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SUMMARY 

Advanced solid cancers are complex assemblies of tumor, immune, and stromal cells that invade 

adjacent tissue and spread to distant sites. Here we use highly multiplexed tissue imaging, spatial 

statistics, and machine learning to identify cell types and states underlying morphological features of 

known diagnostic and prognostic significance in colorectal cancer. We find that a thorough spatial 

analysis requires imaging the entire tumor region, not small fields of view (e.g. those found in tissue 

microarrays). When this condition is met, the data reveal frequent transitions between histological 

archetypes (tumor grades and morphologies) correlated with molecular gradients. At the tumor invasive 

margin, where tumor, normal, and immune cells compete, localized features in 2D such as tumor buds 

and mucin pools are seen in 3D to be large connected structures having continuously varying molecular 

properties. Immunosuppressive cell-cell interactions also exhibit graded variation in type and frequency. 

Thus, whereas scRNA-Seq emphasizes discrete changes in tumor state, whole-specimen imaging reveals 

the presence of large- and small-scale spatial gradients analogous to those in developing tissues. 

 

INTRODUCTION 

Solid tumors are complex ecosystems in which the proliferative and invasive properties of cancer 

cells are controlled by molecular signals from the stroma, surveillance from immune cells, and physical 

barriers imposed by tissue architecture. Tumor atlases being constructed by the NCI Human Tumor 

Atlas Network (HTAN) aim to map the interactions of tumor cells with each other and with other cells 

in the tumor microenvironment based on the identification and quantification of cell types and 

intracellular states within a preserved 3D environment. A priority is understanding the mechanisms that 

regulate critical molecular and phenotypic transitions such as evolution of high-grade invasive cancer 

states and suppression of immune surveillance (Rozenblatt-Rosen et al., 2020a). 

Histopathology plays an essential role in the diagnosis, staging, and clinical management of 

cancer using hematoxylin and eosin (H&E) stained, formalin-fixed paraffin-embedded (FFPE) tissue 

sections, complemented by immunohistochemistry (IHC). Pathology studies spanning more than a 

century have determined which morphological features of tumors are of diagnostic or prognostic 

significance (Amin et al., 2017), but classical histology provides insufficient information to precisely 

identify cell subtypes, characterize oncogenic mechanisms, and identify potentially druggable 

vulnerabilities. Multiplexed tissue imaging builds on 75 years of experience with IHC (Coons et al., 

1942) and yields subcellular resolution data on the abundance of 20-60 antigens, which is sufficient to 

identify immune cell types, assay proliferation, measure oncogene expression and deeply phenotype 
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clinical specimens (Angelo et al., 2014; Gerdes et al., 2013; Giesen et al., 2014; Goltsev et al., 2018; Lin 

et al., 2018; Saka et al., 2019; Schürch et al., 2020; Wagner et al., 2019). When multiplexed images are 

segmented and quantified, the resulting single cell data are a natural complement to scRNA-seq data. 

Unlike dissociated scRNA-seq, however, multiplexed tissue imaging preserves detailed spatial 

information and reveals how cells interact with one another and with tissue structures such as basement 

membranes and connective tissue.  

The multiplexed imaging in this study involves whole slide imaging in which data are collected 

from the entirety of a sample using tissue-based cyclic immunofluorescence (t-CyCIF) (Lin et al., 2018), 

a method that is broadly similar to MxIF (Gerdes et al., 2013), CODEX (Goltsev et al., 2018), and 

Immuno-SABER (Saka et al., 2019). CyCIF assembles high-plex data from multiple rounds of lower-

plex fluorescence imaging, resulting in images of large fields of view at high resolution. This contrasts 

with mass spectrometry-based methods such as Imaging Mass Cytometry (IMC) (Giesen et al., 2014) 

and Multiplexed Ion Beam Imaging (MIBI) (Angelo et al., 2014) which collect data on all channels at 

once but typically have relatively small fields of view. 

Analysis of multiplexed tissue images can be approached ‘bottom-up’ by enumerating cell types 

and identifying cell-cell interactions using spatial statistics and neighborhood analysis. With a sufficient 

number of patients in a bottom-up analysis, it is potentially possible to relate such data to cancer 

outcomes, as measured by Kaplan-Meier estimators. A “top-down” approach starts with the 

identification in H&E data of archetypical histopathologic features (histotypes) of known importance in 

disease management followed by use of machine learning and other methods to discover underlying 

molecular patterns in multiplexed data. Bottom-up analysis predominates in multiplexed tissue imaging, 

perhaps due to the applicability of tools developed for mass cytometry (Bendall et al., 2011) and 

scRNA-seq. In contrast, digital pathology primarily involves top-down approaches that have the very 

substantial advantage of leveraging a century of research on tumor morphologies and states known to 

associate with clinical outcome (Amin et al., 2017). However, pathologists have had to discount many 

false leads involving recurrent spatial patterns that cannot definitively be shown to have prognostic or 

diagnostic value. It remains difficult even today to determine which morphological and molecular 

features are consequential and which are incidental. In this paper we analyze colorectal cancer (CRC) 

using both approaches and compare the resulting insights. 

Classification of CRC increasingly incorporates molecular and genetic information on 

microsatellite stability (MSI), mismatch repair status (MMR), PD-L1 expression, and other features 

(Kopetz et al., 2015). Nonetheless, histopathology dominates diagnosis and clinical management. Key 
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histological features include the degree of tumor differentiation (well, moderate, poor), grade (low, 

high), subtype (mucinous, signet ring cell, etc.), presence of perineural, lymphatic, or vascular invasion, 

presence of peri-colorectal tumor deposits, the density of tumor infiltrating lymphocytes (TILs), the 

presence of tumor budding, etc. (Weiser, 2018). Tumor differentiation is assessed with respect to normal 

epithelial structures and considers changes in single cell morphology (e.g., cell shape, cytoplasmic 

staining, nuclear size, etc.) and in cell neighborhoods (e.g., loss of glandular organization, 

hypercellularity, etc.) (Fleming et al., 2012). In many cases the molecular basis of these morphological 

changes is not fully understood although de-differentiation, including “stemness” (Aponte and Caicedo, 

2017), epithelial-mesenchymal transition (EMT) (Kalluri and Weinberg, 2009), changes in nuclear 

mechanics (Uhler and Shivashankar, 2018), and similar processes, are clearly involved. 

Invasive margins are among the most important regions of solid cancers for understanding tumor 

progression, immune surveillance, and prognosis (Cianchi et al., 1997; Schürch et al., 2020). The deep 

invasive fronts of CRC and other solid tumors often exhibit single or small clusters of tumor cells 

surrounded by stromal cells. These cells appear to sprout or “bud” from the tumor mass (Lugli et al., 

2017a). Tumor budding is defined by the International Tumor Budding Consensus Conference (ITBCC) 

(Lugli et al., 2017b) as clusters of ≤4 tumor cells along the invasive front. In CRC, tumor budding cells 

express cytokeratins specific to normal epithelial cells, but they have lower levels of cell-to-cell 

adhesion proteins (e.g. E-cadherin, CD44, and Ep-CAM) (Gosens et al., 2007a), elevated expression of 

EMT markers, and a reduced proliferative index (Rubio, 2007). Because tumor buds appear to be 

genetically indistinguishable from the parent tumor (Centeno et al., 2017), budding is thought to involve 

a cell state (epigenetic) change involving interaction with adjacent stromal and immune cells. Tumor 

budding cells may give rise directly to circulating tumor cells and metastases (Zlobec and Lugli, 2010) 

and are correlated with poor outcomes in CRC, including increased risk of local recurrence, metastasis, 

and cancer-related death (Rogers et al., 2016). 

In this paper, we address fundamental questions about the construction and analysis of tissue 

atlases via 3D image-based reconstruction of human colorectal cancer (CRC). We confirm cell type 

assignments with scRNA-seq and bridge the divide between classical histopathology, with its 

demonstrated ability to identify disease-relevant spatial patterns, and computational analysis of 

multiplexed tissue images with spatial statistics. Using supervised machine learning, we show that CRC 

histotypes can be highly intermixed and that morphological transitions are often coincident with 

molecular gradients. Tumor budding appears to be a graded phenotype with budding cells, as classically 

defined, forming one extreme of a gradual molecular and morphological transition in which fibrils 
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branch off from the tumor mass and become increasingly mesenchymal. These phenotypic and 

molecular transitions are only detected when large contiguous regions of tumor are analyzed in 2D and 

3D, thereby providing the context and statistical power needed to chart cell intrinsic and population-

based tumor phenomena.  

RESULTS  

Overview of the specimens and data 

Multiplexed CyCIF and H&E imaging were performed on 94 FFPE CRC human specimens, 

including a wide variety of histologic and molecular subtypes (Table S1). The most extensive analysis, 

involving multi-section 3D imaging and scRNA-seq, was performed on a specimen also available in 

frozen form (specimen CRC1, Figure 1A; Table S1 and S2). Sixteen additional FFPE specimens 

(CRC2-17) were subjected to single-section whole slide imaging and were also used to construct a tissue 

microarray (TMA) with the remaining 77 specimens (0.6 mm diameter cores; four cores per patient; 

TMA) (Figure 1A). The resected tumor and adjacent normal tissue in CRC1 is from the cecum of a 69-

year old male; pathology revealed a poorly differentiated stage IIIB adenocarcinoma (pT3N1bM0) 

(Weiser, 2018) with microsatellite instability (MSI-H) and a BRAFV600E (c.1799T>A) mutation. The 

tumor had an extended front invading into underlying muscle (muscularis propria) and connective tissue 

giving rise to a ‘budding margin’ (IM-A) adjacent to normal colon epithelium, a ‘mucinous margin’ in 

the middle of the specimen (IM-B), and a deep ‘pushing margin’ (IM-C) (denoted “A”, “B” and “C” in 

Figure 1B). 

Although it is possible to perform H&E staining after fluorescence imaging, the quality of the 

images is substandard; H&E and CyCIF were therefore performed on adjacent serial sections. A total of 

106 serial sections were cut from an FFPE block of CRC1 (~3cm2) (Table S2), and 25 sections were 

stained with 24-plex CyCIF using lineage specific antibodies against epithelial, immune, and stromal 

cell populations, as well as markers of cell cycle state, signaling pathway activity, and immune 

checkpoint expression (Figure 1C, Figure S1A; Table S3). Three additional sections (CRC1, sections 

045-047) were subjected to deeper analysis with a total of 102 cell lineage and state markers (Table S4). 

In total, fluorescence and transmitted light microscopy involved acquisition of 361 successive megapixel 

image tiles followed by stitching and flat-fielding to generate whole-slide images comprising 

approximately 7 x 108 pixels (2.5 terabytes of data).  

