular
arrows correspond to signaling with respect to Eq. 4 and inhibition arrows correspond to signaling with
respect to Eq. 5.

As a result of signaling, cell fate decisions became probabilistic rather than deterministic. Then, for
each cell in a signaling topology, we can examine the probability distribution of the cell converging to
a certain lineage. To do so, for each signaling topology tested, we selected a range of values of A0 to
simulate. The step size between the A0 values was scaled between each topology depending on the
range of the probability distribution. For each value of A0, we simulated N trajectories, counting the
number of times each cell converged to both fates. From these counts, we estimated the probability that
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Figure 1: (A) Illustration of cells in a two-attractor state model (such as the GATA1-PU.1 inhibitory
loop). (B) Bifurcation diagram for the system of ODEs described by Eqs. 1-3, with respect to the external
signaling parameter A. (C) Cell-cell communication via signals sent between cells (e.g. from cell 1 to
cell 2) is modeled by a Poisson process; with wait times sampled from an exponential distribution and
fixed signaling ‘pulses’ of length τ , where the value of A2 is set by Eqs. 4 or 5. (D) Full model schematic,
depicting the cell-internal gene regulatory network of {G,P,X} modeled by ODEs and the external signal
A2 modeled by the Poisson process in (C).
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each cell converged to the G high state and plotted:

P (G High) ≈ # of trajectories converging to G high state
N

A sample of the simulated data points can be found in Fig. S3. Unless stated otherwise, probabilities are
estimated by running N = 1, 000 simulations.

While λ = 1 was an intuitive first choice to avoid divergence in signaling parameters, it relies on the
assumption that a cell converging to the P high state implies that P is more highly expressed than G+1
and vice versa. This turns out to not necessarily be true. Rather, for a given value of A0, being in the P
high state means that P is more highly expressed relative to the other stable steady state value of P .
Recalling Fig. 1B, we see that for some values of A0, for example A0 = 0.8, G is always more highly
expressed than P regardless of which stable steady state a cell converges to. Looking at the bifurcation
diagram, we see that in the P high state, the maximum steady state value of G is approximately 16.97
and the minimum value of P is approximately 1.475. Similarly, in the G high state, the maximum steady
state value of P is approximately 0.3529 and the minimum value of G is approximately 40.35. From
here, we wanted to select values of λ which satisfy the following:

G{max P High State}

λ+ Pmin P High State
< 1,

Gmin G High State

λ+ Pmax G High State
> 1, λ > 0.

These inequalities are satisfied for λ ∈ [15.495, 39.997]. We will explore how selecting values of λ in
or near this range changes the behaviors of both individual cells and populations of cells.

Intrinsic and extrinsic cell-cell communication noise

In this work, we focus on how intercellular signaling alters cell decision making. Therefore, we only
consider noise with respect to signaling (not the internal GRN dynamics). Noise in the signal can arise
due to the noisy extracellular environment (extrinsic noise) or can arise during the signal transduction
within a cell (intrinsic noise) [19, 20]. Here we define models for both sources of noise.

For extrinsic noise, i.e. noise with respect to the extracellular environment, let ηe be a random
variable such that ηe ∼ N (0, σ2

e), where σ2
e > 0. For Cell k in a given topology, at the start of each new

wait period, we sample a value of ηe and update Ak(t) by

Ak(t) = max(0, A0 + ηe) (6)

We truncate Ak(t) at zero to avoid negative values. However, we select values of σ2
e small enough that

the truncation is rarely necessary in simulation. Note that noise in Ak(t) results in noise during the
signaling period as well by Eqs. (4) and (5).

For intrinsic noise, i.e. noise with respect to signal transduction, let ηp be a random variable such
that ηp ∼ N (0, σ2

p), where σ2
p > 0. For Cell k in a given topology, at the start of each new pulse period,

we sample a new value of η and update Ak(t).

Ak(ts) = max
(
0,

G1(ts)

λ+ P1(ts)
A2(ts) + ηp

)
(7)

When the pulse period τ is significantly smaller than the mean wait time µ, incorporating noise using Eq.
(7) has little impact on the cell fate dynamics. Thus, in the section where we study noise, we decrease
the mean wait time µ in order to distinguish the effects of both noise types.
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Figure 2: Sample trajectories of the concentration of species G over time for each cell in a loop of 20
cells with λ = 28. Colors used only to distinguish the trajectories. (A) A0 = 0.995. (B) A0 = 0.9955.
(C-D) A0 = 1.0.

Results

Cell-cell communication over a diverse range of signaling topologies leads to
divergent cell fates

We begin by testing the base model behavior for different signaling topologies. We sought to ensure
that core assumptions were upheld, namely that all cells eventually reach a steady state, even in the
presence of noisy signaling, and that cells exhibit bistability with respect to A0 (the initial value of A).
These behaviors were preserved in all signaling topologies tested. Moreover, we found that the addition
of cell-cell signaling to a previously deterministic model results in probabilistic cell fate choices.

In Fig. 2, simulated trajectories for a 20-cell loop topology are shown. We plot only the concentration
of GATA1 (G) as a proxy for fate choice, since its state is sufficient to determine the steady state of the
full system (if G is high at steady state, P is low, and vice versa); as illustrated by the trajectories of both
G and P (Fig. S4). These trajectories illustrate the variety of cell fate distributions that are observed
in the presence of cell-cell communication (fate convergence to either the high or low state, and fate
divergence). In Fig. 2C-D, the values of A0 are equal, demonstrating that A0 does not determine the
proportion of cells in each state. Rather, for each value of A0, the probability of each cell converging to
a certain state can be computed.

Investigating how signals propagate down a chain of cells, two striking observations are made. First,
each additional signal shifts the P (G) curve (the probability of reaching the high state) to the left,
although these shifts are successively smaller down the chain such that eventually the distributions
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converge; second, a “ sharpening” of the P (G) distributions occurs whereby the region of uncertain fate
decreases for cells further down a chain (Fig. 3A). The latter of which implies that accumulated signals
by cell-cell communication reinforce cell fate decision-making, leading to smaller regions of uncertainty.

In loops, all cells converge to the same fate for each simulated trajectory, therefore every cell in the
model has the same probability distribution. (Below we will see that the coordination of fates in all cells
within a loop signaling topology can be broken by changing the cell coupling strength.) However, the
probability distribution for a cell loop depends on the number of cells in the loop, and we see that for
loops of size n, both of the behaviors observed above are recapitulated (Fig. 3B). Moreover, the limiting
distributions for the cell chain and the cell loop are the same, highlighting an important underlying
symmetry.

If we consider a dissensus signal (the opposite of a consensus signal), the fate probability distribution
of cell 2 shifts in the opposite direction than previously (Fig. 3C), relative to the value of A0 at which
cell 1 switches lineages. When an inhibition signal is incorporated into a loop (Fig. 3D), the two cells in
the loop no longer coordinate lineages for every trajectory as they did when all signals were regular.
Notably, here there exists a large range of A0 values where cell 1 converges to the G high state and cell
2 converges to the G low state with probability one. Thus, the inhibition signals significantly changes
the resulting behaviors in both chains and loops of cells.

For signaling topologies consisting of three cells, similar patterns due to cell-cell communication
emerge. In a feed forward signaling motif (Fig. 3E), multiple promoting signals reinforce the lineage
choice of cell 3, whereby it thus chooses the G high state at smaller values of A0 than it would in a cell
chain. Other three-cell signaling topologies also display interesting behaviors (Fig. 3F-G and Fig. S5).
For an inhibitory feed forward motif, we observe a multiplicative effect between the inhibitory signal
from cell 1 and the activating signal received indirectly from cell 1 via cell 2 (Fig. 3F). The addition of the
inhibition signal results in the distribution of cell 3 being shifted to the right relative to a corresponding
cell in a chain. For a double inhibitory topology (Fig. 3G), we find that for a region of A0 the cell fates
can diverge (two cells in the high state; the third in the low state) with nonzero probability.