Using the MCMICRO software pipeline (Schapiro et al., 2021), images were segmented, 

fluorescence intensities quantified on a per-cell basis, and cell types assigned using lineage-specific 
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marker expression (Figure 1C; Table S5); a total of ~5 x 107 cells were successfully identified in a 

tissue volume of 1.2 x 1011µm3. t-SNE demonstrated clear separation of keratin+ epithelial cells, both 

normal and transformed, from CD31+ endothelial cells (primarily blood vessels), desmin+ stromal cells 

and CD45+ immune cells (Figure 1D; Table S6). Immune cells could be further divided into 

biologically important classes such as CD8+PD1+ cytotoxic T cells, CD4+ helper T cells, CD20+ B cells, 

CD68+ and/or CD163+ macrophages, as well as discrete sub-categories such as CD4+FOXP3+ T 

regulatory cells (Table S5). When scRNA-seq was performed on ~104 cells from an adjacent region of 

CRC1, a high degree of concordance was observed between the cell type abundances estimated from 

RNA expression and from image data (r2 = 0.938; Figure 1E; Figures S1B–D), indicating that image 

segmentation and quantification of staining intensities was performed accurately. These images are 

available for interactive on-line viewing in a web browser (without data or software download) using 

MINERVA software (Hoffer et al., 2020; Rashid et al., 2020). 

 

Morphological and molecular gradients involving tumor phenotypes  

To study the molecular features underlying archetypical histologic patterns and anatomic levels 

of invasion in H&E data, two board-certified pathologists annotated regions of interest (ROI) which 

were then subjected to computational analysis using CyCIF data from adjacent sections. Annotated ROIs 

included normal colonic mucosa (ROI1); three regions of moderately differentiated invasive 

adenocarcinoma with glandular morphology involving either the luminal tumor surface (ROI2), 

submucosa (ROI3) or muscle (muscularis propria) at the deep invasive margin (ROI4); regions of 

poorly differentiated (high-grade) adenocarcinoma with solid or signet ring cell architecture (ROI5); and 

regions of invasive adenocarcinoma with prominent extracellular mucin pools (ROI6) (Figure 1B). A 

region with prominent tumor budding (TB) near IM-A was also annotated. Note that ROIs 2-4 have 

similar local morphologies but represent different levels of anatomic invasion that correlate with 

standard TNM (tumor, node, metastasis) staging (Weiser, 2018); TNM staging has well established 

value in prognosis and disease management. The location of an extended ROI corresponding to the 

invasive margin was also determined and is described in greater detail below.  

With respect to composition, cell type calling on CyCIF data showed that solid adenocarcinoma 

(RO15) had the highest proportion of epithelial (tumor) cells, 1.5% of which expressed PD-L1 (Table 

S6). The normal epithelium (ROI1) had the fewest epithelial cells (~40%) and the greatest proportion of 

stroma and immune cells. The cells in ROIs 2-4 were similar in having a glandular histomorphology 

characteristic of moderately differentiated adenocarcinoma. Stromal reaction (extracellular matrix and 
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growth factor production in response to tumor) (Ohtani, 1998) was greater in ROI2. However, we could 

identify no single molecular marker unique to one ROI or specific morphology. We therefore used 

machine learning to look for multidimensional features predictive of different histotypes. 

A k-nearest neighbors (kNN) classifier was trained on CyCIF marker expression in keratin+ 

normal epithelial and tumor cells (a different classifier was trained and validated for each section to 

assess the reproducibility of the approach). For each ROI, half of the cells were used for training and 

half for validation; cells from ROIs 2-4 were combined because their local morphologies were similar. 

The kNN classifier returned high confidence predictions (Shannon entropy near zero) within and outside 

of the annotated ROIs for all four morphologies and across all tissue sections: pathology review 

confirmed that the kNN classifier accurately predicted tumor domains with the expected histotypes and 

morphologic patterns (Figures 2A,B and Figure S2). Of note, CyCIF data comprised the centroid of 

each cell and its integrated marker intensity, but no other morphological or environmental information. 

This demonstrates that disease-relevant morphology in H&E images had been encoded as 

hyperdimensional patterns in marker space.  

Unexpectedly, the kNN classifier scored most regions of the tumor as comprising a mixture of 

morphological classes (as quantified by the posterior probability; Figure 2C) and transitions from one 

class to another on varying spatial scales. In many regions, Shannon entropy values approached two, 

demonstrating an equal mixture of all classes (red in Figure 2B). This was not a limitation of the 

markers used for classification, because similar results were obtained with combinations of ~100 

antibodies used to stain sections 044 to 047 of CRC1 (Figures S2A–S2C; Table S4). When tumor 

regions with high entropy values were examined in H&E, we found that they corresponded to transitions 

between classical morphologies (Figure 2D, E). These transitions occurred on spatial scales ranging 

from a few cell diameters (~50 µm) to the whole image (~1 cm) and included transitions from mucinous 

to glandular, mucinous to solid, and glandular to solid. These transitions were not limited to a single part 

of the tumor, but were observed multiple times in spatially separated areas, with some contiguous tumor 

regions appearing to alternate between states (Figure S2D, E).  

While histotypes could not be distinguished from each other using single CyCIF markers (kNN 

classification was based on hyperdimensional features) morphological gradients coincided in some cases 

with local molecular gradients. The existence of chemical and physical gradients in normal tissues is 

well established (Oudin and Weaver, 2016), but gradients are less well explored in human tumors, 

perhaps because tumor genetics tends to focus on discrete differences. Three examples of morphologic 

and molecular gradients from CRC1 are shown in in Figures 2D and 2E: a normal-glandular transition 
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coinciding with an E-cadherin to PCNA gradient, a mucinous-solid transition coinciding with a 

Cytokeratin 20 to Cytokeratin 18 gradient, and a glandular-solid transition coinciding with a transition in 

epigenomic regulators/modifications (KAP1 and H3K27me3). We conclude that histological archetypes 

commonly used for pathology grading and clinical planning represent only a minority of the CRC1 

tumor and that transitional regions are common. Transitions appear to correspond to gradients in the 

expression of molecular markers, suggesting the existence of continuous rather than discrete differences 

in cancer cell biology across a tumor.  

Tumor budding and molecular transitions at the deep invasive front 

The deep invasive front of a tumor, where cancer cells invade and displace normal tissue, is most 

clearly defined by morphology and position relative to normal tissue. This area is thought to contain the 

most aggressive subpopulation of tumor cells able to migrate into normal tissue and evade immune 

surveillance. In solid tumors, an EMT-like transition at the invasive front gives rise to small clusters of 

“de-differentiated” budding cells probably involved in metastatic dissemination (Zlobec and Lugli, 

2010). To study the molecular properties of tumor buds we annotated regions having large numbers of 

buds based on established histological criteria and then developed a computational approach to quantify 

molecular markers. 

For diagnostic purposes, tumor buds are defined as clusters of ≤4 tumor cells along the invasive 

front (Lugli et al., 2017b), and less commonly the non-marginal ‘internal’ stroma of the tumor mass 

(Lugli et al., 2011). To identify such cells computationally, we used Delaunay triangulation (Goltsev et 

al., 2018). This method generates links between immediately adjacent cells; intervening cell free-regions 

and structures were allowed, but cells farther than 20 µm apart were not linked (Figure 3A). In parallel, 

a pathologist annotated buds near the deep invasive front based on H&E and CyCIF images from CRC1 

using ITBCC morphologic criteria, which yielded ~4 x 103 budding cells (~0.01% of all tumor cells) 

across all 25 CyCIF sections (~20 to 400 budding cells per section; Figure S3). Buds were largely 

confined to one ~2.0 x 0.7 x 0.4 mm region of the invasive front proximal to normal colonic epithelium 

(denoted ‘A’ in Figure 1B). 

When Delaunay triangulation was performed for all cells that stained with keratin in CyCIF data 

(i.e., both tumor and normal epithelium) the smallest clusters contained 1-2 contiguous cells and the 

largest ~3 x 104 cells (Figures 3A and 3B). Large Delaunay clusters mapped to regions of poorly 

differentiated adenocarcinoma with solid architecture, consistent with the fact that these regions are 

almost entirely made up of tumor cells, whereas moderately differentiated regions with glandular 
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architecture contained a wide range of cluster sizes. Delaunay clusters meeting the ITBCC definition for 

buds (≤4 tumor cells) totaled ~105 cells across all sections, including those near the IM-A margin, in 

agreement with pathologist-annotated buds.  

CyCIF data showed that E-cadherin and Na-K ATPase levels were sharply lower in both 

annotated and Delaunay budding cells as compared to adjacent tumor masses and that the proliferative 

markers PCNA and Ki-67 were also low (Figure 3C, D); loss of cell-to-cell adhesion and a non-

proliferative phenotype are established features of budding cells in CRC and other tumor types and has 

been described as a partial EMT phenotype (Gosens et al., 2007b; Rubio, 2008). Across the whole of 

CRC1, we found that E-cadherin, Na-K ATPase, PCNA and Ki-67 expression varied continuously with 

Delaunay cluster-size (Figure 3D,E), with the lowest value associated with the smallest clusters (2-4) 

cells. The presence of continuous variation in gene expression and proliferative index with Delaunay 

cluster-size was reproduced in 16 whole slide images (CRC2-17) from other CRC patients (Figure 

S3E).  

Examples of these graded transitions are shown in Figures 3F and 3G, in which cohesive 

glandular tumor, which involves larger cluster-sizes and a PCNAhigh state, fragments into fibrillar 

structures involving smaller clusters and a PCNAlow state and ultimately what appear to be bud-like 

structures having the lowest marker expression and surrounded by stroma (Figure 3F) or mucinous 

spaces (Figure 3G). Analogous transitions of tumor masses into small Delaunay clusters occurred 

throughout the tumor both at the invasive front and along the luminal surface of the tumor in regions 

corresponding histologically to discohesive growth with focal signet ring cell morphology (so-called 

because of the resemblance to a signet ring). Signet-ring cells are found as single cells or in loose 

clusters having reduced cell–cell adhesion and are aggressive with respect to invasion and metastasis 

(Sung et al., 2008). The small Delaunay clusters found in mucin pools along the invasive margin at IM-

B are not distinguishable in size or expression (of cohesive and proliferation markers) from buds as 

classically defined, but the ITBCC definition encompasses only clusters in fibrous stroma. These data 

suggest that buds as classically defined represent an extreme of a gradual, morphological transition 

occurring across much of the tumor. 

A 3D reconstruction of CRC1 serial sections (Figure 4A) showed that buds meeting ITBCC 

criteria were frequently components of fibrillar structures emanating from the main tumor mass (Figure 

4A-C). When visualized using a virtual section of the annotated budding region viewed along the X- and 

Z-directions (Figure 4C) we found that annotated buds (white) were connected to larger tumor 

structures (red) along Z. This is analogous to fibrillar structures shown Figures 3F,G. We conclude that 
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budding cells are distal cross-sections of fibrillar structures, consistent with a previous 3D H&E study of 

budding (Bronsert et al., 2014); fibrils of similar sizes involving E-cadherinlow, Na-K ATPaselow, 

PCNAlow and Ki-67low cells are also found surrounded by mucin along the IM-B region of the tumor 

margin. Thus, EMT at the invasive front is not characterized by isolated cell spheres, as first described 

by Weinberg and colleagues for cultured cells (Mani et al., 2008), but rather large interconnected 

structure in which gradual breakdown in cell adhesion leads to ever narrower fibrils.  