While these results pertain to small and somewhat idealized signaling networks, they point to a
general conclusion. In all of the above experiments, the addition of cell-cell signaling transforms a
population of homogeneous, independent, and deterministic cells into one comprised of heterogeneous
cells that choose fates non-deterministically. This model shows that, given cells with identical initial
conditions (i.e. transcriptional states), external signaling changes outcomes at the population level.
This is corroborated by a major finding of Hoppe et al. [12]: that GMP/MEP cell fate decisions are
not predictable from initial transcription factor ratios alone. Our model not only supports this result,
but offers an explanation for the missing cell fate determinant: cell-cell communication via external
signaling, which acts to reduce the dependence of cell fate choice on cell autonomous conditions.

Varying the strength of cell-cell coupling results in different ratios of stable
subpopulations of heterogeneous cell types

Through deeper investigation of cell-cell communication in the model framework introduced above,
we found that divergence of cell fates can occur under the control of the model parameter λ. We thus
describe λ as a “cell-cell decoupling” mechanism. Analysis of cell-cell coupling and decoupling led to
two significant findings: cell-cell communication can explain how a population of cells maintains stable
subpopulations of heterogeneous cell types; and the distribution of cells that converge to each fate
depends both on cell-cell coupling and on the external environment.

First, we assessed how different values of λ change the simplest signaling topology: a chain of two
cells (Fig. 4A). As λ increases, the probability distribution of the second cell shifts to the right. Note
that λ = 22 is close to a critical value of λ, resulting in near-deterministic cell fate decision-making. The
value of A0 where the curve for λ = 22 switches from one lineage to another is extremely close to the
value at which a deterministic cell with the same initial conditions switches. Overall, λ determines the
range over which the probability curve for the second cell is nonzero.

Page 8 of 16

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 2, 2021. ; https://doi.org/10.1101/2021.03.31.437948doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.31.437948
http://creativecommons.org/licenses/by-nc/4.0/


A single-cell resolved cell-cell communication model explains lineage commitment in
hematopoiesis

1 2 n

1 2

1 2

1

2

3

1

2

3

1

2

3

1 2 n

2

5

10

Distribution of n 
cell in a chain or 
loop topology of 
n cells

th

Deterministic cell

Cell 1  Cell 2 Cell 3

Cells 1 and 2 in the G high state 
and Cell 3 in the G low State

A

B

C

D

E

F

G

1

Cell 2 in a chain
Cell 3 in a chain

Cells 1 and 3 in the G high state 
and Cell 2 in the G low State

Figure 3: Schematic of different cell signaling topologies (left) and the corresponding probability
distributions: the probability that each cell in the network will commit to the G high steady state for
different values of A0. (A) Chains of cells of length n. Each probability distribution corresponds to one
cell in the chain. (B) Loops of cells of size n. In a loop of fixed size, each cell from 2 to n has the same
probability distribution; thus one curve is plotted for each loop of n cells. (C) A chain of two cells with
an dissensus signal: the distribution of cell 2 fates is shifted to the right, i.e. it commits at higher values,
compared with consensus signal in (A) where the distribution of cell 2 is shifted to the left. (D) A loop
of two cells with one consensus and one dissensus signal; dashed line denotes the distribution of a single
cell that receives no signals (deterministic). Note that we cannot observe the fate where cell 1 is in the
G low state and cell 2 is in the G high state. (E) Three-cell feed forward motif; cells 3 (dashed orange)
and 4 (dashed red) from a chain of cells marked for comparison. We see that receiving multiple signals
results in a non-additive synergistic effect. (F) Feed forward motif with a dissensus signal; cell 3 (dashed
orange) from a chain of cells marked for comparison. (G) Loop of three cells with two dissensus signals.
Dashed lines denote the probabilities that: i) cells 1 & 2 are in G high state while cell 3 is in G low state
(dark green); or ii) cells 1 and 3 are in G high state while cell 2 is in the G low state (light green).