Many small clusters of cells having an EMT-like phenotype identified by Delaunay triangulation 

were found within or immediately adjacent to mucin pools. Mucins are large glycoproteins that protect 

the gastrointestinal epithelium from mechanical, chemical, and microbial damage; they are made by 

goblet cells but also by some colorectal tumor cells (Bresalier, 2002). Mucins are found in the lumen of 

the normal colon and also in fissures and isolated pools of many different sizes surrounded by tumor; in 

CRC1 this is most prominent in the central region involving invasive margin IM-B (Figure 1B). When 

we reconstructed mucin-containing domains in 3D (Figure 4D,E), we found that 2D pools were 

interconnected and continuous with other pools and with the colonic lumen. Fibrillar structures projected 

into this complex space and were continuous with glandular and mucinous tumor. Thus, this region of 

the invasive front likely consists of an inter-connected mucin-filled structure invaded by fibular 

structures comprising tumor cells undergoing partial EMT that are themselves connected to an extended 

and irregular invasive margin (Figures 4A-C). The occurrence of bud-like transitions in distinct 

microenvironments suggests that invasion is a property of an ensemble of cells rather than small, 

isolated, clusters of tumor cells. Moreover, entities that appear in 2D to be isolated, such as mucin pools, 

are in fact cross-sectional views of larger inter-connected structures. 

 

 Characterization of cell neighborhoods using spatial statistics  

As a complementary approach to working from H&E histotypes to molecular features we used 

“bottom-up” analysis based on segmenting individual cells, identifying cell types and patterns of protein 

expression and then applying spatial statistics (Jackson et al., 2020; Schürch et al., 2020). Spatial 

correlation (Genton and Kleiber, 2015; Sethna, 2006; Sokal and Thomson, 1987) quantifies similarity in 

cell properties, expression of a marker protein for example, as a function of physical distance (Moffitt et 

al., 2016; Svensson et al., 2018). When we analyzed three exemplary proteins expressed in three 

different cell types, keratin (epithelial cells), α-SMA (stromal cells) and FOXP3 (immune cells), spatial 

correlation exhibited a good fit to a single exponential function (staining levels were binarized and co-

occurrence was scored as a function of absolute distance); the parameters of these exponentials are 
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length scale and strength (the relative spatial contiguity of a cell type on a scale of 0 to 1). Keratin, α-

SMA and FOXP3 positivity length scales varied from 100-400 µm and strengths from 0.1 to 0.8 (Figure 

5A), properties that were readily apparent in underlying images (Figure 5B).  When 16 additional CRC 

specimens were analyzed using 24-plex whole-slide CyCIF (samples CRC2-17), the length scales for 

different markers and biologically relevant combinations ranged from r =80 µm for the platelet–

endothelial cell adhesion molecule CD31, which corresponded predominantly to small vessels (Figures 

5C-5E and Figure S4A) found throughout the stroma and tumor with enrichment in muscle. The longest 

length scale feature for a single marker was r = 450 µm for the B-lymphocyte antigen CD20, 

corresponding to tertiary lymphoid structures found in the peri-tumoral stroma, muscle, and sub-serosal 

soft tissue.  CD163+ macrophages had an intermediate spatial scale (r = 250 µm) and clustered in narrow 

strips of tumor associated stroma with exclusion from the nearby keratin+ tumor compartment (Figure 

5F and 5G). Thus simple spatial statistics uncover spatial motifs that repeat throughout the specimen.  

  

Impact of spatial correlation on statistical power  

The impact of spatial inhomogeneity and correlation on statistical power has not been studied 

extensively in histology as compared to ecology and related fields (Stroup, 2002). However, length scale 

has a direct impact on the minimum dimension of a sample needed to measure a feature accurately. This 

is a concern because length scales for many markers in our CRC patients were similar to those 

commonly encountered in multiplexed imaging: 300 to 500 µm radii for TMAs and ~1 mm2 for fields of 

view in MIBI and IMC imaging. To explore the issue of statistical power in image data, we created a 

“virtual TMA” (vTMA) in which 1 mm diameter field of views (FOVs) were subsampled from an image 

of CRC1 (section 097). We then computed cell abundances (cell count normalized to the total number of 

cells) in each virtual core, which contained ~103 cells on average as compared to ~5 x 105 for an entire 

CRC1 section. Sampling was performed so that the vTMA would primarily contain keratin-positive cells 

and therefore derive from the tumor or normal epithelia (Figure 5H shows four virtual cores). We 

observed very poor precision when the abundance of keratin+ cells was estimated from vTMA cores: it 

varied 20-fold from 5% to 95% (the true value based on counting all cells in section 097 was 45%; 

Figure 5I). Abundance estimates for α-SMA and FOXP3 positivity in vTMA cores were also imprecise 

but to a lesser extent than for keratin positivity (Figure 5I). In contrast, when we repeatedly drew 

samples of ~103 cells from the dataset without regard to position (the actual number in each random 

sample was matched to the number in each vTMA core), the estimated abundance of keratin+ cells was 
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45 ± ~1%, representing good precision. Thus, imprecision was not a consequence of having too few 

cells. 

These findings can be explained in full based on the concept of an effective sample size (Neff), the 

number of independent samples that can be obtained from correlated measurements (Lavrakas, 2008). 

We found that the reduction in sample size between a truly random set of cells and a vTMA core (N/Neff) 

was 10- to 1000-fold depending on the marker (median value ~100; Figure S4B) meaning that a core 

having ~103 cells might constitute as few as 1 to 3 independent samples, which inevitably causes high 

variance. Across all markers, the effective sample size (Neff) closely matched the predictions of the 

Central Limit Theorem (Ibragimov, 1962) assuming exponential spatial correlations, as demonstrated by 

a coefficient of determination of R2 = 0.97 for data and theory (Figure S4B, regression in green, theory 

in red). Neff can also be approximated using measurable properties including the spatial correlation 

strength 𝑐𝑐0, length scale 𝑙𝑙, and average cell size 𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 with a simple scaling law (see Methods): 

𝑁𝑁
𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒

∼ 𝑐𝑐0( 𝑐𝑐
𝑐𝑐𝑐𝑐𝑒𝑒𝑐𝑐𝑐𝑐

)2 . (1) 

This formula yielded estimates of ~10 for FOXP3, ~100 for α-SMA and ~500 for keratin (Figure S4C), 

a reasonable match to observed values that also explains why variance in estimating keratin positivity 

(with a length scale of 400 µm) is substantially greater than that for α-SMA or FOXP3 positivity (100-

200 µm length scales). Taken together, these findings demonstrate that spatial correlation is responsible 

for reducing effective sample sizes in images of vTMA cores and other similarly small FOVs by ~10-

1000 fold relative to independently chosen cells; small effective sample size causes high variance. 

 Higher-order spatial features, such as the properties of cell neighborhoods (e.g. proximity 

analysis; Figure 5J), were even more strongly confounded by spatial correlation and sampling error 

than cell abundance. For example, when we quantified how often keratin+ (tumor) cells were found in 

the neighborhood of α-SMA+ (stromal) cells as a function of distance, vTMA data were much less 

precise than random sampling (compare light blue and green in Figure 6A; note that distance is plotted 

as the number of neighboring cells, which is proportional to the square of the distance). The same was 

true when we searched for neighborhoods containing CD45+ immune cells and CD31+ endothelial cells: 

spatial cross-correlation was positive in whole-slide data (or random subsamples but equally likely to be 

positive or negative depending on which vTMA core was analyzed.  Inspection of t-CyCIF images 

showed that these differences arose from very different tissue morphologies and spatial arrangements 

rather than a statistical quirk (illustrated by four selected cores; Figures 6B and 6C). We also performed 

neighborhood analysis based on co-occurrence (correlation > 0) or co-avoidance (correlation < 0) for 
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neighborhoods of different sizes. For example, for a neighborhood of 10 cells (~50 µm in diameter, a 

common parameter choice) analysis of vTMAs data could not confidently determine the sign of the 

correlation even though analysis of the whole specimen (or a random subset similar in size to a vTMA) 

is highly accurate. These findings can all be understood as arising from the uncertainty inherent in 

attempting to quantify spatial phenomena whose length scales are similar in size or larger than the 

sampling dimension. Errors may be sufficient in magnitude to lead to false associations with patient 

survival, based on Kaplan-Meir estimators, for example (Figure S5). 

Distinguishing biological variation and sampling error 

 To determine how sampling error compares with patient-to-patient variability we computed cell 

abundances for single markers and marker combinations in samples CRC2 to 17 (e.g., CD68+ PDL1+ 

macrophages) and found that values varied by 3 to 10-fold from patient to patient based on whole-slide 

data (Figure 6D, blue). Since these data come from patients with different clinical outcomes, we 

assumed measured variance to have a biological basis. We then examined data derived from an actual 

TMA constructed with four 0.6 mm diameter cores from the same tissue blocks and patients (and 

imaged in duplicate). Inter-core variance was found to be much greater than true patient-to-patient 

differences and examining four cores as oppose to one did not enable detection of patient to patient 

variability (Figure 6D, green). A similar level of variance was also observed in data from 77 tumors 

available only as TMA (four cores each; imaged in duplicate). Only one univariate measurement made 

from TMAs, Ki-67 positivity in keratin+ cells (which in this case were primarily tumor cells), exhibited 

inter-patient variability (18-61%) greater than sampling error (~30%) (Figures 6D and S5A). The 

existence of mutual information between markers should make it possible to better distinguish biological 

variation from measurement errors. As a proof of concept, we identified a linear combination of markers 

measurable from a single core with a signal-to-noise ratio comparable to Ki-67 positivity (Figure S5B; 

Ki-67 positivity was excluded, see methods). The best estimator primarily included markers of immune 

cells but was not immediately interpretable. From these data we conclude that the measurement of basic 

features of tissues such as cell abundance, spatial co-occurrence and neighborhood exclusion are subject 

to high sampling error introduced when small fields of view are imaged; this sampling error is greater in 

many cases than true patient to patient variability. 

To what extent are 2D whole-slide images adequate representations of 3D specimens? To study 

this, we computed cell abundances and spatial correlations in 24 sections from CRC1 and compared this 

to patient-to-patient variability across specimens CRC2 to 17 (compare red and blue in Figure S5C and 
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S5D). For all but a few markers we found that variance between Z-sections was smaller than patient-to-

patient variability. Some variance with section is expected since the tumor differs in extent and shape 

from the top of the specimen to the bottom. To determine if the spatial features discussed in this paper 

project sufficiently in X, Y to be sampled accurately, we computed cell type abundances for the 

pathologist annotated ROIs used in Figure 1B for kNN modeling. In this case we also observed low 

level of section to section variance (Figure 6E). We conclude that 2D whole slide imaging of a 3D 

specimen does not, in general, suffer from the same problem as subsampling a section with TMAs or 

small fields of view (see Discussion).  

 

Immune profiling shows substantial spatial variation and an immunosuppressive niche associated 

with the invasive margin 

The morphology of the invasive margin of solid tumors has high prognostic value and 

differences between irregular invasive and well-delineated pushing margins are used for patient 

management (Koelzer and Lugli, 2014). In cancers, such as CRC1, that are mismatch repair deficient 

(dMMR) a high rate of mutation generates abundant neoantigens and promotes a microenvironment rich 

in tumor-directed effector T-cells and macrophages but also cells expressing immune checkpoint 

proteins. Classical histopathology and the 3D reconstructions described above show that the invasive 

margin of CRC1 involves three distinguishable regions. To characterize tumor-host interactions across 

the margin with sufficient spatial power for statistical significance, we performed whole-tumor spatial 

analysis of cell abundance and neighborhood relationships (Figure 7). We concentrate below on 

specimen CRC1, since this had the highest level of annotation by a pathologist, but computational 

analysis of CRC2-17 showed that CRC1 was not an outlier with respect to cellular composition, grade or 

rate of progression (Figure S7). However, immuno-regulatory cell types clearly different in abundance,   

In CRC1 we found that CD45-positive immune cells (Table S5, cell types 7-21) were broadly 

distributed throughout the tumor, normal mucosa and stroma although CD20+ B cells were concentrated 

in tertiary lymphoid structure (among all CD45+ cells: 9% were Tregs and 24% T effector cells; Figure 

7A). Cells (of all types) expressing PD-L1 and PD-1 were also broadly distributed but PD-L1+ tumor 

cells were rare (Figures 7B and 7C). Cell states potentially involved in immunosuppressive were more 

highly localized; for example, CD8+ PD1+ T effector cells were enriched 2.3-fold in the stroma whereas 

CD68+ PD-L1+ macrophages were 3-fold enriched in the tumor (where they comprised 1.4% of all 

cells).  Immunosuppressive cell types were also non-uniformly distributed along the tumor margin. The 

tumor budding region (IM-A) was highly enriched for CD4+/FOXP3+ T regulatory cells (Figure 7D) 
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and the greatest concentration of CD8+ PD-1+ cytotoxic T cells was adjacent to (but not within) the 

budding region (as traditionally defined) (Figure 7E). IM-A also contained the majority of PD-L1 

expressing tumor cells detected (Figure 7E) as well as CD68+/PD-L1+ macrophages (Figure 7F). In 

contrast, the invasive mucinous margin along IM-B exhibited the lowest level of immune cell infiltration 

suggesting low levels of immune surveillance in this region and consistent with a function for some 

mucins in immunosuppression (Bhatia et al., 2019). The pushing border along IM-C was largely devoid 

of T regulatory cells and PD-L1 expressing tumor cells but was enriched in CD68+/PD-L1+ 

macrophages (Figure 7F).  

 To determine whether immune and tumor cells are in a position to interact with each other, we 

performed adjacency analysis, setting a strict 20 µm cutoff for a positive interaction (Figure 7D-F). The 

strongest interaction between CD4+/FOXP3+ T regulatory cells and CD8+ effector T cells was in the 

immediate vicinity of budding cells at the IM-A margin. The frequency of this interaction was 2.5-fold 

greater than in normal tissue (ROI1) and also significantly greater than in all other annotated ROIs. 

Moreover, Tregs were present in excess to effector T cells, making efficient suppression via cell-cell 

contact feasible. Tumor cells in the budding region expressed high levels of PD-L1 (relative to the tumor 

as a whole) and the frequency of interaction with CD8+ T PD-1+ cells was significantly greater here than 

elsewhere in the tumor (Figure 7E). CD8+ PD-1+ T cells were also more frequently associated CD68+ 

PD-L1+ macrophages than elsewhere in CRC1, and the macrophages were in 2-3 fold excess (Figure 

7F). IM-C (near ROIs 2-4) was a second region with significant enrichment for interaction of CD8+ PD-

1+ T effector and an excess of CD68+ PD-L1+ macrophages. In contrast, no significant concentration of 

immunosuppressive interactions was observed in the mucin-rich regions of IM-B (Figure 7A-C). Thus, 

three of the most prevalent mechanisms of immunosuppression involving T effector cells were found in 

CRC1 including interaction with T regulatory cells, PD-L1+ tumor cells, and PD-L1+ macrophages. 

Immunosuppressive mechanisms varied in a graded manner across the invasive front with the greatest 

inhibition of effector cells at the area of active budding, where metastasis may originate (Figure 7H).  

 

DISCUSSION 

Most efforts to generate tumor atlases have focused on systematic enumeration of cell types and 

states using scRNA-seq, and initial multiplexed imaging studies have also started to adopt this “bottom-

up” paradigm (HuBMAP Consortium, 2019; Rozenblatt-Rosen et al., 2020b) by relying principally on 

spatial statistics and neighborhood analysis as routes to biological discovery. In contrast, the current 

paper combines “bottom up” analysis with “top-down” histology-driven identification of large-scale 
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phenotypic patterns in the tumor and the tumor microenvironment. This approach exploits over a 

century of intensive investigation of tumors by anatomic pathologists and is made possible by a 3D 

reconstruction of a colorectal cancer comprising ~5 x 107 cells in volume of ~1.2 x 1011 µm3 

complemented by whole-slide 2D imaging of 16 additional CRC specimens and TMAs having 77 

additional tumors.  

Whereas dissociative scRNA-seq clusters cell types into discrete states, we find that molecular 

and morphologic phenotypes are often graded, with transitions between states spanning spatial scales 

from a few cell diameters to several mm. These transitions are apparent throughout the tumor but are 

most notable along the invasive margin, where tumor cells actively invade and compete with normal 

cells while being constrained by immune surveillance. 3D reconstruction of the CRC1 tumor margin 

reveals multiple neighboring zones distinguished by both morphology and immune environment. In 

region IM-A, tumor cells having poorly differentiated morphology invade the underlying stroma and 

classical budding is observed. This is a consequence of reduced cell-cell cohesion and is associated with 

metastasis and poor prognosis (Guil-Luna et al., 2020). Tumor buds are classically defined ≤4 cells in a 

cluster surrounded by stroma (Lugli et al., 2017a), but 3D reconstruction shows that these represent the 

termini of extended fibrillary structures whose distal tips generate the bud morphology in cross-section 

(Bronsert et al., 2014). Structurally similar fibrils are found along the IM-B region of the invasive front, 

which is rich in mucinous tumor morphology, with fibrils projecting into mucin pools rather than into 

stroma. In 2D sections, mucin pools appear to be fully surrounded by stromal cells, but 3D analysis 

shows that they actually form a large and elaborate interconnected network. Multiplexed imaging shows 

that the long fibrillary networks projecting into connective tissue or mucin exhibit graded transitions in 

molecular state with progressively lower expression of cell adhesion and proliferation markers along the 

proximal-to-distal axis (from larger to smaller clusters in cross section) with the most pronounced EMT-

like states at the very tip. Thus, the leading edge of the CRC1 invasive front involves structures that are 

much larger than they appear in 2D sections and within these structures, cells undergo graded transitions 

in phenotype. In some instances, these changes in state recur in a semi-periodic manner, analogous to 

the recurrence of villi in normal epithelia. Acellular features such as mucin pools also appear to be 

interconnected with each other and with the lumen of the colon and its microbiome.  

Multiple immunosuppressive interactions have been described in colorectal cancer involving 

ingress of Tregs and expression of checkpoint proteins on both tumor and immune cells. Neighborhood 

analysis shows high enrichment for Tregs and T effector cells along IM-A, where budding is most 

pronounced (Figure 1B). These tumor cells express elevated levels of PD-L1 and CD8+ PD1+ T cells are 
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found in close proximity (20 µm), providing an additional mechanism of effector cell suppression. 

Suppression is further enhanced by proximity to PD-L1+ macrophages. If we include a ~500 µm distant 

tertiary lymphoid structure rich in B cells (which are implicated in anti-tumor immunity in CRC) (Edin 

et al., 2019) the margin along IM-A is both the most immune rich and most immunosuppressive 

environment in CRC1. Tumor budding is less commonly found in microsatellite unstable (MSI-H) 

tumors such as CRC1, potentially due to their destruction by abundant cytotoxic T cells and 

macrophages (Zlobec et al., 2011). The presence of multiple axes of immunosuppression may explain 

the frequency of buds in CRC1 and the evolution of a poorly differentiated high-grade phenotype that 

correlates with aggressive clinical outcomes.  . 

Few immune cells were found in association with the IM-B region, perhaps due to an abundance 

of mucin. In contrast, T cells and macrophages along with an immunosuppressive environment were 

enriched at IM-C; this comprises a well-demarcated ‘pushing border’ between muscularis propria and 

moderately differentiated tumor. In this case, however, PD-L1+ macrophages were the immune cells 

most frequently in contact with CD8+ PD1+ T cells; in contrast, PD-L1 expression on tumor cells was 

low and few Tregs were present. Thus, the established connection between tumor budding, metastasis 

and disease recurrence is likely to reflect the presence of tumor cells undergoing EMT (and developing 

the ability to disseminate) as well as a permissive and immunosuppressive environment (Guil-Luna et 

al., 2020).  

Some of the morphological gradients we have identified in images were correlated with 

molecular gradients detectable by CyCIF, but few of these are likely to be causal associations. Instead, it 

is much more likely that diffusible molecules (morphogens) and cell-cell contacts similar to those 

controlling tissue development are involved (Rogers and Schier, 2011). Gradients in growth factors, 

metabolites and the ECM are readily detected in cultured cells, by intravital imaging in the mouse 

(Kondo et al., 2021), and by mass spectrometry in frozen human tissue (Randall et al., 2020) and we 

find that they can be encoded in hyperdimensional features in marker space. However, for none of ~100 

proteins examined were we able to identify a unique association between a single marker and an 

established histomorphology. High-dimensional encodings identified by machine learning were 

nonetheless fully consistent with current practice in grading CRC, and transitions between learned 

classes corresponded to transitions between morphological archetypes such as glandular, mucinous and 

solid tumor. Continuity of states implies that intratumoral heterogeneity (ITH) may have a non-genetic 

origin as suggested by Sharma et al., 2019 and Black and McGranahan, 2021. 
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The characteristic organization of tissues and tumors arises from the presence of recurrent spatial 

patterns ranging from individual tumor-immune interactions to organ-scale features; these are visible by 

eye and quantifiable using spatial statistics. In colorectal cancer we find that the length scale for co-

expression of proteins such as cell-type markers is as large as ~500 µm (e.g., tertiary lymphoid 

structures) and complex morphological gradients are even larger. A corollary is that the effective sample 

size in images is reduced 103-fold compared to dissociative method such as scRNA-seq; the penalty is 

more severe for complex properties such as neighborhood inclusion and exclusion. Thus, analysis of 

TMAs and small (sub-millimeter) fields of view is subject to measurement error that is greater than the 

patient-to-patient variability that we seek to explain; such error can reduce the power of outcome 

analysis and generate spurious correlations with Kaplan-Meier survival estimators. Imaging entire slides 

in 2D largely overcomes this problem. Whole-slide analysis is standard pathology practice (Ghaznavi et 

al., 2013) and the FDA regards it as a diagnostic necessity (Aeffner et al., 2019; Health, 2019) because 

review of sufficiently large regions of tumor (generally >1 cm2) is essential to account for heterogeneity, 

assess degree of invasion and make accurate  classifications.  

Our findings have implications for the use of TMAs and small specimens recovered via core 

biopsies (~1-2 mm in diameter) and fine needle aspiration (~300 µm in diameter) for diagnosis. 

Additional study is required on this topic because accuracy and precision are not only properties of the 

specimen and measurement method but are also conditioned by the question being asked. Detecting 

relatively infrequent events, such as tumor budding, is different from quantifying a recurrent clonal 

event, such as IDH1/2 mutation in glioma (Verhaak et al., 2010) or ALK/ROS expression in lung cancer 

(Rogers et al., 2015). Our findings argue for the importance of whole-slide 2D data, and in some cases 

3D image stacks, for accurate spatial analysis in a research setting. This does not come without cost 

because processing and analyzing multi-TB datasets comprising 106 to 107 cells remains a substantial 

technical challenge. 