We next assessed how different values of λ changed coordination of cell fate decisions between
lineages. Previously, we observed that for any trajectory of a loop topology of any size, where λ = 1, all
cells converged to the same state, regardless of the value of A0. Further, although all cells in the topology
converge to the same lineage, the probability that they all converge to a given lineage depended on
A0. To see whether or not this behavior was conserved for other values of λ, we tested a two cell loop
topology with a range of λ values. We observed that there exists a value λ∗ ≈ 22 such that for λ < λ∗,
all the cells coordinate their lineage just as we had seen before. Interestingly, for λ > λ∗, the two cells
do not always coordinate their lineage decisions. For example, Fig. S6 gives sample trajectories showing
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Figure 4: (A) Probability distributions of cell fate commitment (to G high state) for cell 2 in a chain of
two cells for λ ∈ [16, 40]. (B) Probability distributions for a loop of two cells as a function of A0, with
λ = 38. Probability of cell fate commitment to G high state (black); probability that the two cells will
not commit to the same fate (gray), with the maximum of the distribution marked (red cross). (C) For
a loop of two cells, the maximum probability that the cells do not converge to the same lineage as λ
varies; red cross equivalent to (B) is marked for comparison. (D) Comparison of distributions for the
number of cells that commit to the G high state in a loop of 10 cells with λ = 30.

two cells in a loop converging to each combination of states. Fig. 4D shows the two cell loop results for
λ = 38, giving the probabilities that each cell converges to the G high state as well as the probabilities
that the cells are decoupled, converging to opposite lineages. For each λ, we recorded the maximum
value of the probability that the cells converge to different lineages. Fig. 4C shows how the maximum
probability of cells converging to different lineages increases with λ.

Next, we looked at larger loops of 10 cells. For each value of A0, we simulated 500 trajectories and
recorded how many cells were in the G high state verses the G low state. Fig. 4D shows results for
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Figure 5: (A) Schematic depicting how extrinsic noise (ηe) and intrinsic noise (ηp) are modeled through
their effects on the signaling strength A. (B) Probability distributions of cell fate commitment (to G
high state) for each cell in a ten cell chain, with λ = 18: no added noise (solid lines); and with added
noise (dashed lines). The colors darken as the position of the cell along the chain increases. The type of
noise modeled is intrinsic, with Var(ηp) = σ2

p = 0.1. (C) As for (B), but for extrinsic noise modeled, with
Var(ηe) = σ2

e = 0.04. (D) As for (B), but for extrinsic noise modeled, with Var(ηe) = σ2
e = 0.1.

λ = 30 and A0 = 1.0, 1.002, and 1.004. We see that the distribution of cells converging to each state
changes with the value of A0. Further analysis of distributions with different values of λ can be found in
Fig. S7.

In this section we have identified an explicit mechanism by which cell-cell communication can break
the symmetry of a homogeneous population of progenitor cells, and give rise to stable, heterogeneous
populations of lineage-committed cells. The proportion of cells committed to each lineage depends
on the external environment, A0, and the strength of cell-cell coupling due to signaling, λ. Moreover,
these results show that fluctuations in the external environment can lead to shifts in the relative
abundances of committed cell types. These results corroborate previous work that studied the generation
of heterogeneous cell populations through stem cell differentiation [28], and showed that external signals
(e.g. through cell-cell communication) are required both to maintain heterogeneous cell populations
and to shift relative cell types abundances in response to environmental perturbations.
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Intrinsic and extrinsic noise alter cell fate decision-making boundaries

We have until now assumed that signals are passed between cells with perfect fidelity. In fact, multiple
sources of noise contribute to imperfect communication between cells, and the modeling framework here
lends itself well to the investigation of the effects of intrinsic vs. extrinsic noise [29, 30]. We investigated
the impact of two different sources of noise in cell-cell communication: due to cell-extrinsic factors, i.e.
noise with respect to the extracellular environment (Eq. 6); or due to cell-intrinsic factors, i.e. noise due
to signal transduction downstream of a paracrine signaling factor (Eq. 7). These sources of noise are
represented in the model by varying either the baseline level of cell-cell communication (extrinsic noise)
or the cell signaling pulse level, i.e. the intrinsic signal transduction noise (Fig. 5A).