 

Conclusions 

Although we aspire to identify biologically significant states and neighborhood relationships 

directly from multiplexed spatial data, 120 years of surgical pathology suggests that this will not be 

straightforward. A minority of recurrent tumor morphologies associate significantly with disease 

outcome. Moreover, random subsets of other types of high dimensional data (e.g., gene expression) are 

well known to associate significantly with disease outcome (Venet et al., 2011). There is therefore merit 

in working “top down” from established histopathological features to molecular and cellular programs; 
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this is true even when the goal is scientific discovery rather than diagnosis. The current paper represents 

a first step in this direction and deeper analysis of additional specimens using multiplexed data and 

machine learning is now warranted. For example, a whole-slide analysis of T cell infiltration in CRC 

(Galon et al., 2006), which is the basis of an established clinical test (Immunoscore) (Angell et al., 2020) 

paired with outcome analysis will likely lead to new biological insight and possibly also improved 

diagnostics.  

 

Limitations of this study 

One limitation of the current study is that only one CRC has been reconstructed in 3D. While 

many spatial features can be accurately discerned from a single 2D section (which we have collected 

from 17 patients), determining the connectivity of tumor buds and mucin pools in CRC2-17 awaits 

additional data. Spatial power analysis demonstrates that it is not possible to reliably associate features 

with outcomes using TMA data, making the 93 patients and 372 distinct cores in our TMA dataset 

useful for other purposes only; we judge the 16 whole-slide samples to be insufficient and are currently 

expanding the cohort. However, the primary limitation is computational and not data acquisition per se; 

processing multi-TB whole-slide images remains time consuming. By releasing all images described in 

this study at full resolution we hope to attract experts in computation to advance the state of the art. We 

have recently described the cloud-based MCMICRO pipeline (Schapiro et al., 2021), which is based on 

the Nextflow language and Docker/Singularity (O’Connor et al., 2017) containers, to promote such 

research. Our ability to effectively visualize and process 3D tissue data has emerged as another 

limitation in the current work. We use a simple graph-theoretic approach to find cell clusters similar to 

buds but other approaches from graph or percolation theory (Plotkin et al., 2002; Reynolds et al., 2009) 

would probably better capture the interdigitated morphology of fibrils, and both classical (Rohban et al., 

2017) and deep learning approaches (Djuric et al., 2017) may better capture key histological features 

than kNN models. 

 

DATA AVAILABILITY AND ATLAS IMAGE VIEWING 

 As part of this paper all images at full resolution, all derived image data (e.g. segmentation 

masks) and all cell count tables will be publicly released via the NCI-recognized repository for Human 

Tumor Atlas Network (HTAN; https://humantumoratlas.org/) at Sage Synapse.  A version of this data is 

available at https://www.synapse.org/#!Synapse:syn18434611/wiki/597418. Note to reviewers: this data 

resource is undergoing final review for Private Health Information and requires a (free) Synapse 
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account; public access will be provided as soon as possible. An anonymous “reviewer only” link can be 

provided prior that by requesting it from the monitoring editor.  

Several of the figure panels in this paper are available with text and audio narration for 

anonymous on-line browsing using MINERVA software (Rashid et al., 2020), which supports zoom, 

pan and selection actions without requiring the installation of software. A Minerva story with an 

overview of CRC1 (section 096 & 097) can be found at: cycif.org/crc1-intro and the 25 CRC1 Z-

sections can be found at: cycif.org/crc1-3d.   
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FIGURE TITLES AND LEGENDS 

Figure 1. Overview of the data. 
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(A) A formalin-fixed and paraffin-embedded (FFPE) CRC sample (CRC1) was serially-sectioned for 

H&E staining and CyCIF imaging. Twenty-five sections were stained with the main CyCIF panel 

described in table S3. Three sections (045, 046, & 047) were stained with three additional panels, 

detailed in table S4. In addition to CRC1, two duplicate sections of a tissue microarray (TMA) and 16 of 

the TMA parental whole slide sections (CRC2-17) were stained with the main CyCIF panel. (B) 

Histopathologic annotation of H&E images into three invasive margins (A, B, C) and 6 different ROIs. 

ROI histology: 1. normal mucosa, 2. superficial (luminal) adenocarcinoma, 3. submucosal 

adenocarcinoma, 4. muscularis propria adenocarcinoma (deep invasive front), 5. solid 

adenocarcinoma, 6. mucinous adenocarcinoma. ROIs 2-4 exhibit a moderately differentiated 

appearance with glandular architecture, while regions 5-6 exhibit a poorly differentiated appearance 

with predominantly solid or cribriform architecture. Regions of tumor budding were also noted for 

subsequent analysis. (C) An example of a CyCIF whole-slide image (section 097) and cell type 

assignment. Thirty-one different cell types from three main categories (tumor, stroma, and immune) 

were defined and their locations mapped within the tumor section. (D) Dimensionality reduction of 

single-cell data by t-SNE, color coded by staining intensity for the indicated marker. Cell type plot (far 

right) uses color code show in Figure S1D. (E) Comparison of cell-type percentages assessed via single 

cell RNA-sequencing (scRNA-seq) and CyCIF.   

  

Figure 2. Correlation and prediction of morphologic and molecular tumor phenotypes.   

(A) Four examples of tumor morphology in training ROI and non-adjacent regions predicted with high-

confidence to have corresponding morphology. kNN classifiers were trained and validated separately for 

each section to evaluate the reproducibility of the models. (B) Prediction confidence for assignment of 

kNN classes as measured by Shannon entropy (a value of 0 corresponds no classification uncertainty, 

and a value of 2 to random assignment and equal mixing of all classes). (C) Posterior probability that 

each keratin+ cells would belong to normal epithelium or glandular, solid, or mucinous tumor classes. 

Annotation reflects classifier gradients and alternation corresponding to morphologic phenotype. (D) 

Sample tumor region transitioning from normal morphology (H&E top) with local e-cadherin expression 

to glandular adenocarcinoma architecture and expression, with increased PCNA (CyCIF, bottom). 

Contours describe averaged local epithelial cell expression of PCNA. (E) Additional examples of 

transition regions, analogous to (D), with H&E (top), CyCIF (middle), and quantified expression 

contours (bottom). 
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Figure 3. Tumor budding is a distributed phenomenon associated with graded molecular and 

morphologic transitions 

(A) Clusters of keratin+ cells (orange) in a local field of view (FOV) of section 097. Neighboring 

keratin+ cells are denoted by edges, along with keratin- cells (blue) and annotated buds (white) for 

reference. Histogram shows cluster-sizes (log2) across all CRC1 sections. (B) Cluster sizes mapped onto 

CRC1 section 097. Image exaggerates size of single cells for visibility. (C) Keratin+ cell expression 

visualized by tSNE performed using 10 tumor-relevant CyCIF markers (two of which are shown; see 

Methods) with color representing marker intensity. Cluster-size also shown (top panel), with black 

outline denoting small clusters (including annotated buds) and color representing log2 cluster size. (D) 

Differential expression of markers in cells annotated as tumor buds. The relative expression of indicated 

markers is represented in heatmap as the log2 ratio of budding tumor cells to all tumor cells. (E) Log-

intensity of markers and their dependency on cluster-size in CRC1 tumor cells. Expression of annotated 

buds shown in green for reference. Boxes show 1st-3rd quartiles; points beyond are not shown. Each box 

represents ~105-106 cells. (F) Example of transition from main tumor mass into fibrils and bud-like cells 

in the stroma in CyCIF (left) and H&E (right). There is gradual loss of Na-K ATPase and PCNA from 

the main tumor mass to the tips of fibrils with decreasing cluster-size (budding cells appear red on 

CyCIF, arrowheads). Image is oversaturated to make hues more visible. (F) Analogous budding 

structures in mucinous tumor regions, with fibrils and budding cells (arrowheads) extending into mucin 

pools rather than stroma. 

 

Figure 4. 3D reconstruction of tumor architecture reveals large-scale organization of tumor buds 

and mucinous regions 

(A) 3D overview of CRC1 at at region A of the invasive margin A (see Figure 1B). (Top) Surface 

renderings of keratin (blue), α-SMA (purple), normal mucosal region (green), CD68+PD-L1+ cells 

(yellow), and budding cells (red). (Bottom) All annotated buds colored by density and showing 

interconnected fibril-like networks of budding cells. (B) Three-dimensional visualization of annotated 

buds (pink, middle) or ≤4 cell clusters identified by Delaunay triangulation (pink, bottom) relative to 

connected tumor masses and other cells with uncertain connectivity (green). Corresponding regions in 

2D CyCIF images are shown above with keratin staining fully saturated to make cluster size more 

apparent. (C) Virtual XZ-section of annotated budding region generated from image stack; the locations 

of annotated tumor buds are marked in white and found to be connected via continuous staining intensity 

to the main tumor mass. (D) Connectivity of mucin pools across serial sections. Largest contiguous 
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mucin pool structure (red) extends into the lumen (outline in yellow). Image is mirrored along Z relative 

to (A) to better visualize details. To the right three exemplary H&E FOVs from different regions of the 

reconstructed mucin structure with mucin pools that appear isolated in 2D sections (arrowheads).  

 

Figure 5. Spatial heterogeneity and estimation errors for regional sampling. 

(A) Spatial correlations of binarized staining intensities for keratin+ (red), α-SMA+ (blue), and FOXP3+ 

(green) cells, along with their exponential fits (dashed curves). (B) FOV portraying four correlation 

length scales and strengths for keratin+, FOXP3+, αSMA+, and CD163+ cells. Four circles with radii 

equal to the length scale parameters. (C) Length scales for select markers across CRC2-17. (D) CyCIF 

image showing CD20+ a tertiary lymphoid structure (circled in pink) and a CD31+ blood vessel (circled 

in blue and also magnified in the yellow inset in the upper left) . (E) Spatial distribution of CD20+ cells 

(blue density and contours) and CD31+ cells (red density); annotated ROIs are labelled 1-5; budding 

region in dark blue. (F) Spatial distribution of keratin+ cells (red density and contours) with annotated 

ROIs in cyan and the three regions of the invasive front labelled A-C.  (G) Spatial distribution of 

CD163+ cells labelled as in panel E. (H) Virtual 1mm TMA cores from CRC1 section 097, and 0.6mm 

cores from a real TMA of other CRC patients. (I) Estimates of tumor composition using vTMA cores or 

random sampling. Means indicated in cyan. (J) Correlation of select cell-type pairs amongst 10 nearest 

neighbors. Value from whole section shown in green. unless otherwise noted. 

 

Figure 6. Patient variation compared to correlated sampling error in TMAs. 

(A) Correlation functions between select cell-type pairs as estimated from vTMAs or random sampling. 

Shaded regions represent 95% confidence intervals. (B) Estimated correlation functions from several 

cores, portraying a variety of inter-cellular relations. (C) The four cores highlighted in (B). (D) (Left) 

Variation in the fraction of various marker-positive cells across specimens CDC2-17 as determined 

using whole-slide (blue) or TMA (green) data; or among specimens 18 to 93 based on TMA data alone. 

Data points and 1st-3rd quartiles (box plots) are shown. Proportions <0.0001 are denoted as a single data 

point along the dotted line. (Right) Percent of variance in TMA estimates that can be attributed to 

sampling error, after removing outliers. Expected improvement from sampling four cores per tumor is 

shown in beige. (E) Variation of each annotated ROI composition across sections of CRC1 for the same 

cell-types in Figure S1D.  

 

Figure 7. Spatial distribution of immune cell-types and interactions.   
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All images and plots of cell coordinates derive from CRC1 section 097. (A-C) Distribution of total 

CD45+ (A), PD-L1+ (B) and PD-1+ (C) cells with annotated ROIs in cyan; TB denotes region with a 

high density of tumor budding; in panel B, the three regions of the invasive front are labelled A, B and 

C. (D-F) Co-occurrence of two cell types using a distance cutoff of 20 μm. Below: box plots show the 

1st-3rd quartiles of fraction of first cell type that co-occur with the second cell type (as listed in the panel 

legend) for each annotated ROI well as the p value for all two-way comparisons (unpaired t-test).  (D) 

FOXP3+ Treg (green) and CD8+ cytotoxic T cells (red); (E) keratin+ PDL1+ tumor cells (green) and 

CD8+ PD1+ T cells (red);  (F) CD68+ PDL1+ macrophages and CD8+ PD1+ T cells (red). (G) 

Representative image of immune microenvironment surrounding the region containing budding tumor 

cells (denoted TB). Arrows indicate buds. (H) Schematic representation of immune environments 

associated with each invasive margin; infiltrative budding cells at invasive margin A associate with 

FOXP3+ Tregs and PD-L1+ macrophages to suppress PD-1+/CD8+ cytotoxic T cells; few immune cells 

and minimal interaction are identified at invasive margin B, possibly due to physical constraints 

imposed by mucinous pools surrounding tumor cells; pushing tumor fronts at invasive margin C 

associate with PD-L1+ macrophages, but not FOXP3+ Tregs, to suppress cytotoxic T cells. 

DATA AND SOFTWARE AVAILABILITY 

All full resolution images, derived image data (e.g. segmentation masks) and all cell count tables 

will be publicly released via the NCI-recognized repository for Human Tumor Atlas Network (HTAN; 

https://humantumoratlas.org/) at Sage Synapse.  A version of this data is available at 

https://www.synapse.org/#!Synapse:syn18434611/wiki/597418.  Several of the figure panels in this 

paper are available with text and audio narration for anonymous on-line browsing using MINERVA 

software (Rashid et al., 2020), which supports zoom, pan and selection actions without requiring the 

installation of software. A Minerva story with an overview of CRC1 (section 096 & 097) can be found 

at: cycif.org/crc1-intro and the 25 CRC1 Z-sections can be found at: cycif.org/crc1-3d.   

All software used in this manuscript is freely available via GitHub as described in (Schapiro et 

al., 2021) and references therein. 
 

SUPPLEMENTAL INFORMATION  

Supplemental information includes seven figures, six tables, and two movies (Lin-Wang-Coy-CRC1-

Movie 1-Lumen View and Lin-Wang-Coy-CRC1-Movie 2-Budding).  Interactive data viewing is 
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possible via an anonymous Amazon S3 link via https://www.cycif.org/crc1-intro and 

https://www.cycif.org/crc1-3d. 

 

SUPPLEMENTAL FIGURE LEGENDS 

Figure S1.  Dataset 1: antibodies, images and serial sections. Related to Figure 1. 

(A) Representative images of main antibody panel from CRC1. Blue is the nuclear stain (Hoechst 

33342).  (B) UMAP plot of scRNAseq data from CRC1, and cell-types identified by Leiden clustering. 

(C) Marker-guided sub-clustering was performed as described in methods. Positive cells highlighted in 

yellow. (D) Cell-types mapped across CRC1/097.  Cell type definitions and main classification markers 

are as indicated. A detailed marker/reference dictionary is in Table S5.  

 

Figure S2. kNN-classification of epithelial histology. Related to Figure 2. 

(A) Precision and recall of the classifiers trained on each section. (B) (Left) Shannon entropy of kNN-

classification for each cell. Normal cells have low-entropy, indicating high-confidence classification. 

Regions used for training were also high-confidence, as expected by definition. Most tumor regions 

were classified between classes, i.e. high-entropy. (Right) The relative weight of each class is visualized 

by hue. (C) Dimensional reduction of subsampled single-cell expression from keratin+ cells by tSNE, 

with pathologist annotations indicated by color. Each of the four marker panels provide enough 

information to cluster normal epithelial cells (black) separately from tumor cells, despite limited overlap 

in markers between panels. Different annotations roughly occupy different regions of expression space, 

indicating that expression and morphology are correlated, but tumor cells largely form a continuous 

distribution, supporting the existence of mixed morphologies. (D) Region of IM-A predicted to have 

morphology alternating between glandular and solid morphology on short length scales. (E) Contours of 

epithelial PCNA expression in Figure 2D. 

 

Figure S3. Quantification of pathologist annotated tumor buds. Related to Figure 3. 

(A) Proportion of annotated budding cells amongst Keratin+ cells across sections. (B) Different 

magnifications of the annotated budding region in section 097. (C) H&E FOV in section 096 IM-A. A 

few budding cells are indicated by arrowheads. (D) Corresponding CyCIF channels. Red outlines 

separate main tumor mass from buds (yellow outline). (E) Log-intensity of markers and their 

dependency on cluster-size for tumor cells in CRC2-17, as in Figure 3C. Outliers not shown (~5% of 
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each box). Trends are the same as in CRC1. (F) Location of 3D viewpoints in Figure 4B, represented on 

section 054. Arrows approximately represent viewing angle. 

 

Figure S4. Spatial correlations and predicted sampling errors. Related to Figure 5 

(A) The length scales and correlation strengths of cell-types (top) and marker log-intensities (bottom) for 

CRC2-17. (B) Estimation error of vTMAs summarized by fold-reduction in effective sample size, 

N/Neff, for marker log-intensities and cell-type compositions. Observed error is compared to that 

predicted by accounting for exponential fits of spatial correlations in the Central Limit Theorem. 

Predictions from exponential assumptions fit observations closely (R2 = 0.97, green), and deviations 

from perfect prediction (red) might be attributed to slight violations of assumptions (e.g. deviations from 

exponential decay, variation in cell-density). (C) Order-of-magnitude estimates of N/Neff for keratin+, 

FOXP3+, and α-SMA+ based on the scaling law in Eq 1 (shaded boxes) compared to 0.6mm vTMA 

cores. Order-of-magnitude predictions are good up to a small factor. 

 

Figure S5. Variation of estimated composition and features of patient sections. Related to Figure 

5. 

(A) FOVs of patient sections with low and high Ki-67+ cell abundance. Green circles visualize the 

length scale of Ki-67+ cells. (B) Variation of weighted cell-type scores between patients, and percent 

contribution of sampling error to TMA estimates of scores, analogous to Figure 6A. Scores with random 

weights still perform poorly, with 95% of such scores (magenta) resulting in ~90% sampling error. 

However, the theoretically optimal score (Best) derived from multivariate correlations gives signal-to-

noise comparable to Ki-67+. A Rationalized score (imitating weights one might assign from prior 

knowledge) diminishes signal-to-noise substantially, despite being constructed to imitate the Best score, 

demonstrating the importance of quantitatively accounting for multivariate information. Ki-67+ was 

excluded in all scores. The Best and Rationalized score weights are shown as heatmaps. This score is a 

conceptual toy example to demonstrate the existence of valuable information amidst multivariate data. 

(C) Variation of cell-type composition between sections of a single tumor (CRC-1) and sections from 

different patient tumors (CRC2-17). Section sampling error is typically a minority of the variance 

between patient sections. Indicated outliers were excluded from the percent-variance calculation. (D) 

Variation of cell-type spatial correlation strengths and length scales across Z-sections of the tissue map 

(blue) and across patients (red). In most cases, variation within the tissue map is smaller than that 

between patients, and shows no signs of bias. 
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Figure S6. Kaplan-Meier curves. Related to Figure 6. 

Kaplan-Meier (KM) curves for overall survival (OS) in CRC2-17, with patients split by indicated 

marker abundances estimated from TMA (A&C) or WSI (B&D).  (A&B) KM curves generated from 

data stratified with α-SMA+ percentage in each patient sample. The cutoff of α-SMA+ is 40%. (C&D)  

KM curves generated from data stratified with mean CD4 expression level in each patient sample. The 

cutoff of mean CD4 level is 3500 AFU.   

 

Figure S7. Cell compositions in CRC2-17. Related to Figure 7. 

(A) tSNE plots based on CyCIF data for specimens CRC2-17 (excluding data from DNA staining). Cell 

types are as described in Supplemental Table S5 and Supplemental Figure S1.  Tumor/epithelium (T/E), 

stroma (S) and immune (I) regions are outlined in black. The tSNE plot for CRC1 is reproduced from 

Figure 1D for reference. (B) Cell-type composition for CRC1-17 shown as stacked bar graphs with the 

same color code as in panel A. (C) Abundance of immune cell types involved in immunosuppression 

based on detailed analysis of specimen CRC1.  

 

SUPPLEMENTARY TABLE LEGENDS 

 

Supplementary Table 1. Clinical information for colorectal cancer cohort. Demographic and 

diagnostic information for all patient-derived specimens in this study. CRC1 was analyzed in 3D and 

CRC2-17 in whole-slide 2D. Other specimens were images as TMA cores, as described in the text and 

Figure 1. 

 

Supplementary Table 2. Sectioning plan for specimen CRC1. Thickness and staining plan for CRC1 

sections show in Figure 1. All CyCIF sections other than 44-46 were stained using the Primary CyCIF 

antibody panel described in supplementary Table 3. Sections 44-46 were stained as described in 

supplementary Table 4. Numbers refer to the HTAN universal ID scheme used to access underlying 

Level 2 to Level 4 data. 

 

Supplementary Table 3. Primary CyCIF antibody panel. Antibodies used to stain all CRC1 sections 

44-46 including CRC2-17 sections and TMAs. CST refers to Cell Signaling Technologies (Beverley 

MA USA); RRID refers to the Research Resource Identifier available at https://scicrunch.org/resources.  
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Supplementary Table 4. Supplementary CyCIF antibody panel. Antibodies used to stain CRC1 

sections 44-46. Abbreviations as in supplementary Table 2. 

 

Supplementary Table 5. Cell Type Dictionary. Cell type assignments based on marker intensities. The 

first tab shows the primary discriminating markers and tabs 2 and 3 show assignments based on all 

markers in the panel. 

 

Supplementary Table 6. Cell type compositions for regions of interest in CRC1. Cell type 

compositions for pathologist-defined regions of interest (see Figure 1B) across all sections processed for 

CyCIF. Cell type definitions as in supplementary Table 6 

 

 

STAR METHODS 

CONTACT FOR REAGENT AND RESOURCE SHARING 

This manuscript contains no unique reagents or resources; all antibodies are available commercially and 

all data can be accessed via the HTAN portal. 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

Human Tissue 

Unfixed (fresh) tissue from a resection of a colon adenocarcinoma (CRC1) was isolated by the 

Cooperative Human Tissue Network (CHTN) for single cell RNA-sequencing. A portion of the sample 

was formalin fixed and paraffin embedded (FFPE) and tissue sections were generated by the CHTN. 