For simple topologies, as expected, the observed variability in cell fate outcomes increases as the
variance of either the extrinsic or the intrinsic noise increases (Fig. S8). This results also holds for larger
cell-cell communication topologies, e.g. a ten-cell loop, for both intrinsic (ηp) and extrinsic (ηe) noise
(Fig. 5B-D): both reduce the sensitivity of the cell fate decision-making boundary. We also observe
a striking and unexpected result: not only are the probability distributions flattened by either noise
source, but they are shifted to the left, i.e. intrinsic and extrinsic noise directly affect the decision-making
boundary (by shifting its mean), as well as the sensitivity of cell-fate decision-making.

Through comparison of the relative effects of the intrinsic signal transduction noise (Fig. 5B) and the
extrinsic extracellular noise (Fig. 5C-D), we see that the impact on the cell fate decision-making boundary
is much larger for extrinsic rather than intrinsic noise contributions. Indeed, when ηe ∼ N (0, 0.1), (Fig.
5D), the probability curves for cells 2-10 in the chain flatten to the extent that the sensitivity with
which to distinguish cell fate decision-making by cell position along the chain is lost entirely. Moreover,
the probability curves for cells ≥ 2 along the chain intersect with the point at which cell one (which
is deterministic) switches fates from the low to the high state (black line in Fig. 5D), thus forcing all
other cells also into the high state with probability = 1. This coordination of cell fates is influenced by
cell-cell coupling (here we use λ = 18 < λ∗). Recall that for λ values less than the critical value λ∗, we
observed total fate coordination between cells in loop topologies. The dominant impact of extrinsic
over intrinsic noise here is in agreement with previous works, including a study that quantified the
contributions of extrinsic and intrinsic noise in the MAPK signaling pathway, and showed that extrinsic
noise is the dominant driver of cell-to-cell variability [31]. It has also been shown that explicit extrinsic
noise contributions are necessary to explain mRNA abundance distributions [32].

In summary, the effects of intrinsic and extrinsic noise on cell-cell communication topologies are
to increase the variance of the resulting cell fate distributions and (surprisingly) to alter the mean
values of these probability distributions. In other words, the presence of noise alone can force cells to
change lineages. The observed increases in the variability of cell fate decision-making are maintained
for large cell-cell communication topologies. A similar result was described in a study of cell fate
decision-making during early mouse gastrulation [33]: transcriptional noise is greatest at the point
of cell fate decision-making (when epiblasts begin to differentiate). Our results reiterate the same
point made by Mohammed et al., that gene expression noise is beneficial during windows of cell fate
decision-making as it leads to an increased possible repertoire of cell fates. Our findings go even further
in that they suggest a rationale: that the increase in transcriptional noise results from noisy extracellular
factors influencing cell-cell signaling during differentiation.

Discussion

Despite many theoretical and experimental advances in our understanding of gene regulatory network
(GRN) dynamics, our ability to use GRNmodels to explain cell fate decision-making during differentiation
of multipotent progenitor cells remains limited. Here, with application to a well-studied cell fate
control GRN – the GATA1-PU.1 mutual inhibition loop [7–11] – we introduced a new model that
can simultaneously describe GRN dynamics and single cell-resolved cell-cell communication. Notably,
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although cell-cell communication is often assumed to be a critical component of cell differentiation, it is
rarely incorporated into models. The previous studies that have characterized cell-cell communication in
models did not capture the detailed complexity of these dynamics, by making simplifying assumptions
either regarding the GRN dynamics [20] or regarding the mechanisms by which cells signal [18, 19].
We found that the model introduced here is able to describe noisy cell fate decision-making at single-cell
resolution and reconcile several outstanding controversies in the field.