Additional FFPE colon adenocarcinoma specimens were retrieved from the archives of the Department 

of Pathology at Brigham and Women’s Hospital with Institutional Review Board (IRB) approval as part 

of a discarded/excess tissue protocol. 93 different tumor samples were used to construct a tissue 

microarray (HTMA 402; four 0.6 mm diameter cores were extracted from the FFPE donor blocks and 

assembled into a recipient TMA block). Whole slide sections of 17 of these colon carcinoma specimens 

were also studied, after the four cores were removed. Clinical metadata was abstracted from the medical 

record and clinical biospecimen metadata was recorded by CHTN. 
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METHOD DETAILS 

t-CyCIF protocol 

Tissue-based cyclic immunofluorescence (t-CyCIF) was performed as described (Lin et al., 2018) and in 

and at protocols.io (dx.doi.org/10.17504/protocols.io.bjiukkew). In brief, the BOND RX Automated 

IHC/ISH Stainer was used to bake FFPE slides at 60°C for 30 min, dewax using Bond Dewax solution 

at 72°C, and perform antigen retrieval using Epitope Retrieval 1 (LeicaTM) solution at 100°C for 20 min. 

Slides underwent multiple cycles of antibody incubation, imaging, and fluorophore inactivation. All 

antibodies were incubated overnight at 4°C in the dark. Slides were stained with Hoechst 33342 for 10 

min at room temperature in the dark following antibody incubation in every cycle. Coverslips were wet-

mounted using 200µL of 10% Glycerol in PBS prior to imaging. Images were taken using a 20x 

objective (0.75 NA) on a CyteFinder slide scanning fluorescence microscope (RareCyte Inc. Seattle 

WA). Fluorophores were inactivated by incubating slides in a 4.5% H2O2, 24mM NaOH in PBS solution 

and placing under an LED light source for 1 hr. 

 

Single-cell RNA-sequencing 

Samples for scRNA-seq were processed according to the HTAN protocol 

(https://www.biorxiv.org/content/10.1101/2021.01.11.426044v1). Surgical tissues were removed and 

placed into RPMI solution and transported directly to the processing laboratory within 10 min. Tissue 

samples were immediately minced to approximately 4mm2 and washed with DPBS. The samples were 

then incubated in chelation buffer (4mM EDTA, 0.5 mM DTT) at 4°C for 1 hr and 15 min. Then, the 

resulting suspensions were dissociated with cold protease and DNAse I for 25 min. The suspensions 

were triturated throughout the process, every 10 min, then washed three times with DPBS before 

encapsulation. Single cells were encapsulated and barcoded using the inDrop scRNA-seq platform as 

previously described (Banerjee et al., 2020), targeting about 2,500 cells. Sequencing libraries were 

prepared using TruDrop library structure (Southard-Smith et al., 2020). Sequencing was performed on 

the NovaSeq 6000 (150 bp paired end) at a depth of approximately 150 million reads per sample. 

 

QUANTIFICATION AND STATISTICAL ANALYSIS 

Image processing and data quantification 

Image analysis was performed with the Docker-based NextFlow pipeline MCMICRO)(Schapiro et al., 

2021) and with customized scripts in Pytho,  ImageJ and MATLAB. All code is available on GitHub 
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(https://github.com/sorgerlab/cycif . Briefly, after raw images were acquired, the stitching and 

registration of different tiles and cycles were done with MCMICRO using the ASHLAR module. The 

assembled OME.TIFF files from each slide were then passed through quantification modules. For 

background subtraction, a rolling ball algorithm with 50-pixel radius was applied using ImageJ/Fiji. For 

segmentation and quantification, UNMICST2 was used (Schapiro et al., 2021) supplemented by 

customized ImageJ scripts (Lin et al., 2018) to generate single-cell data. More details and source code 

can be found at www.cycif.org. 

 

Single-cell data QC for CyCIF 

Single-cell data was passed through several QC steps during generation of cell feature table.  Initial QC 

was done simultaneously with segmentation and quantification, so that cells lost from the specimen in 

the later cycles would not be included in the output. Next, single-cell data was filtered based on mean 

Hoechst staining intensity across cycles; cells with coefficient of variation (CV) greater than three 

standard deviation from the mean were discarded as were any objected identified by segmentation as 

“cells” but having no DNA intensity. These steps are designed to eliminate cells in which the nuclei are 

not included as a result of sectioning. Highly auto-fluorescent (AF) cells (measured in cycle 1 or 2) were 

also removed from the analysis, using a customized MATLAB script that applied a Gaussian Mixture 

Model (GMM) to identify high-AF population. More details and scripts can be found online 

(https://github.com/sorgerlab/cycif).  

 

Cell type Identification using CyCIF data 

Multiparameter single-cell intensity data was used for generating binary gates. For the main CyCIF 

panels, 16 measurements (keratin, Ki-67, CD3, CD20, CD45RO, CD4 CD8a, CD68 CD163, FOXP3, 

PD1, PDL1, CD31, α-SMA, desmin, and CD45) were subjected to binary gating. All samples and 

markers were gated independently. A customized MATLAB script was used to apply 2-component 

Gaussian Mixture Modeling and generate the initial gate, followed by human-inspection and adjustment. 

Double or triple gates were also generated via Boolean operation in single-cell data. For hierarchal-cell-

type identification, a modified SYLARAS algorithm (Baker et al., 2020) was applied with these 

datasets, and a total of 31 different cell types were assigned using the 16 markers described above. 

Additional markers (e,g E-cadherin) were considered to be continuous variables and used for analysis 

but not cell type assignment. 
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Delaunay cluster-sizes of Keratin+ cells 

A neighborhood graph was first constructed for all segmented cell centroids using a Delaunay 

triangulation, removing edges whose lengths were greater than 20μm. Then, the keratin+ neighborhood 

graph was defined as the subgraph restricted to the keratin+ cells (i.e., removing all nodes and edges 

connected to keratin-negative cells). Each keratin+ cell’s cluster-size was defined as the number of nodes 

in its connected component of the subgraph. For quantification of marker expression dependence on 

cluster-size, cells annotated as normal mucosa were removed from the keratin+ subgraph. In the 25 

CRC1 Z-sections, cells in the upper-left corner (1cm x 1cm) were also removed; this region contained 

keratin+ cells of reactive, benign, and mesothelial origin, as opposed to tumor cells of interest.  

  

Biased downsampling based on cluster-size for tSNE visualization 

By definition, most tumor cells have a large cluster-size. Therefore, to visualize the cluster-size 

dependence of marker expression with tSNE, we downsampled cells by stochastically rejecting cells at 

frequency 1 − ( 1/𝑛𝑛𝑐𝑐)4 , for cluster-size 𝑛𝑛𝑐𝑐. The power of 4 was chosen empirically to balance the 

representation of various cluster-sizes. Final t-SNE plots were made by further subsampling 1000 cells 

from each section uniformly. The t-SNE plots were computed using the following markers: Na-K 

ATPase, Ki-67, keratin, PD-L1, E-cadherin, vimentin, CDX2, lamin ABC, desmin, PCNA. 

 

kNN-classification of epithelial cell morphologies trained on pathologist annotations 

To develop a kNN classifier for pathologist-annotated regions of interest (ROIs) epithelial cells were 

defined by gating cells with a univariate, 2-component, Gaussian Mixture Model on the relevant marker 

(keratin, cytokeratin 19, cytokeratin 18, or E-cadherin) in each section. A kNN-classifier was trained on 

the annotated, epithelial cells using CyCIF marker expression as predictors, and annotated ROI labels as 

responses. Markers that exhibited unexpected optical artefacts or significant tissue loss were not used. 

Learning and prediction were performed using MATLAB’s 𝑓𝑓𝑓𝑓𝑡𝑡𝑐𝑐𝑡𝑡𝑛𝑛𝑛𝑛() and 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑓𝑓𝑐𝑐𝑡𝑡() functions, with 

k=40 neighbors. The prior probability of each label was set as uniform. In each section, there were at 

least 2,000 annotated cells for each label. Annotated cells were split 50/50 into training and validation 

sets. Posterior probability colors were visualized based on its vector of classification posterior 

probabilities (𝑝𝑝1,𝑝𝑝2,𝑝𝑝3,𝑝𝑝4), for 1: normal, 2: glandular classes, 3: solid, and 4: mucinous. The RGB-

values of each cell were then defined as: 

(𝑅𝑅,𝐺𝐺,𝐵𝐵)  =  (𝑝𝑝2,𝑝𝑝3,𝑝𝑝4)/max(𝑝𝑝𝑖𝑖) 

to capture the relative weight of each class.  
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For the sections in the primary dataset (e.g. section 044), the following markers were used as predictors: 

Na-K ATPase, Ki-67, keratin, PD-L1, E-cadherin, vimentin, CDX2, lamin, desmin, PCNA, 

autofluorescence. 

For section 046, which was stained with an extended antibody panel, markers used as predictors were: 

cyclin B1, cytokeratin 20, cytokeratin 18, NUP98, cytokeratin 8, PD-L1, acetyl-tubulin, p62, pan-

keratin, lamin A/C, tubulin. 

For sections 045 and 047, which were also stained with different extended antibody panels, we used all 

artefact-free markers (totaling 29 and 36 respectively). 

 

Contour plots of epithelial cell marker expression gradients 

Contours represent level sets for the average marker expression of the 400 nearest tumor cells, and were 

computed using the MATLAB contour() function. 

 

3D registration of CRC1 serial sections 

All CyCIF sections were registered using a custom script written in MATLAB 2018 (Mathworks). 

Briefly, each section was first registered using a rigid transformation followed by elastic deformations 

starting at section 12 and cascading towards the top and bottom sections. For the rigid transformation, an 

early cycle Hoechst signal with minimal artefacts from each section was selected. All channels were 

padded by an equivalent of 1600 pixels along all borders when registering at full resolution. Rigid 

transformation required consistent landmarks across all sections. Therefore, we identified two such 

features: the edge of the mucosa section and a point where it transitions into the stromal region. This 

region was annotated on several downsampled sections, providing training data for a UNet model to 

estimate fuzzy locations of the transition point and the mucosal edge. Starting from section 12, and 

taking the centroid of each fuzzy estimate as that section’s transition point, all 25 sections were aligned 

by translation. Each section was then rotated around the transition point until the fuzzy estimates for the 

edge of the mucosa region overlapped maximally between sections.  

 

For subsequent elastic deformation, we manually selected between 25-35 control points across each 

section. Most control points were located near the site of budding cells. Then, using local weighted 

means with these control points via the fitgeotrans() MATLAB function, we applied a deformation 

starting from section 12 towards section 1 and 25. Finally, we applied Demon’s algorithm to refine 

registration further. Images were downsampled by a factor of 0.25 and histogram matched, before 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 2, 2021. ; https://doi.org/10.1101/2021.03.31.437984doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.31.437984
http://creativecommons.org/licenses/by-nc-nd/4.0/


Lin-Wang-Coy-Sorger et al 2021     Colorectal cancer atlas 
 

33 

applying the imregdemons() MATLAB function with an accumulated field smoothing of 1.5 and 

downsampling with 7 pyramid levels. Demon’s algorithm was applied starting from section 12.  

 

3D visualization of registered CRC1 serial sections 

Using Imaris, images were Gaussian-blurred, and an intensity threshold was applied to define regions 

(e.g., keratin+). Connectivity of buds or mucin pools were defined on blurred, thresholded voxels. 

 

Virtual XZ-section 

Virtual XZ-sections were constructed from the 3D registered image. Pixels in each XY-section (i.e., 

original imaging plane) were downscaled such that a downscaled pixel represented the average intensity 

in a 5μm x 5μm block. A virtual 5μm XZ-section was constructed from the pixels at a fixed Y-position.  

 

Virtual TMA cores and fold-change in effective sample size N/Neff 

Virtual TMAs were constructed from whole-slide sections by randomly selecting a central cell, and 

including all cells within 500μm of the central cell’s centroid as one core. For each virtual TMA core, a 

matching, uniform random sample was generated from the whole-slide section with an equal number of 

cells. The standard-errors of the mean from virtual TMA (i.e., regional) sampling (𝜎𝜎𝑇𝑇𝑇𝑇𝑇𝑇) or random 

sampling (𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) were estimated from the means of 1,000 cores and their matched, random samples. 

The effective sample size N/Neff was defined as the square of the standard-errors’ ratios:  

𝜎𝜎2𝑇𝑇𝑇𝑇𝑇𝑇/𝜎𝜎2𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 

 

Spatial correlation functions and predicting standard-error of regional sampling 

For each sample (whole-slide or TMA core), spatial correlation functions 𝐶𝐶𝑇𝑇𝐴𝐴(𝑝𝑝) were calculated for a 

pair of variables 𝐴𝐴,𝐵𝐵 and a nearest-neighbor index 𝑝𝑝. Specifically, 𝐶𝐶𝑇𝑇𝐴𝐴(𝑝𝑝) was given by the Pearson 

correlation between cells’ 𝐴𝐴-values and their 𝑝𝑝th - nearest neighbors’ 𝐵𝐵-values. Each 𝑝𝑝 index was 

associated to the average, inter-cell-centroid distance 𝑝𝑝(𝑝𝑝) of all 𝑝𝑝th - nearest neighbors in a sample. 

Correlations were computed up to 𝑝𝑝 = 200. Each 𝐶𝐶𝑇𝑇𝐴𝐴(𝑝𝑝(𝑝𝑝)) was fit to an exponential 𝑐𝑐0exp(𝑐𝑐1𝑝𝑝) for 

parameters 𝑐𝑐0, 𝑐𝑐1, over the range of 5 < 𝑝𝑝 < 200 to avoid spurious correlations between adjacent cells 

that may arise from image segmentation errors. Correlation strength was defined as 𝑐𝑐0, and length scale 

𝑙𝑙 = −1/𝑐𝑐1. Fits were performed with the 𝑓𝑓𝑓𝑓𝑡𝑡() MATLAB function with default options. We 

subsequently estimated the standard-error of the mean of a variable 𝐴𝐴 for a regional sample of 𝑁𝑁 

correlated cells as follows. First, we computed the 𝑁𝑁 × 𝑁𝑁 matrix of inter-cellular distances 𝑝𝑝𝑖𝑖𝑖𝑖, and then 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 2, 2021. ; https://doi.org/10.1101/2021.03.31.437984doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.31.437984
http://creativecommons.org/licenses/by-nc-nd/4.0/


Lin-Wang-Coy-Sorger et al 2021     Colorectal cancer atlas 
 

34 

computed the 𝑁𝑁 × 𝑁𝑁 correlation matrix 𝛴𝛴𝑁𝑁 between cells using the fit of the spatial correlation function 

𝐶𝐶𝑇𝑇𝑇𝑇(𝑝𝑝). By the Central Limit Theorem for weakly-dependent variables (Ibragimov, 1962), we expect 

the standard- error of the mean for N samples to be �| 𝛴𝛴𝑁𝑁 |/𝑁𝑁, for | 𝛴𝛴𝑁𝑁 | the sum of all entries in 𝛴𝛴𝑁𝑁.  

 

Scaling analysis of fold-change in effective sample size N/Neff 

For a variable 𝐴𝐴 with variance 𝜎𝜎2 = 1, the fold-change N/Neff is defined as: 

 
𝑁𝑁

𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒
= 𝜎𝜎2𝑇𝑇𝑇𝑇𝑇𝑇

𝜎𝜎2𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
= | 𝛴𝛴𝑁𝑁 |/𝑁𝑁2

1/𝑁𝑁
= | 𝛴𝛴𝑁𝑁 |

𝑁𝑁
. 

 

The final term can be interpreted as the sum of correlations between an average cell and all other cells in 

the sample region 𝑅𝑅. Choosing a coordinate system with an average cell at the origin, we approximate 

the sum as an integral: 

| 𝛴𝛴𝑁𝑁 |
𝑁𝑁

≈ � 𝑝𝑝𝑟𝑟𝑥𝑥 𝐶𝐶𝑇𝑇𝑇𝑇(|𝑥𝑥|)𝜌𝜌(𝑥𝑥)
𝑅𝑅

 

= ∫ 𝑝𝑝𝑟𝑟𝑥𝑥 𝑐𝑐0exp(−|𝑥𝑥|/𝑙𝑙)𝜌𝜌(𝑥𝑥)𝑅𝑅 . 

Where 𝜌𝜌(𝑥𝑥) is the density of cells, and 𝑛𝑛 is the spatial dimension of the regional sample. If we assume a 

uniform density 𝜌𝜌(𝑥𝑥) ∼ 1/𝑙𝑙𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 for a cell length scale 𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, and change variables in the integral to 

eliminate the length scale 𝑙𝑙, we have: 

 | 𝛴𝛴𝑁𝑁 |
𝑁𝑁

∼ 𝑐𝑐0 �
𝑐𝑐

𝑐𝑐𝑐𝑐𝑒𝑒𝑐𝑐𝑐𝑐
�
𝑟𝑟
∫ 𝑝𝑝𝑟𝑟𝑢𝑢 exp(−𝑢𝑢)𝑅𝑅′ , 

which gives us a scaling relation with which we can roughly estimate N/Neff from parameters: 

𝑁𝑁
𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒

∼ 𝑐𝑐0 �
𝑐𝑐

𝑐𝑐𝑐𝑐𝑒𝑒𝑐𝑐𝑐𝑐
�
𝑟𝑟

. 

 

Variance between patient TMAs due to sampling error, and an optimal score 

For any given cell-type’s %-composition, we computed the variance of estimates from the whole-slide 

tumor regions of each patient, 𝜎𝜎2𝑝𝑝𝑟𝑟𝑝𝑝𝑖𝑖𝑐𝑐𝑟𝑟𝑝𝑝, and the variance of estimates from TMA cores, 𝜎𝜎2𝑇𝑇𝑇𝑇𝑇𝑇. We 

considered 𝜎𝜎2𝑝𝑝𝑟𝑟𝑝𝑝𝑖𝑖𝑐𝑐𝑟𝑟𝑝𝑝to be the biological variance of 𝜎𝜎2𝑇𝑇𝑇𝑇𝑇𝑇, and remaining variance to be residual error 

from sampling, 𝜎𝜎2𝑠𝑠𝑟𝑟𝑟𝑟𝑝𝑝𝑐𝑐𝑖𝑖𝑟𝑟𝑠𝑠. Percent of variance explained by sampling was given by 𝜎𝜎2𝑠𝑠𝑟𝑟𝑟𝑟𝑝𝑝𝑐𝑐𝑖𝑖𝑟𝑟𝑠𝑠/

 𝜎𝜎2𝑇𝑇𝑇𝑇𝑇𝑇. For the hypothetical scenario of averaging 4 cores, 𝜎𝜎2𝑠𝑠𝑟𝑟𝑟𝑟𝑝𝑝𝑐𝑐𝑖𝑖𝑟𝑟𝑠𝑠 would be 4-fold lower, and 
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percent variance explained was given by (𝜎𝜎2𝑠𝑠𝑟𝑟𝑟𝑟𝑝𝑝𝑐𝑐𝑖𝑖𝑟𝑟𝑠𝑠/4)/ (𝜎𝜎2𝑠𝑠𝑟𝑟𝑟𝑟𝑝𝑝𝑐𝑐𝑖𝑖𝑟𝑟𝑠𝑠/4 + 𝜎𝜎2𝑝𝑝𝑟𝑟𝑝𝑝𝑖𝑖𝑐𝑐𝑟𝑟𝑝𝑝 ). Outliers in 

each distribution, as indicated in each boxplot, were excluded from the variance calculations. 

 

We sought an optimal score that could be constructed by linearly combining the k separate cell-types’ 

%-compositions with a k-dimensional, weight vector 𝑤𝑤��⃗ . Such a score would be given by maximizing 

(𝑤𝑤�����⃗ 𝑇𝑇𝛴𝛴𝑝𝑝𝑟𝑟𝑝𝑝𝑖𝑖𝑐𝑐𝑟𝑟𝑝𝑝𝑤𝑤��⃗ )/(𝑤𝑤�����⃗ 𝑇𝑇𝛴𝛴𝑇𝑇𝑇𝑇𝑇𝑇𝑤𝑤��⃗ ), where 𝛴𝛴 is the covariance matrix of different cell-types’ %-composition 

across patients or TMA cores respectively. These two covariance matrices are readily computed from 

the data. Since the quantity we intend to maximize is a generalized Rayleigh quotient, the optimal 𝑤𝑤��⃗  is 

the generalized eigenvector of 𝛴𝛴𝑝𝑝𝑟𝑟𝑝𝑝𝑖𝑖𝑐𝑐𝑟𝑟𝑝𝑝 and 𝛴𝛴𝑇𝑇𝑇𝑇𝑇𝑇 with the largest generalized eigenvalue. 

 

Progression-free survival analysis and Kaplan-Meier curve generation 

A MATLAB package, MatSurv was used for statistical analysis and creating KM plots with risk tables. 

The log-rank p-value and hazard ratio (HR) were calculated using Cox proportional hazards regression, 

as described in (Creed et al., 2020).  The stratification of patients was done by thresholding mean 

intensity data or the mean positive percentage from each sample (TMA or WSI). The CyCIF data from 

corresponding CRC WSI (16 sections) and CRC TMA (64 cores) were used.   

 

scRNA-seq data analysis 

Following sample demultiplexing from the sequencer, reads were filtered, sorted by their barcode of 

origin, and aligned to the reference transcriptome to generate a counts matrix using the DropEst 

pipeline(Petukhov et al., 2018). Barcodes containing cells were identified using dropkick (Heiser et al., 

2020). Batches were combined and consensus non-negative matrix factorization (cNMF; (Kotliar et al., 

2019)) was performed to identify metagenes in the resulting cell matrix, assigning “usage” scores for each 

factor to all cells. The factors or metagenes contain gene loadings that rank detected genes by their 

contribution to each factor, which are shown on UMAP embeddings in descending order. CytoTRACE 

(Gulati, et al. 2020) was also run using the web portal at https://cytotrace.stanford.edu/ to calculate 

“stemness” or cellular plasticity scores based on genetic diversity. Leiden clustering (Traag et al., 2019) 

and PAGA (Wolf et al., 2019) graph construction was performed on principal component analysis of the 

normalized and arcsinh-transformed raw counts matrix. A two-dimensional UMAP (McInnes et al., 2020) 

embedding was then generated using SCANPY (Wolf et al., 2018) based on principal component analysis 

and initial cluster positions determined by PAGA. 
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