Over a large domain of possible cell-cell communication topologies, we found that cell-cell communi-
cation alters cell fate decision-making boundaries, which become probabilistic in response to the levels of
external signaling factors. This helps to reconcile a controversy in the literature: on whether or not tran-
scriptional stochasticity is sufficient to initiate the granulocyte-monocyte vs. megakaryocyte-erythrocyte
cell fate decision. Previous models supported the hypothesis, however Hoppe et al. presented compelling
evidence to contradict it [12]. Our results agree with Hoppe et al., in that we show that eventual cell
fate cannot be inferred from the initial gene expression state alone—rather, it is probabilistic. Moreover,
the results presented here offer a plausible explanation of the missing element required to initiate
fate decision-making: cell-cell communication that affects GRN dynamics. Through analysis of cell-cell
coupling effects, we found that stable distributions of heterogeneous cell types are determined by the
external environment. This offers insight into another open question: that of how population-level cell
fate behaviors emerge during cell differentiation [28]. Finally, we show how (primarily extrinsic) noise
increases the variability of cell fate decision-making, in line with previous analyses of transcriptional
noise during development [33].

In this work we sought to constrain model complexity for parsimony and interpretability, yet relaxing
these constraints may lead to many further interesting observations. We assumed throughout that cells
were initially homogeneous, i.e. they shared the same initial conditions and internal GRN networks.
Heterogeneous initial conditions and heterogeneous cell fate decision-making (i.e. different GRNs in
different cells) ought to be explored, for example by considering interactions between two progenitor
cell types, each controlled by their own GRN. There is also much room for exploration of larger and more
varied cell signaling network topologies. Here, future work should be guided by data, as it becomes
harder to justify large signaling networks chosen a priori, i.e. spatial transcriptomics could be used to
infer cellular networks (e.g. of cells of similar type) that could then be input to our model framework.
There could include the incorporation of more dissensus as well as consensus signal types. There are
also a variety of well-informed modifications that could be made to the signaling model definition. For
example, currently signals only interact with GATA1; it would be interesting in future work to explore
signals that also interact directly with PU.1 expression by modifying the model parameter B.

A central challenge for the model introduced here is that of fitting to data. Ideally this would
require both spatially and temporally resolved single-cell transcriptomic data—at the limits of current
technologies. Thus in the current work we rely on comparison of qualitative features arising from the
model with previous experimental studies. Further, for Bayesian parameter inference, due to its hybrid
deterministic-stochastic formulation resulting in time-dependent signaling parameters, we doubt that it
will be possible to derive an appropriate likelihood function. Thus, approximate Bayesian computation
will likely be most appropriate. Yet, even here, simulation times may be prohibitive or require further
approximations to be made.

Given the stochastic nature of gene expression, a further model development would be to use
stochastic rather than deterministic dynamics to model the internal GRN, through discrete stochastic
simulation or stochastic differential equations (SDEs). We chose to model the GRN deterministically
here again for simplicity, and so that the bifurcation behavior of the model was fully tractable. This
also allowed us to better account for the effects of cell signaling variability and noise, without the need
to deal with confounding sources. Nonetheless, noise arising from transcription and translation plays
a vital role in single cell dynamics. Subsequent studies that seek to faithfully reproduce cell-internal
dynamics in the presence of cell-cell communication ought to consider GRN stochasticity, e.g. via use of
SDEs. This would be straightforward to accomplish within our model framework, without the need to
change the structure of the signaling model used for cell-cell communication. Such modifications would
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however complicate the analysis of the model bifurcations.
Overall, this model has helped to explain numerous cell fate decision-making phenomena by intro-

duction of a single-cell resolved cell-cell communication model coupled to GRN dynamics. Even with
a tightly constrained model, we have shown that modifications to the distribution of cell fates due to
cell-cell communication can be broad and varied. More generally, this highlights the importance of
considering multiscale effects in light of models of cell dynamics. We anticipate that the application of
similar methods to the study of different gene regulatory networks will lead to further advances in our
understanding of specific cell fate decision-making points, as well general principles that describe the
control of cell differentiation.
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